
j- .4

' .'-',.': , a
- o

,. *

.
,...

!;i~i...:
'

, , o ., .

We -'cmne I

The National Computer Security Center (MCSC) and the National Computer

Systems Laboratory (NCSL) are pleased to welcone you to the Twelfth Annual

National Computer Security Conference. We believe that the Conference will

stimulate a vital and dynamic exchange of information and foster an

understanding of emerging technologies.

The theme for this year's conference- Information Systems Security:

Solutions for Today, Concepts for Tomorrow--reflects the growing interest in

the broader information systems security issues facing the user community.

At the heart of these issues are two items which will receive special

emphasis this week--Education. Training and Awareness, and Ethics. We firmly

believe that security awareness and responsibiliry are the cornezstone of any

information security program. Both the Federal Government and private

industry must work together to build on that foundation; we believe this

conference will serve both government and industry well in our cooperative

efforts to explore and to apply state-of-.the-art technology to information

system security.

To be successful in our effort to establish a firm information systems

security base, we ask you to share the information you learn this week with

other users, managers and administrators. Only by sharing the)nowledge with

others can we hope to build on an even stronger foundation in the future.

SJAMES H. BURROWS PATRICK R. GALLAGHER, JR
Director Director

National Computer Systems Laboratory National Computer Security Center

TABLE OF CONTENTS

TRACK A - RESEARCH & DEVELOPMENT

1 Going Beyond Technology to Meet the Challenges of
Multilevel Database Security

Gary W. Smith, George Mason University

11 A Trmsted Database Machine Kernel for Nonproprietary
Hardware

Tim Wood, Sybase, Inc.

18 The Seaview Verification Effort
R. Alan Whitehurst, University of Illinois at

Urbana-Champaign
Teresa F. Lunt, SRI International

28 An Interactive Approach to Ada VerificationI
Carla Marceau and C. Douglas Harper

Odyssey Research Associates

52 Addixig CASE Technologies to Formal Verification*
J. V. A. Janieri, J. S. Barlas, L. L. Chang

The MITRE Corporation

65 Engineering Results From the Al Formal Verification
Process

Timothy E. Levin, Steven J. Padilla,
Roger R. Schell

Gemini Computers, Incorporated

75 Guidelines for Formal Verification Systems:
Overview and Rationale

Monica McGill Lu, National Computer Security
Center

Barbara A. Mayer, Trusted Information
Systems, Inc.

83 Comparing Specification Paradigias: Gypsy and Z
William D. Young, Computational Logic, Inc.

ii

98 Evaluation of Security Model Rule Bases
John Page, Jody Heaney, Marc Adkins, Gary Dolsen

Planning Research Corporation

ill Hook-Up Security and Generalized Restrictiveness
Prof. Robert S. Lubarsky
Franklin and Marshall College

323 The Argus Security Model
Marc M. Adkins, Gary Dolsen Jody Heaney, John Page

Planning Research Corporation

135 The Design of the Trusted Workstation: A True
"INFOSEC Product"

Frank L. Mayer, J. Noelle McAuliffe
Trusted Information Systems, Inc.

136 FTLS-Based Security Testing for Lock
Tad Taylor, Computational Logic, Inc.

146 Formal Specification of a Secure Distributed
Messaging System

Vijay Varadharajan, Stewart Black
Hewlett-Packard Laboratories

172 The SDOS System: A Secure Distributed Operating
System Prototype

Raymond Wong, Mathew Chacko, Eugene Ding,
Brian Kahn, Norman Proctor, John Sebes,
Ram Varadarajan

Odyssey Research Associates

184 Toward a High B Level Security Architecture
for the IBM ES/3090 Processor Resource/Systems
Manager

Thomas T. Russell, IBM Corporation
Marvin Schaefer, Trusted Information

Systems, Inc. on ForT

197 Initial Approach for a TRW Secure Communications IA&I

Processor 3 0
Bonnie P. Danner, TRW, Inc. iced 0

S... •a ion - -
STATEMENT "A" per Cathy Pudwel-
National Computer Security Center/S33
Fort Meade, MD Di tribution/
TEL•ECON 3/15/90 VG Availability Codes

Avail ana/or
Dist Speoial.

SoI

TRACK B - SYSTEMS

215 Privacy for Darpa-irternet Mail
John Linn, DigxUl Equipment Corporation
Stephen T. Kent, BBN Communications Corporation

230 Key Management and Access Control for an Electronic
Mail System

Martha Branstad, W. Curtis Barker,
Pamela Cocjrame, David Balenson
Trusted Information Systems, Inc.

232 A Token Based Access Control System for Computer
Networks

Miles Smid, James Dray, Robert B. J. Warnar
Nacional Institute of Standards and
Technology

254 The Boeing MLS LAN: Headed Towards and INFOSEC
Security Solution

Gary R. stoneburner, Dean A. Snow
Boeing Aerospace and Electronics

267 The SILS Model for LAN Security
L. Kirk Barker, Datotek
Kimberly Kirkpatrick, MITRE

277 A Dynamic Network Labeling Scheme for a MLSLAN
Peter Loscocco, National Computer Security
Center

286 Extending Mandatory Access Controls to a Networked
MLS Environment

R. S. Arbo, E. M. Johnson, R. L. Sharp
AT&T Dell Laboratories

296 On the Need for a Third Forn of Access Control
Richard Graubart, MITRE Corporation

iv

305 The Digital Distributed System Security
Architecture

Morrie Gasser, Andy Goldstein, Charlie Kaufman,
Butler Lampson

Digital Equipment Corporation

320 Guidelines for Specifying Security Guards
William Neugent, MITRE Corporation

339 Security fo. Embedded Tactical Systems
Howard L. Johnson, Information Sciences, Inc.
Chuck Arvin, CTA INCORPORATED

349 A "How To" Guide for Computer Virus Protection
in MS-DOS

M. H. Brothers
AT&T Bell Laboratories

359 The "Rather Chriatmas Worm"
James L. Green, Goddard Space Flight Center
Patricia L. Sisson, Science Applications
Research

369 An Epidemiology of Viruses & Network Worms
Cliff Stoll, Harvard - Smithsonian Center for
Astrophysics

378 An Assured Pipeline Integrity Scheme for Virus
Protection

John Page, Planning Research Corporation

389 Computer Crime and Espionage: Similarities
and Lessons Learned

Lloyd F. Reese, Department of Veterans Affairs

396 A Summary of Computer Misuse Techniques
Peter G. Neuman. and Donn B. Parker

SRI International

v

TRACK C - MANAGEMENT & ADMINISTRATION

408 Integration of Security into the Acquisition
Life Cycle

William Norvell, Hughes Aircraft Company

418 Secarity Assurance Through System Management
David Juitt, Digital Equipment Corporation

423 A Systematic Approach to Software Security
Evaluations

Mary Frances Theofanos, Martin Marietta
Energy System6, Inc.

433 Professional Certification for Computer Security
Practitioners

Toni Fish & Sally Meglathery, International
Information Systems Security Certification
Consortium

435 Integrating Security Requirements and Software
Development Standards

T. C. Vickers Benzel, Trusted Information
Systems, Inc.

459 The Electronic Security Command Automated
Accreditation Package

Horace B. Peele, ESC/Communications-
Security Systems

472 A Structured Approach to Risk Assessmenti An
Innovative Concept

Jennie A. Stevens, Richard E. Weiner
Booz, Allen & Hamilton, Inc.

483 LAVA's Dynamic Threat Analysis
Suzanne T. Smith, Los Alamos National
Laboratory

Vi

495 Anomaly Detection: Purpose and Framework
G. E. Liepins, Oak Ridge National
Laboratury

H. S. Vaccaro, Los Alamos National
Laboratory

505 Computer Based Instruction for Computer Systems
sez:irity Officers - An Example by the Air Force
cryptologic Support Center

515 Communications-Computer Systems Security Vulnerability
Reporting Program (CVRP)

CAPT Lee Sutterfield, CAPT Gregory B. White
Networks and Computer Systems Security

TRACK D - EDUCATION & ETHICS

531 Unethical "Computer" Behavior: Who is Responsible:
Larry Martin, Subcommittee on Automated Informatio
Systems Security (SAISS)

542 Malicious Codez An Ethical Dilemma
Maj. (Select) Glenn D. Watt, Jr.
National Computer Security Center

553 Information Security as a Topic in Undergraduate
Education of Computer Scientists

John C. Higgins, Brigham Young University

557A Computer Security Education, Training, and
Awareness: Turning a Philosophical Orientation
into Practical Reality

W. V. Maconachy, U.S. Department of Defense

ALTERNATE PAPERS

558 A Least Fixed Point Approach to Inter-Procedural
Information Flow Control

Masaaki Mizuno, Kansas State University

571 An INFOSEC Platform
Joe Marino, Paul Lambert, Motorola, Inc.

vii

579 A Multilevel Secure Object-Oriented Data Model
M. B. Thuraisingbam, MITRE Corporation

591 Modular Presentation of Hardware: Bounding
the Reference Monitor Concept

Donald N. Dasher

601 Site Preparedness for the Next Network Emergency
Donald L. Alvarez, MIT Center for Space
Research

6L5 INITRODUCTION

EXECUTIVE SUMMARIES

606 Making Eligibility for Federal Benefits
Determinations Under the Computer Matching and
Privacy Protection Act of I?8S (P.L. 100-503)

Robert N. Veeder
Executive Office of the President

609 Public Access to Government Databases
Anna L. Patrick

U. S. Department of Agriculture

611 Trends in Computer Abuse/Misuse
JJ Buck BloomBecker
National Center for Computer Crime Data

615 Computer Abuse: An Academic Perspective
James E. Miller
University of Southern Mississippi

619 Access to the Access Codes '88='89: A
Prosecutor's Prospective

William J. Cook
United States Attorneys Office

viii

624 Ethical Use of Computers
Dr. Karen A. Forcht
James Madison University

627 Computer Security Training in the Federal
Government

Harold Segal
U.S. Office of Personnel Management

628 Security Training and Awareness Within the
Federal Government

Anne Todd
National Institute of Standards & Technology

630 Information Ethics, A Practical Approach
Jiarrý B. DeMaio
Deloitte Haskins & Sells

634 Executive Awareness
Joan Forman

Bureau of Engraving and Printing

637 CONFERENCE REFEREES

ix

TRACK A

m'-.

GOING lBEY)ONID IIL:('IINOLOGY TlO MEETTI It: CI IALLLNGES OF

MtJL'IUXINE I)A1'AIASL SLCURriY

Gary XV. Smlithl

SCli01 O')l of I nformat on *FCch nIOlOgy an1d Engic eering
(icolge Masonl U niversity

Fa~irtfax, V'A 220)30

Abstract. In- its quest for technicall solutions to mutltilevel daltaba1se security problemt1s, tile
database security conImunlllity appeiirs to have lost sight of other aspects of seccurity. This
paper asserts that onec call, ill inlacly ins~tanices, meiet thle 'chalk nlges facing tile latilba'se
security commtiunlity (g.polyinstantiai~tion, integrity, Trojan horses and covert storage chian-
nelIs) 1.hrouni'l ,ood sy'steml design and the use of nianagenietit controls acid pr-occdura1ll
security. AC lonce ptua il fralmework fol. data access Control and a conceptual operationlil
tramewwork are proposed to provide thle requisite control inl a database environment. The
operational framiework includes I ll-- not ion of at privileged domain fitor programls that are
authorized to update corporate data, and at less-privileged domnain for read-only p)rogramns.
Possibl soIlutionls to database security chaillen ges are illustqated within thle coniccptnal
frameworks.

Th'le compu)Lter security conmmunity hias beeni energized for the past few years to develop
techno110logical'_01 W 10i ions o mutilevel! security (Mi Sz-) reqoi tic apps.ki 1k-)*- *-t LLLL
level ope ratIngle systemils is inl the e ngi iieering stage of development with nlianly of thle funl-
damlenital mlechanlismls inl place. Proposed approaches anld solutions in thle database security
arena inl many cases have evolvedl from those used for operating systems. D)atabase
security, however, poses5 different challenges based upon thle finer granu~larity at which mul-
tilevel security must be invoked.

Se-veral issueCs ContinueI to be topics of discussion and debate inl the databaise security
community: providing (anid definingý) integrity, thle need for polyinstanliatioti, and protec-
tion from Tirojan horses and covert chianniels. The communiility is actively designing database
systems that will provide multilevel sceurity 15,6,9),10,13,16,17]. These efforts, and thle
(dominate themne inl the literature, appear toi be en~tirely dependenC~t onl technology to pFO~'jdC
the required security. But long before there were com1puters, we hadu managl"Ciement controls,
p~rincip~les of good system de-sign, and pro)cedutral security.

The orientation towvaads technl'ology anid lcnechanisui.~i seemls to be to tile exclusion of
more basic approachecs to security (management controls, good systeni design, and proce-
dural security). We assert that the chiallenges facing tile databas-e security community canl inl
many ins'tanices Ile solved (and inl the othleý instances made mantageable) by incorporalting
nion-technlical aspects of security along those technical mechanisnis that either are now, or
will Soon be, availiable.

The remainder of the paper. is organized as follows. Section 2 provides a brief descrip-
tion, friom a dalabase perspective, of thle challenges cited above. Section 3 gives ii proposed
Solution including mnialigemlenlt and decsign Concepts, at conlceptual framework for data ac-
cess control, an1-d a con1ceptual. operational framework. In Section 4 thle proposed solutioni

of Section 3 is used to illustrate solutions to the problems described in Section 2. Finally,
the conclusions are given in Section 5.

2. Database Security Challenges

As researchcrs developed approaches and solutions to MLS requirements sevcral sig-
nificant challenges have been encountered. Some c('aienges are well-known because they
have received considerable attention in the literatuu• ý,id are subject to intense debates.

2-1 Challengrs

Ilitrily. The Clark-Wilson paper of the 1987 Oakland Conference [4] started an intense
debate on the issue of "integrity." The recent Invitational Data Integrity Workshop, spon-
sored by the National Institute for Science and Technology (NIST - formally the National
Bureau of Standards) reemphasized the notion that "integrity" means many different things
to different researchers. Many of the problems involving the community's difficulty in deal-
ing with integrity relate to two areas: the different implicit meanings of "integrity" and the
background of the individuals--specifically, the application domain from which they come
and (more importantly) which they usc to illustrate and understand the problem and
proposed solutions.

"To enhance precise communication both the meaning of integrity and application
domain used are defined. For the purpo;e of this paper integrity involves two notions who
can change the state of the database and what states of the database are valid. Changing

h-C - . ll1 , d a a ya, LIL nclud e o1 1a.,l 1 l l ll(J llŽ ()FllV au thorized m odification .e., update

of existing data (e.g., changing an employee's salary in the database) and allowing only
authorized creationldeletion of data (e.g., adding a new employee to the database, or delet-
ing a file or relation from the database). A valid state of the database means only that the
data entered meets some criteria for validity (e.g., the department code entered is a valid
department code). (Note that "valid data" does not mean that the data is correct, e.g., that
the valid department code entered correctly reflects the department to which the employee
is assigned.)

For the purpose of this paper the application domain is that of "structured data" that
one might find in a database using a relational database management system (DBMS) sup-
porting business or even many command and control applications. Note that the applica-
tion domain is NOT that of text (and spelling checkers) or software development libraries,
or CAD/CAM or a host of other domains.

PQoyintantiation All the reasons and examples given which have driven the community to
propose polyinstantiation can be grouped into two fundamental areas: the first area relates
to update problems and the second area involves the need for cover stories.

The Woods Hole Study [1] identified a significant challenge in database security--how
to hide the existence of classified data in a database when users (or code executing on be-
half of a user which may contain a Trojan horse) inadvertently (or intentionally) try to up-
date (add or modify) the classified data which they are not allowed to read directly by the
security policy. Subsequently, the SEAVIEW project [6] proposed the concept of
"polyinstaniation," that is multiple instances of the same data entity differing only by their
class.fi..'ation level. The solution then is that when a user tries to update (change a data ele-
ment or add a record) data the user is not authorized to see, the "system" will perform the

2

update and polyinstantiate the data (i.e., provide muitiple instances of the record which dif-
fer by classification). The reason for having to do this, of course, is the policy that the user
(or code operating on user's behalf) must not be told that there is data in the database
which he or she is not authorized to see. This requirement was initially stated in the Hinke-
Schaefer study [111 and has since been considered a "de facto standard" requirement for the
development of MLS database systems.

The second fundamental challenge that polyinstantiation is designed to solve is that of
cover stories. There are times when the organization wants to provide disinformation to
users at lower levels of classification. The classic example is a classified destination for a
military aircraft--you can't hide the existence of the aircraft nor that it is going to fly some-
where. But you want to hide its classified destination. So one lets the Top Secret user know
the real destination of the flight (e.g., Iran), yet the Secret and lower users will be told a
cover story (e.g., the destination is Greece). Implicit in the use of cover stories is the fact
that the organization consciously "plans" to provide disinformation to lower level useis--it
should not be an ad hoc requirement that necessitates decisions "on the fly" for new cover
stories.

Implementation of polyinstantiation adds complexity to database management systems.
In addition, there is some concern [7] relating to how users will be able to cope with the
complexity of polyinstantiation and understanding the semantics of multiple instances.

ijalntHorse Challenge. This challenge is protecting from malicious code operating
,;uit)hout the knowpledg of an antltorized user. The *-property of the Bell-LaPadula model
[2] was designed to prevent unauthorized flow of data by Trojan horses. For example, a
program which is reading a Secret file could write Secret data to an unclassified file. The *-
property prohibits this occurring by not allowing a prograrn to "write down" in classification
level. In this example, the progra.n could only write to Secret files. The key word in this ex-
ample is "write." Because this challenge is fundamentally an update problem--adding,
changing or deleting data in a file. If one controls which code is authorized to write (i.e. up-
date) data, then you can control the problem. For example, a system where no program is
authorized to update any data is very secure from Trojan horses (also not much use). In the
same way, a Trojan horse that is not authorized to update any files can do no harm to the
data--it is reduced to using timing covert channels to disclose classified information.

Covert Storage ChannlfChaJlenge. There are two types of covert channels-.-storage and
timing: covert storage channels result when one process causes an object to be written and
another process observes the effect, a covert timing channel results when a process
produces some effect on system pcrformiance that is observable by another process and is
measurable with a timing base such as a real-time clock [81. Covert storage channels re-
quire writing to objects, thus it is reduced to an update challenge equivalent to the Trojan
horse challenge.

2...UZ d rlying Pibkems

There are several underlying problems with the way the community is approaching the
slutions to ML.S requirements which in some part have caused or exacerbated these chal-
lenges.

3

Mechanism Madne5s. The community is caught up in designing mechanisms (in an abstract
environment) without a conceptual framework (that works in the real world of application-
dependent needs) upon which to hang the mechanisms. Mechanisms are important and at
the operating system level they will piovide the solutions. However, a mechanism that
works in one environment may not be acceptable or effective in another environment.

Control-less Operational Environment. The de facto standard of an operational environ-
merit seems to be one where there is little management control "planned" for which
programs are allowed to read and write which data. Behind most examples of threats stated
in the literature is an implicit lack of control on what users and programs are authorized to
do. This type of operational environment is not realistic for today's environment, and it cer-
tainly should not be acceptable. Although it is a "worst case scenario" the developers and
operators of information system can and must demand a more controlled environment.

Technolgoy Obsessed. We are caught up in using technology to solve all problems and,
therefore, have lost sight of using other techniques to help solve security problems. Tech-
nology and highly trusted systems are important and have their place. However, technology
must depend on external factors to successfully implement secure systems. Specifically one
needs to use a combination of other techniques from the personnel and procedural aspects
of security as part of the overall system design.

3A Proposed Solution

The key to providing solutions to these chal'enges is to provide a operational -nviron-
ment with the appropriate controls and a good system design. The word "system" is used in
its broadest sense--all the personnel, automated facilities, manual policies and procedures
needed to perform a particular function for the organization. The proposed solution com-
bines existing management and design concepts (Section 3.1) along with a new conceptual
framework--both for data access control (Section 3.2) and for an operational environment
(Section 3.3).

3.1 Management and Design Conc..

The management and design concepts briefly described in this section will come as no
surprise to most readers. But it is surprising that many of the technical solutions proposed
assume their absence. The important assertion here is that these concepts should not be
considered optional--but they must be a required part (actually the foundation) of the total
system solution foi multilevel database security.

Data Management Resource. For many years the information systems community (espe-
cially the database community) has considered "data" and "information' as an organization
resource--a resource which can be costly to acquire and maintain. This means that data and
information must be managed as carefully as other resources (e.g., personnel, money).
"Many large organizations have recognized this need and have established organizational
elements, such as a database administrator, with specific responsibilities for data manage-
ment. The significance of this notion for security is the following: they establish which or-
ganizational elements (or even specific personnel) are responsible for updating (creating,
modifying, and deleting) each data element in the "corporate database." The concept that
any user or program can come along and update the data is riot acceptable--changing data is
controlled. When security becomes a major consideration a database security officer needs

4

to assist in establishing the policies and procedures for creating, updating and querying data
in the corporate database.

Design Considerations. As Teresa Lunt states [14] many database security problems can be
dealt with effectively, not by rcquiring new technology in a DBMS, but by smart design of
the database. Design considerations will also affect security when taking a system-wide
perspective (including the manual procedures, personnel, and other non-technical aspects
of the system).

System-wide Perspective. The systerm that is being designed and engineered must include
not just the hardware and software, but also the users and procedures. The database
security challenges discussed above go away (or at least become manageable) if the scope of
the solution is expanded to include personnel and procedural considerations. For example,
in many situations, th: need for polyinstantiation can be negated through the use of these
considerations, (Section 4 contains specific details.)

3.2 Conceptual Framework for Data Access Control

Like the basic concepts, the reader will look at this section and say, "so what's new?"
The answer is not that this is a revolutionary concept, but that in a database environment
this framework should be the de facto standard and not optional to provide a satisfactory
foundation for a secure system. The conceptual framework for access control involves a
series of increasingly stringent criteria as shown in Figure 1. The top two levels involve dis-
closure access controls. The first level represents trust as implemented in the mandatory ac-
cess control (MAC) hierarchical levels. The next level, the size of which reflects a smaller
number of users, represents need-to-know requirements. Note that both non-heirarchical
MAC categories and organizationally-managed discretionary access control (DAC)
mechanisms can be used to enforce this level of access control.

Fortunately, the concepts of need-to-know and hierarchical levels of trust are well es-
tablished and reaý.(onably well understood. Unfortunately, that is not the case for access con-
trol for the integrity issues of update, creation, and deletion. The last two levels of the
framework involve access control address integrity issues. As shown graphically, a much
smaller population of users should be authorized to update data based on need-to-change re-
quirements. In a similar manner, a,, even smaller number of users should be authorized to
create or delete data (either t. add/delete instances of entities, e.g. adding a new
employee, or to add/delete files or relations to the database). The need-to-create/delete
level could be either a subset or disjoint set of the need-to-change level.

Unfortunately, the concepts of need-to-change and need-to-create are not well estab-
lished even though Biba [3] introduced the equivalent notion ofneed-to-modify. More
recently .Jueneman [12] used the term need-to-do which includes both the update and create
functions.

To summarize, many users may be trusted to access certain data, while only a subset of
those users will be authorized to access the data based upon need-to-know criteria. An
even smaller subset of users should be authorized to update data based upon a need-to-
change policy, with only L, few users authorized to create or delete data. Once again an im-
portant point--this access control framework for a database environment should not be
considered just as something that could be implemented; it must be provided as the policy

5

<--Relative Number of Authorized Users-->

T'rust.- MAC Hierarchical Levels

Need-to.Know

MAC Categories and DAC

Need-to-
Change

Need-to-
Create/Delete

Figure 1: Access Control Conceptual Framework

that will govern the design and implementation of the information systems that use cor-
porate data. Need-to-change, need-to-create, and need-to-delete policies must be explicitly
stated for each and every dhtn el1 ment in the corporate datab-s.

23 Conceptual Qperational Framework

Unfortunately, the entire world is not all wonderful--there is malicious code; there are
real threats to information systems. Figure 2 provides a conceptual operational framework
that incorporates the concepts presented above with the realities of a less-friendly environ-
ment. There should be two fundamental domains of the operational system--the part under
control of the organization (database administrator, security officer, and software
developers) and then the rest of the system over which there is a much lower a prior level of
control. The operating system (OS) trusted computing base (TCB) boundary represents
facilities an MLS OS provides to mediate access between subjects (i.e., programs) and OS
objects. Programs which are part of the OS TCB are not shown.

The concepts described above (Section 3.1 and 3.2) are mandatory for the controlled
environment, i.e., inside what we call the control boundary. The environment outside the
control boundary is a less-privileged domain. It conforms to an environment where there is
little control over which users invoke which programs that may contain unknown amounts
of malicious code. (This is the only type of environment normally assumed to be present.)
This domain is limited to read-only programs for data objects within the control boundary,
but may contain programs that update data objects that are outside the control boundary.

Inside the control boundary is a privileged-demain which has two types of objects: data
objects (files relations, etc.) that contain corporate data; and data management-relevant
programs that are authorized to update the data objects within the control boundary. If one
was to add users (authorized to execute the data management-relevant programs within the
control boundaiy) to Figure 2, there is an obvious parallel between the triples of the Clark-

6

ED E
-4 I

0010 0 1 0
0 oo0 O 0

Automated System Boundary Data Objects
Operating System TCB Boundary 0
Control Boundary - - Program Objects

Figure 2: Conceptual Operational Framework
•¢IIIIIll~t~g !ldLll~tt*ll*L daa'. A '.,, ,. and.,

'Wilsol nIlludl (Ullstfainud data , ,,,,-,, n ..t... n, and user-dl , I h n ne ob-
jects within the control boundary. J

Since most of the difficult challenges of Section 2 are update problems, if one strictly
controls the update function (i.e., the programs that are authorized to update) the problem
is effectively solved. To do that, only specified data management-relevant programs within
the control boundary are authorized to update corporate data objects that are within the
boundary. Conceivably the data management-relevant programs objects would include both
an MLS DBMS (trusted to an appropriate level) and programs which are trusted to proper-
ly update data elemrents (i.e., have no Trojan Horses). Until such time as that DBMS can
be built where the entire update mechanism can be trusted to be free of Trojan horses, the
update programs will need to be code separate from the DBMS. The MLS DBMS then be-
comes only a retrieval system--but a very powerful one that mediates read access to data
(both mandatory and discretionary controls) at a database level of granularity (data ele-
ments, tuples, records, objects, attributes, etc.) as opposed to an operating system level of
granalarity (e.g. files).

The verification that application programs are free of malicious code is difficult and a
subject of current research. Much work remains to be accomplished; however, keeping the
programs small by isolating code that updates specific data elements (or groups of ele-
ments) would seem to be workable as a partial solution. The requirements for certification
and/or accreditation of this approach will also be difficultri.

Having only "good" programs update the corporate data is necessary, but not sufficient.
One must also keep the "bad" programs from getting at the corporate data as well as keep
unauthorized users from executing the good programs. The underlying MLS OS must en-

7

force this separation through mandatory access controls. The MLS OS prohibits all
programs (malicious or benign) outside the control boundary from updating data objects
within the control boundary. The OS also prohibits unauthorized users from executing
programs within the control boundary. The OS performs another important function--it
uses mandatory access controis to ensure all read accesses to data objects within the control
boundary go through the MLS DBMS (or other authorized programs within the control
boundary).

The advantage of this approach described above is that the rules for within the control
boundary can be different than those for outside. Specifically, since the environment within
the control boundary is fairly benign, there is a greater possibility that classifying and
downgrading of data as it goes out of the system boundary can be automated [15].

As a side note, the control boundary and system boundary are presented to represent a
single, monolithic computer system. However, this concept also can be applied to dis-
tributed systems where the control boundary spans several computer systems. Although
possible, the technological challenges for assuring control across multiple systems are sig-
nificant.

4 Apgingi the Solution

The following paragraphs illustrate how the challenges of Section 2 can effectively be
managed using the management and design concepts, conceptual framework for access con-
trol and conceptual operational framework of Section 3.

Polyinstantiation (the update challngo. When considering keeping the user from gaining
information, this challenge is solved with the simple application of procedural security and
good system design. Trusted update programs are even not required. Specifically, only
selected users are authorized to update specific data element--and those users have the cor-
rect clearance to update those data elements. This means that if instances of a data ele-
ment can be classified at multiple levels (e.g., Unclassified through Top-Secret) then the
small number of users authorized to update that data element must have a Top-Secret
clearance. Since all users authorized to update the data element are authorized to see all
the data, there is no reason to ever need to polyinstantiate. The level of trust necessary to
qualify the update program ior inclusion in the control boundary is required to ensure that
a Trojan horse cannot obtain unauthorized information.

Polyinstajitiationacover story challenge). The cover story challenge can be solved using
database design techniques. Two data elements are--one for the real value and one for the
cover story. In the flight example, Secret and lower level users would see the data element
"destination" which is really a cover story while the Top-Secret users would see the dat4 ele-
ment "real-destination." As an option the Top-Secret user might need to see both data ele-
ments. For this approach to be effective, cover stories must be a conscious part of the
design of the system (as opposed as being made up at execution time). We believe this is a
reasonable constraint.

IhlggrJit. Using the conceptual framework of Section 3.2, only a small number of users
(with the correct clearance) would be explicitly authorized to update (create, modify or
delete) specific data elements--and users are authorized for each data element in the cor-
porate database. In essence, the organization controls (through the database ad-

8

ministrator/security officer) exactly which userý(.) can update each data clement with
specified programs.

Tfin rs. Since this challenge is an update problem, if one controls which programs
can update corporate data elements, and ensure those programs have no Trojan horses,
then you eliminate the challenge. We recognize that the methods to provide (certify, ac-
credit) Trojan horse-free programs are not simple to implement. Tie task is made smaller,
when only concerned with code that updates, rather than all code.

Covert Channel.. Once again, storage covert channels are an update challenge with the
same solutions as for Trojan liorses--if it cannot write anything, then it cannot pass informa-
tion. Timing covert problems are another matter--the concepts described above cannot
solve this challenge.

5 Conclusions

The community's orientation towards technology and mechanisms seems to be to the
exclusion of more basic approaches to security such as management controls, good system
design, and procedural security. Many of the multilevel database challenges are really "up-
date" problems. These challenges facing the database security community can in many in-
stances be solved (and in the other instances made manageable) by incorporating
non-technical aspects of security along those technical mechanisms that either are now, or
will soon be, available. A conceptual framework, such as that proposed in Section 3, should
be the starting point for information systems design--the organization must mandate the
proper management controls and procedural security, a need-to-change policy mtust be
stated to ensure data integrity, and an operational environment must be established which
supports a more-privileged domain for update programs.

References

[1] Air Force Studies Board Committee on Multilevel Data Management Security, Mu!-
tilevel Data MAluiagement Security, National Academy Press, 1983.

[2] Bell, D. E. and LaPadula, L. J., Secure Computer Systems: Unified Exposition and
Multics Interpretation, MITRE Technical Report, March, 1976.

[3] Biba, K. J., Integrity Considerations for Secure Computer Sy~tems, MITRE Corpora-
tion Technical Report, April, 1977.

[4] Clark, D. D. and Wilson, D. R,, A Comparison of Commercial and Military Com-
puter Security Policies, Proceedings of the 19871EEE Symposium on Security and
Privacy, April, 1987, pp. 184-194.

[5] Davison, J. W., Implementation Design for a Kernelized Trusted DBMS, Proceed-
ings of tte Fourth A. cropace Computer Security Applications Conference, December,
1988, pp. 91-98.

9---•

[6] Donning, D. E., T. F. Lunt, Schell, R. R., Heckman, M., and Shockley, W., A Multi-
level Data Model, Proceedings of the 1987 IEEE Symposium on Security and Privacy,
April, 1987, pp. 220-234.

[7] Denning, D. E., Database System Lessons Learned from Modeling a a Secure Multi-
level Relational Database System, Database Security: Status and Prospects,
Landwehr, C. E., ed., 1988, pp. 35-44.

[8] Gasser, M. Building a Secure Computer System, Von Nostrand Reinhold Company,
1988.

[9] Gray, J. W. and O'Connor, J. P. Jr., A Distributed Architecture for Multilevel
Database Security, Proceedings of the 11th National Computer Security Conference,
December, 1988, pp. 179-187.

[10] Haigh, J. T., Stachour, P. D., Dwyer, P. A., Onvegbe, E., and Thuraisingham, B. M.,
Secure Distributed Data Views-Implementation Specification for a Database Manage-
ment System, Honeywell Technical Report, May, 1989.

[11] Hinke, T. H. and Schaefer, M., Secure Data Management System, System Develop-
menT Corporation Technical Report, June, 1975.

[12] Jueneman, R. R., Integrity Controls for Military and Commercial Applications,
Proceedings of the Fourth A erospace Computer Security Applications Conference,
December, 1988, pp. 298-322.

[13] Knode, R. B, and Hunt, R. A., Making Databases Secure with TRUDATA Technol-
ogy, Proceedings of the Fourth A erospace Computer Security Applications Conference,
December, 1989, pp. 82-90.

[14] Lunt, T. F., Aggregation and Inference: Facts and Fallacies, Proceedings of the 1989
IEEE Symposium on Research in Security and Privacy, May, 1989.

[15] Smith, G. W., Classifying and Downgrading: Is a Human Needed in the Loop,
Research Directions in Database Security, Lunt, T. F. ed., forthcoming.

[16] Wilson, J., A Security Policy for an Al DBMS (a Trusted Subject), Proceedings of the
1989 IEEE Symposium on Privacy and Security, May, 1989, pp. 116-125.

[17] Wood, T., A B2 Secure Database Machine Kernel for Non-Proprietary Hardware,
Proceedings of the 12th National Computer Security Conference, October, 1989.

10

A TRUSTED DATABASE MACIIINE KERNEL FOR NONPROPRIETARY HARDWARE

Tim Wood
Sybase, Inc.

6475 Christie Ave.
Emeryville, CA 94608

tiin@sybase.com

July 12, 1980

1. Abstract

This paper gives a high-level overview of the system architecture of the Sybase Trusted SQL Server,
targeted at the B2 level of trust. The Trusted SQL Server is a physical machine control program that is a
hybrid of a secure, high-performance DBMS server with a dedicated kernel of original design. The kernel
controls all operations of the host hardware and takes the place of the operating system. By replacing the
operating system level, the dedicated kernel reduces complexity of the overall system to facilitate evalua-
tion at the B2 level of trust. The DBMS implements its own security policy; the kernel utilizes hardware
protection mechanisms to strengthen the assurance that the security policy is not violated. The current
implementation runs on a subset of the DIGITAL VAX computer line.

2. Introduction

Today, the client/server model of computing, which connects suppliers of computing reaourceu (-:5rvci
machines) with consumers of those resources (users on client machines) via networks, is being adopted
widely in the general user community [IDR]. The economic advantages it offers in terms of reduced replica-
tion of resources, centralized management of and decentralized access to resources have become evident.
Until recently, there have been few trusted DBMS announced, and none based on the client/server model.
The Sybase Trusted SQL Server converts a VAX computer into a high-perfo;mance database engine,
designed to meet the requirements for secure handling of multi-level data in a client/server computing
environment.

The Trusted SQL Server has three major design goals:

Security.

The system enforces reference-montitor-based labeled mandatory security on subjects, e.g. user
processes and internal subjects such as audit, and objects, e.g. records. Since storage objects other
than records are themselves represented by records in the data dictionary, mandatory access control
extends to any entity that can be associated with a record in the data dictionary.

Compactness.

Since the Trusted SQL Server is not supported by an operating system, but instead replaces the
operating system functionality, it implcnents required functions, and only those functions, in a rela-
tively small aggregate amount of code. This attribute, coupled with a modular, leazt-privilege archi-
tecture, facilitates the task of assuring the mandatory TCB propertica of tamperproofness, non-
bypassability and unconditional invocation [TCSECq. It also offers a path to evaluations beyond the
62 level.

Performance.

The Trusted SQL Server had its genesis in the Sybase SQL Server currently sold in the general com-
mercial market on a range of computing platforms. That system is designed for high transaction
throughput and high availability, and to be scalable across computing platforms of varying
price/peri'ormance ratios. Those features are preserved in the Trusted SQL Server architecture.
Absence

11

of any operating system in the Trusted SQL Server machine environrnent offers comlplctc engineering _
control over how operations at all levels of abstraction arc implemented, hence tl;c opportunity to - -
optimize the operations for DBMS needs. T1he Trusted SQL Server is designed be tailorable to several
specific configurations across tihe VAK lrice/pcrformance spectrumi.

This paper surveys various architectural features of the Trusted SQI, Server that contribute to tihe •
realization of these goals. It expands on the work p)ublished in [ROUGEAU]. Arch~itectural supp~ort for
security policy enforcement is the p~rimary focus.

3. System Architecture

Certain terms are defined here for" the purposes of this paper: a "module" is a unit of" software logic -
that performs a function or set of functions and has fixed and definite input and output interfaces. A
"domainl" is a hardware privilege state. A "segment" is a contmgum is region of virtual pages that have thle
same hardware protection codes. A "process" is a set of execution state information with respect to a pro-
gram. An address space is a set of segments that are addressable in some domain by the current process.
An "object" is an atomnic unit of data, either a scalar or a data structure, that is directly accessible by
exactly one module. In this paper, use of the word "object" intends the definition just given. This
definition is distinct fronm "security object'. Not all objects are security objects. Only objects exported by
the reference monitor are security objects, and these are labeled by definition. Where security objects are
discussed, they are named as such.

The system is composed of two types of code, untrusted code and TOB (trusted computing base)
code. The untrusted code is a single module. The TCB3 code is composed of two major nmodules, the Pol- ---
icy module and the Kernel module. This paper will discuss selected fun:tious in thle TOB intertface and•
internal to the TCJ3 and the mapping between Trusted SQL Server modules and privilege domains.

U 4. Untrusted Module

It was decided to place the SQL parser and query-plan compiler in the untrusted module. The alt -
native of placing them within the TCB would require allocating high privilege and trust to these moduies.
Since the Trusted SQL Server is designed from a uniform assurance approach, a majority of the lower-level •-
modules, or the remainder of the DBMS as in [KEEF'E], would require trust. This would violate the design
goal of compactness.

The approach in [IKEEFEI uses• query modification based on schema-specific rules to enforce a security '

policy. That approach would preclude the re-use of previously-compiled query plans, because the compiled -
plan form would be based on the security level of the subject Oh whose behalf it was compiled. Hence, a
high user executing a plan compiled by a low user would see results restricted based on the low level. A
low user should nevcr be able to execute a plan created by a high user, since that would reveal its existence
and form a covert channel.

By placing the parser and compiler outside of the T01B, we have simplified the task of assuring the
correctness of the T013 and we have reduced its size.

6. TCI3 Structure
The Trusted SQL Server design places the TCB boundary at the "'execute-query--plan" level. The --

TOB guarantees that the untrusted module cannot cause a query plan that would violate the security pol-
icy to be executed. So, the security of the system does not depend oun correct functioning of the parser and
query compiler. Yet, previously-compiled query plans can be re-used after sanitization. Query compilation
is an unprivileged operation which is isolated to run in an unprivileged domain. •

The Kernel module performs physical device and memory management, process isolation, and mes- -
sage passing among trusted processes. The Policy module performs all remaining security-relevant func-
tions. There is no interprocess message passing interface available to the untrusted module. The only
operations the untrusted module may perform on objects c trolled by the TOB are those implemented in
the TOB Interface.

12

8. TCB Interface

The I'CB Interface is delined as a set' of aletract operations implemented as system calls. These calls
are nsed by the untrusted module to request. services from the Policy module. No interface to the Kernel
module is available to the untrusted module.

Tihe untrusted module may not directly access any object managed by the TCB. The untrusted
module requests access to TCB objects via system calls. The TCB guarantees that. all system call return
information is dominated by the subject security level. The TC13 prohmibits the untrusted module from
exporting that information or changing its label. In particular, the TC13 communicate" all query results to
the client and determlines result labels.

7. Mapping Between Trusted SQL, Server Modules and Machine Privilege Domains

The protection of "'',B objects and operations from untrusted module access by means other than the
TCB interface is enforced by mapping each object and operation (text subroutine) of a module to a
privilege domain implemented by the target. machine. Generically, the Trusted SQL Server uses three
abstract domains: Unprivileged, Policy and Kernel; the "I/O domain" described in IROUGEAU] has been
renamed to lKernel domain and the "User domain" renamed to Unprivileged domain. The VAX privilege
modes in privilege order are User, Supervisor, Executive and Kernel. The abstract Unpiivileged domain
corresponds to VAX U1ser mode, the abstract Policy domain corresponds to VAX Executive mode, and the
abstract Kernel domain corresponds by name to the highest VAX mode. The Trusted SQL Server does not
currently use VAX Supervisor mode.

VAX menmory access modes are Read and Write, with Write mode impl: , Read mode. Each page
of an address space is marked with the minimum privilege at which it can be rew, or written, and the write
privilege (if any) must be equal to or higher than the read privilege [VAX].

This scheme is used in the architecture to specify five mapping-:

(1) All of the executable text of the Trusted SQL Server in all modules is read-only, regardless of execu-
tion domain.

(2) Compiler state information, untrusted text and read-only system-wide lookup tables are accessible
from the Unprivileged domain.

(3) M0st Policy module text and all its objects are accessible only from Policy domain and higher, how-
ever the system is structured so that the Kernel module does not, directly access Policy objects or
text.

(4) The remaining Policy module text is mapped to be directly executable in the Unprivileged domain.
This mapping is designated for routines which need to be used by untrusted and trusted modules.
These routines must follow a protocol identical to the one that the untrusted module uses to obtain
services from more-privileged code. That is, even though these routines are part of the T013, they
have no greater privilege than the untrusted code.

(5) All Kernel module objects and text are accessible only from Kernel domain.

8. System Calls

System calls in the Trusted SQL Server are implemented in familiar ways [KENAII]. A special
instruction causes a trap to a trusted handler which manages the details of creating a protected scope for
the system routine execution and communicating results (but no other TCB state information) back to the
(less-privileged) caller.

13

9. Processes and Addressing

Up to this point we have discussed object!; and text by module. A Truted SQI, Server protcos asso-
ciated N- ith a clicnt connection cxecutes uatrusted text, Policy text and !•,i'l text, tlansf:rcring control
between domains via system call and return. It is now imeaningful to discu-s tihe structural view a Tru"tcd
SQL Server process las of objects and text.

For this discussion, we rccursively define "task" as an execution thread oi context which shares the
address space provided by an operating systeem with zero or more tasks. In contrast., "processes" are execu-
tion contexts with distinct, virtual address spaces defined by the kernel and demarcated in hardware. The
commercial SQL Server performs internal multi-tasking and runs as a single process on top of an operating
system. 'I'lTe Trusted SQL Server implements true processes.

Any Trusted SQL Server process may only access miemory within its anddress space. All objects and
text, are located in sonic address space. Th.. Trusted SQI, Server ;t.ua a simple set. of rules that deternminc
what, segments in what address spaces can be accessed in what privilege modes.

All process-private data is locat-"d in process data -.pace. Segments in the process data space include a
process-status structure, a stack for each domain, and query-plan segment. Scgments other than the query
plan segment, are mapped to distinct physical memory pages at process creation time.

10. Object Caching and Sharing

The Trusted SQL Server architecture recoiciles two sometimes opposing goals: to provide higi;-
assurance enforcement. of the mandatory security policy and to maximize object caching and sharing to
achieve high performance.

Certainly, no object. sharing schrime can be used if it ;iolates the security policy. The original SQI,
Server has many object sharing schemes which have been instrumental in achieving high performance. For
"t- Trust-l SQL S.r dc.icriptors fo~r t abkc, arc S.-Vcd ;I 'ýC1') n) i..tw
access control is always enforced for the "open table" operation before the search for :1 table descriptor is
made. Since there is no way for the untrusted module to determine whether a de-ci iptor is I resent. iii main
inemory, this sharing scheme does not introduce a covert channel or a .,ec'rity comuproniise.

The Trusted SQL Server has retained most sharing with no compromise of the security policy. The
original sharing schemes th:t did not conform to the security policy lia-'e been modified to conform in the
Trusted SQI, Server with miiimum inmilct. on performance.

Most of the object sharing aid caching takes place within the Policy nmodule running in the loiicy
domain. None occurs within the t.Unprivileged domain. Since the TCB never exports its objects to the
Uniprivileged domain, tie sharing and caching schemes from the original SQ1, Server were imported into
the Trusted SQL Server with few changes.

The mandatory reference monitor logic sits above all of the sharing algorithms, so no procesis can
make use of a labeled shared object unless the process security label dominates the label of the object.

11. Query Plan Validation

SQL is a non-procedural language. It specifies conditions for retrieving, creating, modifying and
deleting subsets and aggregates of the dat. in the database. The query plan is the procedural specification
for performing the operation specified in ae non-procedural query.

Query plans are the hasic structure by which the TCB receives requests to do wvork. Query plans are
constructed by untrusted code. They can bie executed only after first being validated by the TOIR. Success-
ful validation transforms a query plan from an untrusted module object to a Policy module object. The
plan then may be executed by subjects whose security levels dominate that of the subject process which
constructed the query plan. Unsuccessful validation causes the TCB to deallocate the query plan and return
with an error indication. This section discusses the meaning of query plan validation and its design
motivation.

14

All qIicry ph~ilis arc created by untrusted subjc- s. Qtwiy plans waay exist for o1i--titti4ie use or
rcpeati-ed use, h1 dhe case of vile-tif me use,, tlhe que~ry plan. isý priv~it to it-, cecator and I~e cesb'by
othexc usur*. Iii th-,, ease of repeated use, the que;-. plan is saved in thc 3at-abivwe along withi the label of it-3
creator.

\Vlxex saved query text. is read in froin thre database prior to cxe'~utizm, it. must. be owpiuled by tilt
luitrustcd miodule. The untrusted module receives a copy of the uncoinpiled jila!n, cerate,; :1 compiled plan
in the process queiry plan segment, and submiits thle compiled plan to the TCB foi- validation mid cxecutiOn.

'ihe validation step iý security-critical. The TOP is receiving E comPlex dlata1 structure, thle qiecy
plan that specifies databamse operationis, from thre untrusted module. It. must apply several coilsistoicy
checks to the query plan to verify that exccuting it will nutt sube.Crt, t1c -security polic~y. hccm itec
checks are done in thet validator routines in the Policy domain.

This validation procedure doe,, NOT1 verify that the query p~lanx is the coiri-ct. prcoceclura (.prkssioll of
the. non-procedural SQL submitted by time subject. Such verification wvould ju~volycvir d'rmt rcimplvllooIPa-
tion of the unt-rusted comipilerl-i logic w ithin thle TOCl. The validator only gxiarantcc.; that use and reuse of •

thle query p+111 will not. -, iolatý' the security policy and integrity of the database.

If the v alidator finds no errors in the query plan, it labels thc plan with thme s2,curitV label o'f tlbe sub.
ject. which submitted it. and enters thle plan into the system "procedure cache". Once it-is is doni,., any sub.
ject whose label domninates that of the plan may execute it. The physical mnexiory of tl'et nmchine is u~
to cache valid, recently-used query plans, so that they need not be read from thle datuba¶.c at each execu.-
tion.

Query plans anid thlt table descriptors mentioned earlier are example-9 of TCP3 intecrnal objects. Once
they are created, they are never exported to thme U~nprivileged domiain or to the l)IINlS client. 'flit y lire
labeled in order t~o use the mandatory acces policy to aid structuring of thle TOP.

Thle untrusted niodulc lo.q no wAy of reniunov, n lmnn frn, thpe enrlie nr retprmuuiying, whether a planl
is present in the cache. Thus thle p~rocedure cache cannot be used hs a covert chlannlel.

Since plans within the procedure cache have been validated, most of validation canl be bypassed whenm
the plans are next executed, because validated plans are never made acces-sible to the Unprivileged doimainl.
It is necessary and sufficient just, to sanitize plans between executions to eliminate any leftover state from
previous executions. Validation must complete without error in all cases before the plan viay, be executed.
Any failure results in deallocation of the plan and an error return froim the TOC1.

12. External Interfaces

The Trusted SQL Serv'er communicates with users via two facilities, the trusted interfaces and the
master network. The uA'ustedl interfaces allow users, system administrators and svstein security officers to
perform security-semlsitive operationis. The master network is the medium by -which users submit database
queries and commands from their client nodes and receive results and status.

12.1. Trusted Interfaces

The trusted interfaces are direct user interfaces to the TOP;- all operations performed through thle
trusted interfaces are inipleineilted exclusively within the TCB and execute eniarely Wvithin the Policy
domain. No untrustecd module code is ever executed in a trusted interface operation.

A trusted initerface is physically imiplemnented as a serial character terminal directly connected to a port omi
the target VAX. There are usually four trusted interface (TI) devices in an installation.

Thle first device is the system security officer (SSO) TI terminal. This is used to create, remove or lock user
authorizations, drop tables, performn trusted writedown, etc.

The second device is the user TI. This is for use by ordinary users to change their own passwords, define
discretionary access to their objects, etc.

Thle third device is thme tape dump console. It is simply an interactive means to synchronize mounting and
unmiountilig of tape volumies with thme system dump and load facilities,

1.5

The fourth device is the audit printer, which outputs the audit event records in hardcopy form. It is
c ,nfigured in the same way as the other TI devices, but is logically an output-only device. There is no
notion of user input to the audit printer device.

All T11 sessions are initiated by a login sequence with non-echoed pamswords with the exception of the
audit printer since there is no notion of a user-initiated session with this device. TI sessions use a simple
menu/prompt structure. There is no language interfac-.

12.2. Master Network

The master network is the medium by which users establish sessions with the Trusted SQL Server,
submit queries and receive results. The Trusted SQL Server design allows for more than one "master" net-
work to carry user sessions. In that case, there is no hierarchy among these networks, and the design does
not require them to run the same protocol or have the same architecture.

To initiate a connection from a client machine, the us'r's application sends a message requesting ses-
sion establishment to a well-known master network socket owned by the Trusted SQL Server. The Server
trusted process listening for such requests receives the request. and creates a trusted process that responds to
the application with a request for a login name, security level and password. The application responds
with this information, The Server trusted process checks the login name and password for validity and
checks that the given security level does not ex'eed the maximum level designated foi that user. If any of
these checks fail, a ur-iform "Login Incorrect" error message is returned to the client, regardless of the actual
error and the connection is closed. The login failure is audited.

If all checks succeed, the successful login is audited and the trusted process transfers control from the
login module running in the Policy domain to a fixed entry point within the untrusted module running in
the Unprivileged domain in a secure atomic operation.

13. Covert Channels

Covert channel analysis work is proceeding concurrently with development. We have taken the
shared resource matrix [1(EM&1] approach and are applying it at a detailed design level. Some open issues
remain in the area of table and page locking mechanisms, and research into strategis for addressing them
is continuing. Finding a strategy that allows system performance goals to be met is an important c' ai-
lenge.

14. Conclusion

The Sybase Trusted SQL Server is the first DBMS to be developed that provides high-performance,
multilevel relational database management with high security amsurance. Its client/server architecture
incorporatm mandatory security control with high assurance, compactness and embedded operating system
functionality to facilitate evaluation, and scalable high performance to handle the demands of secue trarn-
saction processing applications efficiently.

15. References

[DR] J. Fegreus, "Architecture for the 'ONs," Digital Review
editorial. p. 32, March 6, 1989.

[KEEFEJ T. F. Keefe, M. B. Thuraisingham, W. T. Tsai, "Secure Query-
Processing Strategies," IEEE Compvter, Vol. 22 No. 3, pp. 63-70,
March 1989.

rKE'MM] Kemmerer, R. A. "Shared Resource Matrix Methodology: An Approach
to Identifying Storage and Timing Channels." ACM Transactions

16

on Computing Syaterna, Vol. 1 No. a.,, pp. 256-77", 1983.

[ROUGEAU] Patricia A. Rougeau and Edward D. St~urms, "The Sybase Secure
Dataserver: A Solution to the Multilevel Secure DBMS Problem,"
in Proceedings of the 10th NCSC Conference, 1987, pp. 211-215.

[TCSECJ Department or Defense Trusted Computer Systems Evaluation
Criteria, CSC-.STD-001-83, Library No. S225,711, DoD Computer
Security Center, Fort George G. Meade, Md, December 1985.

[VAX] VAX Architecture Handbook. Order no. EB-19580-20/31, Digital
Equipment Corp., Maynard, MA, 1981, p. 111.

[KENAIT] Lawrence J. 1{enah, Ruth E. Goldberg, Simon F. Bate, VAX/ VMS
intcrnals and Data Structures. Order no. EY-8264E-DP,
Digital Press, Bedford, MA, 1988, ch. 9, pp. 199-204.

VAX is a trademark of Digital Equipment Corporation.
SQL Server and Secure SQL Server are trademarks of Sybase, Inc.

17

THE SEAVIEW VERIFICATION EFFORT

R. Alan Whitehurst
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Teresa F. Lunt
Computer Science Laboratory

SRI International
Menlo Park, CA 94025

Abstract

This paper discusses the verification of the SeaView formal top-level specifi-
cations (FTLS) and the benefits that were gained from formally specifying and
verifying selected database operations. 1 The SeaView specifications describe
a multilevel secure relational database system and were written in the formal
specification !anguage of the SRI specification and verification system EHDM.
The process of specification and verification substantially improved the quality
and completeness of the SeaView design.

I Introduction

The SeaView project was a three-year program to create the design of a multilevel
secure relational database system that met the criteria for Class Al. The project
produced a security policy and interpretation 16], a multilevel relational data model
that extends the standard relational model to support explicit labels for elements
and tuples [4], a formal security policy model [7], formal top-level specifications [9,
10], and implementation specifications for new system components. In addition, a
demonstration system that illustrates polyinstantiation and operations on multilevel
relations was created.

The SeaView specifications contain a formal policy model of the security require-
ments for multilevel secure databases and an abstract description of the database
operations. As part of the SeaView effort, we attempted a formal verification of
the database operations against the security properties of the policy model. In
doing so, we discovered that our intuition about the formulation of some of these

1The work described in this paper was supported by the U.S. Air Force, Rome Air Development
Center (RADC) under Contract F30602-95-C-0243.

18

operations was often incomplete, and, sometimes incorrect; the final formulation
of these operations varied drastically from the original as a direct result of the in-
sights gained in the process of attempting to prove that the operations satisfied the
security properties of the model.

This paper describes the verification effort. In Section 2, a general introduction
to formal verification is presented which includes the philosophy we adopted during
the Seaview verification effort. An overview of the strategy used to approach the
verification effort is given in Setion 3 and the results of the verification efforts and
our observations about the value of this exercise are contained in Section 4.

2 Verification

A reasonable place to begin a discussion about a project which applied formal
methods is to ask the question, "Why use formal verification?" To answer this
question, it is necessary to view the motivation to use formal methods from three
distinct vantage points: policy, economy, and quality.

As stated earlier, the goal of the Seaview project was to design a secure di "abase
that would meet the criteria for Class A. According to the "Orange Book" [1]:

"A formal model of the security policy must be clearly identified and
documented, including a mathematical proof that the model is consis-
tent with it axioms and is sufficient to suppoit the security policy..."

"The FTLS o! the TCB must be shown to be consistent with the
model by formal techniques where possible..."

What this means is that to meet the criteria for Class Al, we had to show that
the FTLS was consistent with the SeaView security model using formal techniques.
While this may be sufficient justification to motivate the use of formal methods
in some situations, if there is not a greater benefit, we will probably see very few
Class Al systems. The cost of formally verifying a system is high 2-if the only
motivation for applying formal methods was to satisfy Government requirements, it
seems the cost would far outweigh the benefits. We found that the benefits derived
from the application of formal techniques in the SeaView design went far beyond
the mere satisfaction of Government requirements. We believe that verification can
be economically cost effective and is absolutely necessary when dealing with critical
software systems.

One of the most serious problems facing the computer industry today is the
mushrooming costs of creating and maintaining software systems. Over the past
decade, the major costs associated with fielding a computer system have shifted
from hardware-related expenses to software-related expenses [5], as shown in Fig-
ure 1. The reasons for this reversal are not hard to discern: the advent of VLSI
technologies has caused hardware costs to plummet, while the creation of software

2 See Section 4 for a description of the scope of the effort and the costs involved in the Seaview
verification.

19

Hardware Costs

Software

SSoftware Maintenance

1950 1970 1990

Figure 1: Shifting Costs for Hardware and Software

huas re A qned :_.b. -; ."A

Figure 1 illustrates that, besides personnel costs, an ever greater share of the ex-
pense associated with computer software is consumed by maintenance of existing
software systems.

Unlike hardware systems which do eventually wear out, softwere is immune to
deterioration. Therefore, much of the maintenance costs spent on software are di-
rected towards the correction of human-induced problems-problems in the design

or implementation that either existed when the system was originally created or
that were introduced through later maintenance efforts. Furthermore, because of
the nature and complexity of software, the cost of error correction increases ex-
ponentially throughout each phase of the software lifecycle. According to current

figures, roughly 75% of the total cost of fielding and maintaining a computer system

could be eliminated if design errors were detected and corrected early in the soft-

ware development lifecycle-preferably at the point at which they enter the system
design.

Irrespective of the economic benefits of being able to produce correct software,

there are applications which require nothing less than the highest achievable degree

of reliability. One such class of applications are those software sy'tems entrusted

with the protection of national security information. Because of the complexity of

today's software systems and the deficiencies in existing software development meth-

ods, current systems suffer from incomplete or erroneous implementation. Attempts

are made to design and implement security features, but often a single mistake can

render the entire security controls impotent. We believe that a very tight coupling
exists between information security and software quality--the security of a system

20

depends on the correctness of the implementation of its security controls.
Current software development practices rely upon various forms of testing to

verify the correctness of the design and implementation. While we believe that

testing is absolutely necessary, we also believe that it is insufficient for determining

the trustworthiness of systems being used in critical applications. The inadequacy
of testing can be summarized by three main observations:

" Testing is capable of finding only the preseince of errors, but not in showing

their absence.

"* Since we cannot show the absence of errors, there exists no criteria whereby

we can know if testing is complete. And since it is infeasible to test a system's

response to every legal input, testing is always incomplete.

In critical applications like computer security, where a single error (which may go

undetected for months or even years) may be able to be exploited to comprise the

security of the entire system, it is imperative that methods be sought to augment

the assurances provided by testing.
Formal verification is the process of showing mathematically that a correspon-

dence exists between two levels of abstraction in a design hierarchy-in other words,

between a specification of relevant properties and 'an implementation of that spec-

ification. Showing that a correspondence exists establishes that the properties ex-

m ~ ~ ~ p-zsu irZ th spcp.iflLeauion ax JpesrOvA V.L inA TAL fllri-2tIflLJL A* I.'.s

tenms, it is required to show that a correspondence exists between a mathematical

statement of the critical properties, often referred to as a security model, and the

top-level design specifications, or FTLS. Although it is not required, the process

can be repeated using the FTLS as the abstract specifications to establish corre-

spondence between the FTLS and a more detailed level of specification. This can

be repeated as many times as necessary until a correspondence is established be--

tween some intermediate specification and the actual implementation in hardware

and software, as illustrated in Figure 2.

Formal verification is a method for the systematic development of reliable soft-

ware. It is currently the only method available for establishing the absence of certain

errors in a software system. Although the cost of formal verification may seem high,
the technology, when mature, may offer the possibility of the creation of provably

correct software-software that corresponds unequivocally to its requirements. In
formal verification, the effort of creating error-free systems is shifted from the test-

ing and maintenance phases to the design and implementation phase, where that

effort is more cost effective. Formal verification may well prove to be more econom-
ical than conventional testing alone when the costs of maintenance are viewed over

the entire life of the software system.

3 The SeaView Verification

This section outlines the strategy used in verifying the security of the SeaView

database operations in the FTLS with respect to the properties expressed in the

21

policy model]

design verification

specification

hierarchical levels

specification

Scode verification

code

Sverified hardware

compiler

O.S.

Schip

Figure 2: Verification of Developmental Hierarchy

SeaView model.
SeaView has defined a standard implementation-independent multilevel query

language called MSQL (Multilevel Structured Query Language) for defining and
manipulating multilevel relations [8]. MSQL allows users to retrieve and/or modify
data based on their classifications. It includes facilities to allow users to deal with
polyinstantiation. It enforces a set of integrity rules on multilevel relations.

The SeaView FTLS specifies the functionality of the SeaView MSQL interface,
with definitions of operations for creating and manipulating multilevel relations.
There are 31 MSQL operations specified ,n the FTLS. The functional specification
of the MSQL operations was designed to provide a foundation for a later design
and implementation effort. For this reason, it is very important that the operations
be correctly defined or, more precisely, that the operations as specified satisfy the
state and transition properties of the SeaView security model 17]. To satisfy these
properties, the execution of an operation must terminate in a secure state if it began
in a secure state, and the transformation from state to state must be well behaved.
Ideally, this should be shown for all operations; however, verification was not the
primary purpose of the Seaview project and resources were constrained. In order
to maximize the benefits of the verification effort, we constructed proofs for only a
two-element subset of the operations:

22

"* create-nreal-relation

"* update.real-tuple.

We chose these particular operations because they are interesting and suffi-
ciently dissimilar that we expected them to trigger scrutiny of different parts of
the SeaView specification; between them they stress most of the properties of the
SeaView model. Moreover, they are, in our estimation, two of the most difficult to
verify. After completing the verification of these two operations, we believe that thc
quality and completeness of the SeaView specifications were greatly increased. We
also believe, however, that any implementation based on the SeaView model would
greatly benefit from the completion of the verification for the remaining MSQL
operations.

The specifications of the MSQL operations are expressed in the form of pre- and
post-conditions. Pre-conditions specify what must be satisfied before a particular
operation can be invoked. Post-conditions express the changes to the system state
caused by execution of the operation and specify what properties must hold after
the operation has been executed in order to satisfy the state and transition security
properti- 4if the SeaView model. Details of the MSQL operations may be found in
the formai specifications [19.

One of the benefits of conducting formal analysis is that the designers are
forced to make their assumptions explicit-assumptions that would otherwise es-
cape scrutiny. In the SeaView specification, we found we had made many implicit
assumptions about which objects the operation would not affect. Although these
assumptions were not stated in the original specification, they were necessary to
complete the proofs, and were added to the final specification.

For examl-- in order to complete the proof of security for create.mreal-relation,
it was n cc. .. : to augment the post-condition of create-mreal-relation with several
additional a, Lions that reflected the following assumptions: (1) the current access
set for the . ,bject would not be changed by the creation function, and (2) the
values of all other relations would not change. These assertions were not included
in the original sp-rification because they seemed so intuitively obvious, but it is
this type of ass-a. ?ticn that often causes trouble in later design and implementa-
tion phases becFv'se it goes unrecorded. While it may seem improbable that anyone
would implemei,. an operation to create relations that simultaneously changed the
value of other relations, we cannot leave the security of the system up to the "rea-
sonableness" of the designer or implementer. Furthermore, there are situations in
which even reasonable decisions may violate the assumptions of the security model.
If we had not attempted to prove that the operation satisfied the security prop-
erties, we would not have noticed that these assumptions had been omitted from
the original specification. As a result, the security of the system could have been
compromised if later design and implementation decisions were made contrary to
these unst?'fd assumptions.

The update.nareal-tuple operation was more complex than the cre-
aternreal-relation operation. We found that our intuition about the pre- and post-

23

conditions of this operation was also incorrect. For example, the original specifica-
tion had omitted the very important constraint that primary key attributes could
not be updated (so that we could not prove that the entity integrity property3 was
preserved by this operation). The final formulation of updatesreal-tuple, as a result
of the verification process, varies drastically from the original.

Besides changes made to the specification of the MSQL operations, several of
the properties of the model, such as the referential integrity property 4, were altered
and improved due to the scrutiny of the verification process. There were also several
missing properties which were discovered, such as the property that real relations
must have no duplicate tuples. These necessary changes were discovered in the
process of attempting to prove that the operations satisfied the security and integrity
properties of the model.

We believe that the major benefit from using formal methods is derived through
the proof effort- an effort in which an automated verification methodology (like
SRI's E11DM [2]) plays the part of a "skeptical antagonist" that demands justifica-
tion for every step in the chain of reasoning. The benefit from undertaking such
an endeavor is not in the achievement of a finished proof, but rather in the added
insight derived from going through the proof process. Therefore, while proof aids
that increase productivity are appreciated, any tool that lessens the responsibility
for understanding the proof under coILstruction is self-defeating. For this reason, al-
though EHDM contains a proof checker, a pD'oof-building aid and a fully automated
prover, we preferred to use only the proof checking mode of EHDM.

Our usual approach to the construction of a proof was to work each proof out
by hand outside of the verification environment, presenting the finished proof to the
verification system only for validation. Often our proofs would fail. It was in these
instances that we gained the most insight about our application. In analyzing why
a proof was unsuccessful, we often detected inaccuracies or incompleteness in our
specifications. We believe it is exactly this process which benefited the SeaView
design.

We also encountered proofs that we were successful in proving but that, in
retrospect, we convinced ourselves should have failed. When these proofs succeeded,
it pointed to errors in our specifications of the model properties or the operations, or
to an incomplete or incorrect understanding of some aspect of the model. Based on
our experiences, we believe that it ic insufficient to do a proof without understanding
why the proof succeeded or failed. This understanding is pivotal to the realization
of any expected benefits from the verification process.

4 Verification Results

The SeaView specifications and proofs are structured into 102 modules, comprising
over 9,100 lines of specification. The SeaView model is contained in 35 specifica-

3the entity integrity property states that all values used as keys must be non-null
'the referential integrity property states that only data that exists in the database may be

referenced

24

tion modules, while the MSQL operations require an additional 7 modules, The
remaining 60 modules constitute the proof of security for t"he two operations that

were analyzed. In all, 255 prowfs were constructed with 275 man-hours of effort.

The exercise of formally specifying the SeaView properties in the specification

language of EH1DM [13] resulted in our discovering and clarifying many ambiguities

and imprecise or incomplete statements of the properties described in the model

report. Through this exercise we also identified and corrected many mistakes in the
properties of the model. We should also note here that the Class Al requirement
(that the model's properties be verifiable) was a strong influence in our formulating
the model properties so as to be amenable to pioof. We struggled particularly
with the transition properties, which went through many iterations before we were
satisfied with their vecifiability.

The exercise of formally specifying the operations on multilevel data in EHDM's
specification language resulted in a mucth more complete understanding of those
operations than would otherwise have been the case. Although we thought we
had a good idea of the conditions the operations had to include in order to satisfy
the properties, we discovered in the process of specifying the operations that our
intuition was incomplete, and in every case additional pre- and post-conditions
had to be added to the operation specifications. *The exercise of formally proving
that the operations satisfy the properties has uncovered many additional errors and
omissions in the specification of the two operations that were formally verified and in
the specification of the propcrtics in the model. Several additional properties were
added to the SeaView model and many model properties were modified as a result
of the analysis the model underwent in the verification process. Thus feedback was
provided that increased the strength and completeness of the model itself-feedback
that would have been nearly impossible to gain any other way.

Likewise, the EHDM verification system received feedback during the course
of the verification effort which resulted in the identification and repair of several
implementation problems. While these problems were minor and did not affect
the soundness of the formai analysis, still the robustness of the implementation
improved because of the SeaView effort. Furthermore, through the experience of
the SeaView verification effort, additional features were proposed for addition to
EHDM expressly for supporting large-scale verification efforts.

We believe the use of the EIIDM system as the basis for the specification and
verification of the SeaView model has contributed greatly to the success of the verifi-
cation effort. The elegance and expressiveness of the EHDM language simplified the
initial effort of formulating the specifications and left us free to consider the seman-
tics of the SeaView properties, rather than the syntax of the specification language.
It also allowed us to work at the highly abstract level of the FTLS in a manner that
seemed natural and was well supported. The integrated environment, with support
for configuration management, and the ability to structure the specifications into
modules with explicit interfaces to other modules, greatly reduced the complexity
of managing such a large specification. EUDM also provides support tools that help
the user in configuration management of large numbers of interrelated specification
modules-monitoring when specification modules are changed and keeping track of

25

the effects of those changes on dependent modules.
The specification of the MSQL operations was intended to provide a founda-

tion for later design and implementation efforts based on the SeaView model. The
increased understanding of the two verified operations, with the corresponding in-
crease in the quality and completeness of the operational specifications, leads us
to conclude that completing the verification of the remainder of the MSQL opera-
tions would be of imunense benefit to any project using SeaView as the basis of its
design. Verification of the remaining properties should not be as expensive as for
these first two, because a significant portion of the original effort was directed at
working out the paradigm and proof strategies. Moreover, the improvements made
to the SeaView model properties as a result of the verification of the initial two
properties will make the verification of the remaining properties go more smoothly.
Although we formally proved only two of the SeaView database operations, many
of the flaws we discovered in the specification of those operations were applicable to
entire classes of operations, and we updated the formal specifications correspond-
ing. Therefore, we would expect the work of verifying the remaining operations to
go much faster.

5 Conclusions

The benefit we obtained from doing this exercise was enormous [I0]. During the
process of constructing the proofs, we found manly areas in which our initial specifi-
cation of the SeaView operations was faulty, we discovered errors in the statement
of the SeaView security properties, and we discovered "missing" security properties
that were needed. Completion of the SeaView verification could lead to additional
such discoveries. The SeaView design benefited greatly from the increased scrutiny
and analysis of the verification process.

References

[1] National Computer Security Center. Department of Defense Trusted Computer
System Evaluation Criteria. Technical Report DOD 5200.28-STD, Department
of Defense, December 1985.

[2] J. S. Crow, S. T. Jefferson, R. Lee, P. M. Melliar-Smith, J. M. Rushby, R. L.
Schwartz, R. E. Shostak, and F. W. von Henke. SRI Specification and Verifica-
tion System Version 8.1 - User's Guide. Technical Report, Computer Science
Laboratory, SRI International, Menlo Park, California, October 1986.

[3] J. S. Crow, S. T. Jefferson, R. Lee, P. M. Melliar-Smith, J. M. Rushby, R. L.
Schwartz, R. E. Shostak, and F. W. von Henke. SRI Specification and Verifi-
cation System Version 8.0 - Preliminary Definition of the Revised SPECIAL
Specification Language. Technical Report, Computer Science Laboratory, SRI
International, Menlo Park, California, May 1986.

26

14] D. E. Denning, T. F. Lunt, R. R. Schell, M. IHeckman, and W. 1. Shockley. A
multilevel relational data model. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, April 1987.

[5] Richard E. Fairley. Software Engineering Concepts. McGraw-ltill Series in
Software Engineering and Technology, McGraw-Hill, Inc., New York, 1985.

[6] T. F. Lunt, D. E. Denning, P. G. Neumann, R. R. Schell, M. Heckman, and
W. R. Shockley. Final Report Vol. 1: Security Policy and Policy Interpretation
for a Class Al Multilevel Secure Relational Database System. Technical Report,
Computer Science Laboratory, SRI International, Menlo Park, California, 1988.

[71 T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley.
Final Report Vol. _Q: The SeaView Formal Security Policy Model. Technical
Report, Computer Science Laboratory, SRI International, Menlo Park, Cali-
fornia, 1989.

[8] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren. Toward
a multilevel relational data language. In Proceedings of the Fourth Aerospace
Computer Security Applications Conference, December 1988.

[9] T. F. Lunt and R. A. Whitehurst. Final Report Vol. UA: The Sea View Formal
T,, Le,,! Specifivcatins. Technical Report. Computer Science Laboratory, SRI
International, Menlo Park, California, 1989.

[10] R. Alan Whitehurst and T. F. Lunt. Final Report Vol. SB: The ScaView
Formal Verification: Proofs. Technical Report, Computer Science Laboratory,
SRI International, Menlo Park, California, 1989.

27

An Interactive Approach to Ada
Verification 1

Odyssey Research Associates
301A Harris B. Dates Drive

Ithaca, NY 14850
(607) 277-2020

June 29, 1989

1This work has been sponsored by the USAF, Rome Air Development Center,
under contract number F30602-86-C-0071.

28

Abstract

Penelope is a prototype Ada verification editor whose user interac-
tively and concurrently develops specifications of programs, their Ada
text, and proofs of their verification conditions. With each incremen-
tal change the user makes to the specifications and program text,
Penelope recomputes and displays the verification conditions. Linked
to the syntactic constructs of Ada, these verification conditions and
their incomplete proofs guide the user, showing where further devel-
opment is required, or where an error has been made. A completed
proof indicates that the portion of the program in question is complete
and correct. Within these proofs, the user may appeal to previously
formulated axioms and lemmas in proving and simplifying verification
conditions, separating their mathematical content from their program-
specific content, and concentrating on the latter.

1 Introduction

Program verification systems hold out the pronmise of enabling users to for-
really specify what a program is expected to do and to prove that the program

meets its specification. In practice, however, verification systems are still far
from the point at which they would become attractive to use for real pro-
grain development. One reason for this is that in most systems it is hard
for the user to relate failures in his proof to specific bugs in his program
(or specification), or to reverify a corrected program without starting over.
The difficulty of proving verihcation conditions that are generated foý even
rather simple programs magnifies the frustrations of current non-interactive
approaches.

1.1 An interactive approach

The Penelope verification editor was developed to explore a more interactive
approach to program verification in the context of a complex programming
language, Ada. In a typical verification systenm, the user writes a specification
and a program, and inputs them to a verifier. The specification includes
input and output conditions for each subprogram. The verifier produces a
verification condition: a candidate theorem whidc if proven guarantees that

29

the program meets its specification.' However, if the programmer cannot
prove the verification condition, which is typically the case, he faces a difficult
problem. Does the fault lie with the program, or with the specification, or
with the proof? And how can he find out? We believe that the magnitude
of this problem can be considerably reduced by allowing the p-ogramrner to
inspect the verification condition as it is generated, to inspect intermediate
steps in generating the verification condition, and to verify small pieces of
his program. The prograrmner would like to proceed iteratively as follows:

* write a specification;

* write a crucial piece of code;

* inspect the verification condition immediately, looking for errors; and

* modify the code (or specification) to reflect his improved understand-
ing.

This implies that the programmer should be able to inspect a verification
condition corresponding to an incomplete program. It also suggests that
a number of small verification conditions closely associated with program
constructs woul be most useful in isolating errors in the program. The
Penelope verification editor is designed to permit just this kind of interactive
use.

The programmer uses Penelope to create programs in a subset of Ada,
currently including loops, go to statements, user-defined exceptions, sub-
programs (including recursive subprograms), and packages, but excluding
tasking, private types and generics. The editor performs static semantic
checking, including resolution of operator overloading. Verification condi-
tions are generated according to the model of Gries [11] and Dijkstra [5].
That is, verification conditions are generated for each subprogram and loop,
as well as for certain other syntactic constructs. For subprograms, the user
specifies input and output conditions. Statements of the program (in Ada
this includes exception handlers and declarations) are viewed as transforming
the output condition into a precondition that imust be shown to hold in the

tmPendope is currently able to provide verification conditions for partial correctness,
that is, the program meets its specification if it ternmincaes at all.

30

state in which the program is invoked. The verification condition for a sub-
program basically states that the input condition of the program is sufficient
to prove this precondition of execution. The editor generates verification con-
ditions immediately, in the same manner as a spreadsheet program, which
recomputes value; as the user enters data, so that they may be inspected
as the program is developed. The user can prove the verification conditions
using a proof editor that is built into Penelope.

1.2 Implementation and use
Penelope is implemented using the Synthesizer Generator [19], which is a
generator of syntax-directed editors based on attribute grammars. Penelope
has been used to verify Bell LaPadula security properties of a part of the
ASOS operating system [21]. It has been used to prove such programs as
binary search, greatest common denominator, the tak [20] function and other
"toy" but non-trivial programs.

1.3 Organization of the paper

This paper will discuss the various aspects of using Penelope: specifying a
program, developing a program interactively, and proving verification condi-
tions generated by the editor. We will look in some detail at an example of
developing a verified Ada program using Penelope.

2 Specifying a Program

In Penelope specifications are based on the Larch approach to specifica-
tion [13]. In this approach, developed at MIT, the Larch Shared Language is
used to develop mathematical theories (for example, integers, lists, and so on
are axiomatized in the Shared Language), while Larch Interface Languages
associate specific programming constructs in particular languages with the
underlying mathematics. Larci/Ada [1] is a Larch Interface Language devel-
oped at Odyssey Research Associates; Larch Interface Languages also exist
for Pazcal and other languages. The syntax of Larch/Ada follows the syntax
of Anna [7], but its semantics is based on a denotational semantics for a close

31

approximation to sequential Ada 2: Larch/Ada is used to make statements
in first-order logic about the denotation of programs. (For a complete de-
scription of the mathematical foundation for Penelope see Ramsey [17] and
Polak [15].)

Specifying a program in Penelope consists of writing Larch/Ada annota-
tions for the subprograms. A specification is a statement of what conditions
must hold on entry to and exit from the subprograms. Other kinds of anno-
tations are a convenience to the programmer: these include loop invariants
and assertions embedded in the program.

There are several kinds of subprogram annotations that together form
the subprogram specification: IN and OUT annotations, RETURN annotations
and propagation annotations. An IN annotation states an assumption that
a certain predicate holds at entry to the subprogram. An OUT annotation
states that a certain predicate must hold when the subprogram terminates
normally. For example, assume that there is a table privilege-table from
whose state one can see whether a property called system.is.secure holds.
Then the following specification asserts that on entry to the subprogram
we can assume that the table is in a state such that the system is secure;
further, on leaving the program the table will still be in such a state. (The
specification does not state anything about the table during execution of the
program.)

IN system-is-secure(priviloge-table);
OUT aystem-is-secuze(privilege.table);

For functions, return values can be specified. That is, when the subpro-
gram returns normally, the returned value will satisfy certain conditions. The
short form of RETURN annotation gives the value that is returned. A longer
form is available that allows the user to place conditions on the return value
without explicitly staling what it is. For example, a system may contain an
access checking function, which given a user-id and item finds out whether
the user has access to the item. We may write this ia either of the following
wags.

"2This language, sometimes calied Ada', is observationally equivalent to a subset of
Ada under certain ssumptions. For example, program constructs that depend on the
representation of data are excluded, and it is assumed that the siorage error exception is
not raised.

32

RETURN is.allowed.access(user-id, item);

RETURN z SUCH THAT z=is.allowed.access(userjid, item);

Propagation annotations are used to indicate under what conditions a
subprogram may terminate by raising exceptions and to promise that certain
conditions hold if an exception is raised. A propagation constraint states
that an exception may be raised only under certain input conditions. In
the first example below invalid-item is raised just when on entry to the
subprogram the condition user-is.secure(usernid) is false. (Constraints
are also available to state that an exception is raised if a condition holds
on invocation, or only if the condition holds on invocation.) A propagation
promise states that if the subprogram raises an exception then a certain
predicate is guaranteed to hold. In the second example, even if invalid-item
is raised, system-isssecure(privilege-table) will still be true.

RAISE invalid-item € (NOT (user.is.secure(us r-id)));
RAISE invalid-item

PROMISE systemaisasecure(privilege-table);

The user may also introduce cmbeddcd asscrtions, which may be cut point
assertions or simple embedded assertions. Assertions are not part of the spec-
ification of a program, but help the user to pinpoint errors by making claims
about what is true at a certain point in the progiam. A simple embedded
assertion makes a partial claim, which is incorporated into the precondition
of the following part of the program. Thus, asserting P at a certain point in
the program claims that P is true in addition to whatever else may hold at
that point in the program.

Cut point assertions represent a more complete claim, in that the cut
point assertion must im-rply the precondition of following part of the program,
and becomes the postcondition of the preceding part. Thus a cut point
assertion breaks a program up into two smaller pieces, each of which may be
verified separately. The smaller pieces are presumably easier to verify, and in
particular it should be easier to isolate errors: for example, the user may find
that what he believes should hold at a certain point of the program cannot
in fact be proven to hold.

Function names appearing in annotations, such as is-allowedaccess,
are names of mathematical functions defined on the mathematical objects
underlying the Ada objects in the program. They do not refer to Ada func-
tions, whose meaning depends on the semantics of execution and which are

33

defined on Ada objects rather than mathematical domains. The mathemat-
ical functions are used to describe the semantics of the Ada functions. Such
functions are defined by giving their signatures and a set of axioms in the
form of rewrite rules in the Larch Shared Language. 3 For example,

INTRODUCES max: Int, Int - Int;
AXIOMS:

max(m, n) = IF a > m THEN n ELSE m;
END AXIOMS:

The user can also state various lemmas about the functions that follow
from the axioms. Such lemmas are useful in proving verification conditions.
Of course, extending the language in this way introduces the possibility of cre-
ating an inconsistent or unsound theory. Researchers at MIT and DEC SRC
are developing several tools [8,9] that enforce language restrictions ensuring
that this does not occur.

Users need to employ the Larch Shared Language to define new function
symbols and also to define the mathcmatics associated with private types.
An Ada private type is actually two types: an implementation type whose
semantics follows from the semantics for Ada's base types and type construc-
tors, and an abstract type whose semantics the user needs to supply. He does
this by introducing Larch functions for the abstract type. For example, a pri-
vate type Stack would have functions push, pop, top, etc. defined for it by
means of appropriate rewrite rules,

3 Developing a Program

Penelope is used interactively to verify that a program meets its specification.
By inspecting the verification conditions (VCs) computed from the specifica-
tions and text, the user learns about his program. If the VCs are provable,
the program is correct. If not, the user analyzes the VCs to find what con-
ditions he has neglected or incorrectly treated, using this information to add
or modify text. Penelope recomputes all the VCs after each change the user
makes to the text, and the cycle repeats. In the examples below, we illustrate
the basics of programming with Penelope.

3In the current version of the editor a simplified subset of the Larch Shared Language
is used.

34

3.4 A simple example

We will verify an Ada function ArrayMax that computes the largest value in
an array. That is, given an array A and upper bound n, it returns the largest
value of AQj) for index j ranging from 0 to n - 1. Our first step is to edit
the specified stub for the function seen in Figure 1. We develop the Ada and
embed the specifications as Ada comments; from the text and specifications,
Penelope computes and displays the preconditions and V~s,

Figure 1:

FUNCTION Array~axCA :IN intarray; n IN integer) RETURN integer
_WHERE

-I IN (1t>O0);
-I RETURN maximum(k, n);

-IEND WHERE;
--I VC Status: ** not proved 4

>>I m =maximum(A, n)
--I <proof>

is
M integer;

BEGIN
<statement>
-:PRECONDITION =Cm = maximum(A. 0));

RETURN m;
END Arrayllax;

The precondition :of the Ada RETURN statement states that at the time
control reaches that statement, the value of the Ada variable m miust be
ma~ximum(A, n) We use the same name 'A' for both the Ada array and the

Larch/Ada object corresponding to it. This is a harmless pun, since in our
semantics, the Larch/Ada name denotes the value contained by the Ada
object. Likewise, 'n' does double duty.

We do not use the name 'ArrayMax' to represent the Ada function in

Larch/Ada annotations, since Ada functions are processes, not objects, and

do not, contain values. Instead, we specify the value computed by ArrayMax

3 5

by means of the RETURN annotation, to be the value of the mathematical
function maximum applied to the mathematical objects A and n.

The function maximum is defined elsewhere in a Larch/Ada trait by the
two axioms:

maximum(A, 1) = A[01

(k > 0) -> maximum(A, k+i) =

if A[k] > maximum(A9 k)
then AL[k]
else maximum(A, k)

which together say that maximum (A, n) is the greatest value in the collection
{A[O], A[11,..., A[n - i]}. Notice that we use square brackets with Larch/
Ada arrays instead of round brackets: the Larch/Ada object A[11 is the
value contained in the Ada object A(1).

Displayed as comments in Ada text, VCs have this general form:

-- 1. Hypothesis
-- I 2. Hypothesis

- >> Conclusion

The hypotheses and the conclusion are mathematical statements about
the program. When the conclusion follows logically from the hypotheses, the
VC holds. An example of a VC that holds is

-- I 1. n = 7
-- ! 2. f(n) = n*4
-- I >> f(7) = 28

The VC for ArrayMax states that if the mathematical description in the
IN condition holds on entry, then the value returned by the Ada function is
mathematically described by the RETURN specification. Penelope cal(culated
this VC by taking the IN condition as the hypothesis, and obtaining the
conclusion from predicate transformation of the RETURN condition through
the Ada text. Since predicate transformation depends on the text, the VC
will be recomputed every time the text changes.

At the time that the user enters a correct proof of the current VC into
the place now held by

36

-- ! <proof>

the status line will change to show that the VC has been proved. We will
discuss proof elsewhere; for now we note that a correct proof will be possible
only when the program is complete and meets its specifications.

Notice that while both specifications and VCs have the form of Ada com-
ments, specifications are indicated by the prefix

whereas VCs are indicated by the prefix

Notice also that like the proof placeholder above, the statement place-
holder

<statement>

indicates where Penelope permits further development. This development
should obviously be of a loop to step through the array while computing the
running maximum.

3.5 Guided programming

The techniques we demonstrate in programming the loop of ArrayMax are
more powerful than is. ,uired for such a simple loop, but the simplicity of
the loop makes it a good showcase for those techniques. In Figure 2, we show
the loop very nearly complete, with the loop VC suggesting the completion.

Penelope generates a new VC for the loop, distinct from the main VC
for the function. Both must be proved for the program to be verified. The
loop VC is generated from the user's specification of the loop invariant (a
generalization of the loop postcondition about which we will say more later),
from the previously calculated loop postcondition (the precondition of the
RETURN), and from the tevt of 0' -top body.

The user decide-C -, icuP, - .,,c maximum by finding the running max-
imum from 0 to j, as j runs from 1 to n, using a WHILE loop to do so. At
present, the sole effect of the loop body is to increment the loop index j.
The VC of the loop reflects that the loop is incomplete.

37

Figure 2:
--I VC Status: ** not proved *

-1. 0 <
-- 1 2.' m =mar4.rumCA, j)

-- I 3. j < n
-- ! >> m >= A[j]
--I <proof>

WHILE j < n LOOP
-- I INVARIANT ((0 < j) AND (j <= n) AID (m = maximum(A, j)));
<statement>
j := j+i;

END LOOP;
-- : PRECONDITION = (m = mazimum(k, n));
RETURN m;

END ArrayMax;

Hypothcsis 1 of the loop VC gives the lower bound for the loop index.
Hypothesis 2 of the loop VC is the assumption that at entry to the loop
body, m is the running maximum for indices less than j. Hypothesis 3 states
that the loop body will be executed. The conclusion is that m is at least as
large as A[jL], the next value of the array to be treated. Since this does not
hold in general, the VC cannot be proved.

The loop VC suggests that the user include an IF statement to change the
value of m so as to make the conclusion true. The user replaces the statement
pla eholder with the Ada code

IF A(J) > m THEN
m := ACj);

END IF;

whereupon Penelope interactively recomputes the loop VC to be

-- ! 1. 0 <j
--1 2. m = maximuin(A, J)
-- I 3. j < n
-- ! >> IF m < A[j]
-- I THEN A[u] = maximum(A, j+1)
-- I ELSE m = manimum(A, j+l)

which is provable. The loop is complete.

38

3.6 Correcting mistakes

In the above, we showed how the user can be guided in adding to a program.
Now let us see how a VC can help him in detecting and correcting errors.

Figure 3:

--i VC Status: ** not proved **
-- 1 1. 0 < n

-- I >> A[13 = maximum(A, i)
-- I <proof>

Is
j : integer := 1;
m : integer :A ;

BEGIN
WHILE j < n LOOP

In Figure 3, a plausible conunon error has been made in initializing the
lunning maximum before entering the Joop. The initialization of the running
maximum m should not be to A(l), but to A(O), since maximum(A, j) is the
largest value of A [k] for 0 < k < j.

The displayed VC is the main VC for ArrayMax. Its conclusion does not
follow, since the right hand side reduces to AE[0O, and it is not true in general
that A[l] -A[0]. Recognizing this (perhaps after a failed proof attempt),
the user changes the initialization to read

m : integer := AMO);

after which the VC is recomputed to the provable

--1 1. 0 < n
--I >> A[0 = maximum(A, 1)

3.7 Loops and invariants

In order to compute VCs, Penelope first computes a precondition for each
Ada statement, a formula which must be true at the time that control reaches

39

that statement. The main VC of the program states that if the IN conditions
hold, then the precondition of the program holds. For a WHILE loop, the loop
VC states that execution of the body preserves the loop invariant.

The invariant is the bridge across the loop. If it holds when the loop is first
entered, if it is preserved by the body until termination, and if it implies the
loop postcondition upUn termination, then the loop is correct: it transforms
the stdte described by the loop's precondition into the one described by its
postcondition.

Choosing an invariant is an art beyond the scope of this paper (the inter-
ested reader is referred to the discussion in Gries [11]). In general, however,
good invariants have these important features: they generalize the postcon-
dition, and they encapsulate the essential conditions true within the loop.
This can be clearly seen in Figure 4 in the invariant of the loop of ArrayMax.

Figure 4:

WHILE j < n LOOP
--I INVARIANT = (Co < j) AND (Q <= n) AND (m = maximum(A, j)));
IF A(J) > mx THEN

m := Ai);
END IF;
j := j+i;

END LOOP;
-- : PRECONDITION = (m = maximum(A, n));
RETURN m;

END ArrayMax;

The first condition in the invariant, (0 <j), ensures a sensible mean-
ing for the term maximum(A, j). Also, together with the condition (<-n)
it expresses that the index j is ranging over the values that must be con-
sidered. The condition (m =maximum(A, j)) generalizes the postcondition,
stating that the running maximum has been correctly computed so far.

All these conditions are true upon first entry to the loop. All are preserved
by the execution of the body. When the loop terminates, the additional
condition (j >=n) holds. From this and the invariant, the postcondition
follows.

40

3.8 Exceptions

In Penelope, one has the choice of assuming in an IN annotation that a

forbidden condition will not occur, or stating in a propagation constraint
that an exception will be raised if it does. If IN annotations are used, it is
the responsibility of the caller to ensure that the IN conditions hold at call
time. The precondition of the call in the calling program will include the

IN conditions of the called program, with the actual parameters substituted
for the formals. If propagation annotations are used, it is the responsibility
of the called program to ensure that exceptional conditions are correctly
treated. Clauses are added to the postcondition of the called program which
ensure that its VCs cannot be satisfied unless the appropriate Ada RAISE
statements are employed, as we will see below. Either way, the program can
be verified to behave correctly given correct inputs. The VCs of the called
program are similar, but not identical, in the two cases.

A variation on the program above written using exceptions is shown in
Figure 5. The1I condition (0 Cn•) : o.ed and noU 1LIV

hypothesis of the main VC. Instead, the conjunct (NOT (n <- 0)) arising from
negation of the propagation condition is added to the postcondition of the
program. It persists implicitly in the precondition of the loop, following from
(0 < j) AND (j <= n). Without the RAISE statement, the main VC would be

-- ! >> (o < n) AND (A[O] = maximum(A, 1))

which cannot be proved, since there is no hypothesis on ii. However, we see

that with the RAISE statement, the VC is transformed to

-- I >> (n <= 0) OR (A[0] = maximum(A, 1))

which states that either n is such that an exception will be raised, or the
initial conditions for the loop are correct.

41

Figure 5:

FUNCTION ArTay~ax(A : IN intarray; n : IN integer) RETURN integer
-- I WHERE
-- I RETURN maximum(A, n);
-- [RAISE invalid-array-length <=> IN (n <= 0);
-- I END WHERE;
-- I VC Status: ** not proved **
-- I >> (n <= 0) OR (A)O] = maximum(A, 1))
-- I <proof>

IS
j integer : ;
m: integer : AMO);

BEGIN
IF n <= 0 THEN

RAISE invalid.array-length;
END IF;

PRECONDITION = ((0 < j) AND Qj <= n) AND (m = maximum(A, j)));

WHILE j < n LOOP
-- I INVARIANT = ((0 < j) AND (j <= v) AND (m =maximum(A, j)));
IF A(J) > m THEN

m := A(j);
END IF;
j := j+l;

END LOOP;
-- : PRECONDITION = ((m - maximum(A, n)) AND (NOT (n <- 0)));

RETURN m;
END ArrayMax;

42

3.9 Cut point assertions

It can be seen from looking back on these figures that the verification of
the piogra-in has effectively been distributed between showing in the main-
VC that the initial condition-, for the loop axe correct, and showing in the
loop VC that the loop is correct. This incremental capability to separate
concerns helps the user to isolate possible errors in his p)rogram and hence
mnakes Penelope a powerful tool for program verification.

Another way to distribute verification is to use a cut point asseition
to break the program into logically connected blocks to be independently
verified. The precondition of the cut point becomes the cut point asscrtion
itself, and the VCs of the first block arc computed relative to it. A new
cut point VC is generated, stating that the cut point assertion implies the
pJ'econdition of the second block. Effectively, the cut point assertion become,
the OUT colnditioni of the first block and the IN condition of the second.

1.10 Programming in- the style of Gries and Dijkstra

The characteristics of Penelope that we have been describing make it an ex-
cellent tool for" programn development iii the style advocated by Gries [I1] and
Dijkstra [5]. In this style, the programmer begins a program by examining
the postcondition of tlhc program and tries to develop a. statement such that
the precondition of the statement will more closely approximate the entry
condition of the progr'n. When he has written such a statement he exam-
ines its precondition to develop the peiultimate statement of the program.
At each step, as the prograimner is working his way backward through the
program, he is guided by the syntax and cOntent of the precondition he is
examining. Programs developed in this way are developed to medt a specifi-
cation; when the programmer completes his program by writing the topmost
statement, the precondition of that statement is just the entmy condition of
the program.

Penelope lend.. itself to programming following this methodology, because
the verification conditions are generated by computing thc preconditions of
Ada statements in just thi,, way. By automatically computing precondi-
tions and verification conditions, Penelope makes it feasible to apply Griis's
methodology to the Ada langua-.ge.

43

3.11 Summary

The user employs loops and cut point assertions to subdivide the program
into several regions, each with its own VCs. Within each region his progress
is guided by automatic interactive recomputation of these VCs. Since the
sum of their complexities is less than the complexity of the VC for the mono-
lithic case, the distribution of verification across many program results in a
significantly easier task for the user.

4 Proving Verification Conditions

Given a specification and a program, Penelope produces verification condi-
tions; if the verification conditions can be proved, then the program has been
shown to meet its specification.4

The natural approach to proving a verification condition in Penelope is
to formulate lemmas containing all of the mathematical content of the ver-
infcation condition. The remainder of thne corteent is program-specific. The
lemmas may be proved within the context of Larch,5 and arc available during
proof of the verification conditions.

Penelope includes a simple proof editor that enables the user to instanti-
ate axioms and lemmas, simplify the verification condition using an external
simplifier, and give a "manual assist" to simplification if necessary. Asso-
ciated with each verification condition in Penelope is a proof that takes its
hypotheses and goal from the verification condition. The user constructs a
proof tree by steps of the form "apply a given axiom," "apply a given lemma"
or "simplify." it is also possible to use proof steps based on the syntax of
the hypotheses or goal.

Penelope enables the user to communicate with an external simplifier.
Currently we are using the State Delta Verification System (SDVS) [18]
implementation of the Nelson-Oppen method for combining decision pro-
ccdures [14]. We are using the (partial) decision procedure for the theory of
integers under addition that is a component of the SDVS simplifier, ;Und we
are writing decisiorn procedures for arrays and records that are compatible

4This wa, shown formally by Guaspari [12].
5 1n the future the Larch checker will be available for proving the lemmas. Currently,

the proof of the lemmas is outside the scope of th, editor.

44

with the theories of Ada arrays and records used in Penelope. Comnpletion
of these decision procedures should make the proof of verification conditions
considerably easier, since Ohe SDVS simplifier is able to exploit knowledge
about equalities in multiple domains. For example, it can simplify the ex-
pression

x=-O AND a(x) =y AND NOT (a(O)=y)

to FALSE. In practice, appeal to axioms and lemmas combined with use om
the simplifier suffices to prove many verification conditions.

The proof editor also enables the user to intervene "manually" to direct
simplification. This is done- via deduction rules permitting the rubstitution
of equals for equals, etc. In particular, quantified formulae are not simplified
by the external simplifier; for themx the user must apply deduction rules using
the proof editor.

Penelope also enables the user to insert in the program Lext directives to
invoke the simplifier and to instantiate axioms and lemmas. This distributes
the verification effort throuighouti, the program In Figure 5, the disrninAe VC

is the Lesult of several proof steps and simplifications, which were suppressed
as extraneous to the exposition. Here, we concentrate oi those steps. In
Figure 6, we show how to apply directives to th(precondition of the first IF
statement so as to reduce the main VC to a triviality.

Reading up from the IF statement, we see several guided predicate trans-
formations. The first step is to embed a simple assertion expressing condi-
tions on n, m and A that are true at the time control reaches that statemnent,
thus making these facts available to the simplifier. The first two conditions
are self- explanatory; the third states that n has the value at the point of the
assertion that it had on entry to the subprogram. The transformation the
embedded assertion effects is to conjoin these conditions to the precondition.

The SIttPLIFIED PRECONDITION transformation next invokes the external
simplifier to exploit the additional information just asserted. The result
(not shown) contains the term raximwu(A. I), which is then transformed by
application of the axiom governing the base case into A[0J. The result of
a second simplification, exploiting this substitution, is the first precondition
shown. This precondition reduces to TRUE by transformation through the
declarations.

The effect of such steps as these is to factor the proofs of verification con-
ditions so that after predicate transformation there may typically be little

45

Figure 6:

FUNCTION ArrayMaxCA :IN intarray; n :IN integer) RETURN integer

-IWHERE
-I RETURN maximumCA, ii);

-I RAISE invaulid-array..lengtlt <=> IN (n <= 0);
-IEND WHERE:

--I VC Status: Droved

--! BY synthesis of TRUE

isiISI

j integer 1;

m integer AM;

BEGIN
PRECONDITION = C(j = 1) AND Cm ALO)) AND Cunr IN n));

- SIMPLIFIED PRECONDITION;
USE AXIOM ml IN TiRAIT T WITH Arr = A;

SIMPLIFIED PRECONDITION;
-- I (C= i) AND (--= AL)) AND Cu = IN aD;

PRECONDITION=
(IF (n <= 0)
THEN iN C- <=)
ELSE ((0 < j) AND Cj <= n) AND (m =maximum(A, j))));

IF (n <= 0) THEN

RAISE i :valid;array.length;
END IF:

PRECONDITION = ((j < j) AND <= An) AND (m = maximum(A, j)));

or nothing left to prove. This is the approach used (in a less formal con-
text) by Cries [11]. Cries assumes an intelligent human being performing
predicate transformation, and implicitly simplifying, applying mathematical
theorems, etc. Verification conditions for programs in Cries's methodology
are usually completely trivial: the precondition of the program is exactly the

input condition.

46

5 Related Work

In this section we compare Penelope with some well-known verification and
specification systems.

Gypsy The Gypsy Verification Environment [10] is probably the best
known automated system for formal verification. The Gypsy programming
iangtiage is a Parcal-like language, together with versions of data abstraction,
exception-handling, and asynchronous concurrency (through shared buffers).

Gypsy associates VCs only with whole programs. Gypsy's VC genera-
tor, however, breaks a program into paths and, essentially, associates a VC
with each path. This helps the user to isolate errors. Further, suppose that
the VC associated with path p has been proven, that the program is subse-
quently modified (perhaps because VCs associated with other paths cannot
be proven), and that the new VC generated for path p is identical with the
old one: in this case the VC need not be reproven.

Effort has recently been invested toward making Gypsy a production tool.
Penelope possesses no comparable sophistication in theorem-proving, library
facilities, etc.

Anna Anna [7] is a specification language for Ada and, as indicated
above, has served as a model for much of Larch/Ada. The Anna project is
an effort to introdace specification to Ada programmers by providing bpeci-
fication constructs which can be checked at runtime. The semantics of Anna
annotations is computational rather than mathematical.

EVES The underlying programming language is a simple sequential
language (called mi-Verdi) [3]. Like the Gypsy language, m-Verdi is designed
for verification, and therefore the mathematical apparatus underlying EVES
is much simpler than that underlying Penelope. Much effort has been de-
voted to the engineering of a theorem prover: using the Nelson-Oppen algo-
rithrn [14] (from the Stanford Pascal Verifier [6]), heuristics from the Boyer-
Moore prover [2], etc. The principal difference in "spirit" between EVES and
Penelope is our emphasis on incrementality.

47

AVA Computational Logic, Incorporated is working on AVA (A Verifi-
able Ada [4]). Their strategy is to define the semantics of an Ada subset in
Boyer-Moore logic [2], and then to reason directly about the denotations of
Ada programs in Boyer-Moore logic, without the intermediary of VCs. Cur-
rently, AVA has no distinct specification language. A program is specified by
making the appropriate assertions about its denotation.

SDVS Aerospace Corporation is also applj•, a pre-existing tool, the
State Delta Verification System [18] (like the EVES prover, implementing the
Nelson-Oppen method), originally designed for verification of micro-code.
They model the semantics of Ada constructs in terms of the "low level"
semantics of SDVS and apply the SDVS prover to the result.

6 Future Work

Penelope is still under development. This section describes some extensions
we plan to the theory and implementation of Penelope.

We intend to expand the subset of Ada covered by Penelope. We are
currently in the process of adding private types to packages.

The computation of weakest preconditions is based on continuation se-
mantics [15], which is well-suited to verifying partial correctness of sequential
programs. We have briefly investigated ensuring total correctness, and we
believe it is straightforward to verify total correctness in the absence of mu-
tually recursiv• functions. We do not yet know which of several approaches is
the best way to verify total correctness when mutually recursive functions are
allowed. We are also investigating ,ays to extend a continuation semantics
to address concurrency [16].

Because we rely heavily on the use of axioms and lemmas in proving ver-
ification conditions, we want to integrate (he Larch checker into our system.
This will allow the user to build up a library of theory on which he can draw
in verifying new programs.

7 Conclusion

The interactive approach of Penelope is founded on three principles:

48

* the user can inspect (incomplete) verification conditions and use the
insight gained in order to complete or correct his program;

* verification conditions are linked to syntactic constructs, which aids the
user in finding and correcting programming errors;

* the ability to formulate the mathematical content of programs in ax-
ioms and lemmas, together with the availability of a powerful simplifier,
allows verification conditions to be proved relatively easily;

* the proof of verification conditions can be distributed, and partitioned
into a "mathematical part" (proof of lemmas about the specificational
notions introduced in a Larch trait) and a "programming part" (in
which those lemnmas, together with a powerful simplifier, may be in-
voked as needed), supporting an intellectual style that is natural to a
human user.

7.12 Acknowledgements

The authors are grateful to Norman Ramsey and David Guaspari for thought-
ful criticism of earlier drafts of this paper.

The software for Penelope is generated in part by the Synthesizer Gen-
erator under license from Cornell University. We acknowledge Thomas Reps
and Tim Teitelbaum for their role in its development.

References
[1] Odyssey Research Associates. A short introduction to Larch/Ada-88.

Odyssey Research Associates internal document, 1988.

[2] R. Boyer and J. Moore. A Computational Logic. Academic Press, 1979.

[3] Dan Craigen. A description of m-Verdi. Technical Report TR-86-5420-
02, I. P. Sharp Associates, Ltd., 1986.

[4] Dan Craigen, Mark Saaltink, and Michael K. Smith. The nanoAVA
definition. Technical Report 21, Computational Logic, Inc., Austin,
Texas, 1988.

49

[5] Edsger W. Dijsktla. The Discipline of Programming. Prentice-Hall,
1976.

[6] D. C. Luckham et al. Stanford Pascal Verifier user manual. Technical
Report STAN-CS-79-731, Stanford University, March 1979.

[7] D. C. Luckham et al. Anna: A language for annotating Ada programs.
Technical Report CSL-84-261, Stanford University, 1986. Reference
Manual.

[8] S. Garland. Private communication. Larch Checker.

[9] S. Garland and J. V. Guttag. An overview of LP, the Larch prover. In
Third International Conference on Rewriting Techniques and Applica-
tions, 1988.

[10] D. I. Good, R. L. Akers, and L. M. Smith. Report on Gypsy 2.05.
Technical report, Computational Logic inc., 1986.

[11] David Gries. The Science of Programming. Springer-Verlag, 1981.

[12] David Guaspari. Formal definition of satisfaction. Odyssey Research
Associates internal document, 1988.

[13] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five easy pieces.
Technical Report TR 5, DEC/SRC, July 1985.

[14] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245-257, October 1979.

[15] Wolfgang Polak. Program verification based on denotational seman-
tics. In Conference Record of the Eighth Annual ACM Symposium on
Principles of Programrming Languages, 1981.

[16] Wolfgang Polak. Formal verification of Ada tasking programs. Odyssey
Research Associates internal document, 1988.

117] Norman Ramsey. Developing formally verified Ada programs. In Pro-
ceedings of the Fifth International Conference on Software Specification
and Design, May 1989.

so

[18] T. Redmond. Simplifier description. Technical Report ATR-86A (8554)-
2, Aerospace, November 1987.

[19] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator:
A System For Constructing Language-Based Editors. Springer-Verlag,
1988.

[20] I. Takeuchi. Private communication to J. McCarthy.

[21] D. G. Weber. Beyond Al using Ada code verification. Submitted to the
Software Testing, Analysis and Verification Symposium III.

51

Adding CASE Technologies to
Formal Verification*

J. V. A. Janeri, J. S. Barlas, L. L. Chang
2 February 1989

The MITRE Corporation
Trusted Computer Systems Department

Burlington Road, M/S B-325
Bedford, Massachusetts 01730

Abstract

We propose to use CASE technology to further automate the labor-intensive task of
formal verification, by integrating the process of formal software design verification with the
software engineering life cycle. Hypertext and graphics are two CASE features that would
be especially useful for this integration. We plan to build a prototype Specification Browse[,
based on an off-the-shelf CASE tool, to serve as a verification aid. The browser will exploit
both hypertext and graphics capabilities to assist verifiers and evaluators with the
organization of verification evidence. Sceniarios presented here show how an evaluator
would use the Specification Browser to examine a software system's design and its
documentation.

Introduction

Software design verification is the process by which one formally specifies and proves
the correctness of a design using formal methods. It is often used in verifying security
properties of an operating system design [1]. Although this process increases the level of
assurance in the design's correctness (via an accumulation of verification evidence), it is a
labor-intensive task. Furthermore, formal verification requires the experience of a person
who is well-versed in formal logic and has an understanding of the system being verified.

It is required that formal specifications be developed by vendors and reviewed by a
team of independent evaluators if the system is to attain the highest level of assurance.
These specifications are written in a formal specification language, in contrast to their
traditional English language counterparts, the requirements specifications. The
specifications contain conditional logic assertions stating how the abstract machine shall
behave along with security properties that collectively define "secureness". A series of
proofs are developed to formally demonstrate that the specifications uphold the stated
security properties. Mappings that relate the formal specifications to all relavant code
modules are supplied as additional evidence that the proven properties apply at the lower
(implementation) level. When examining large and complex formal specifications, verifiers
and evaluators are burdened with keeping track of the relationships between all of the
documentation, including the proofs and correspondence mappings.

The state-of-the-archaic method emFloyed today has verification and evaluation teams
wading through hundreds of pages of computer listings and using yellow Post-it® pads for
labelir.g the various sections of text and transforms. This is clearly not the way to proceed.
As verification -ontinues to mature, larger and larger systems wiUl be candidates for formal

• This work was supported by the National Computer Security Center C3, and the United States
Navy. C The Mr!'RE Corporation 1989.

52

evaluations, and the specifications and documentation that will be presented as support will
grow proportionally. We are outgrowing our days with tinkering with toy specifications and
en tering lhe age where we must find a better method to understand and review the
volmninous formal 'nd informal specifications.

There are many deep problems in the field of verification, such as deciding on a
particular design paradigm for specifying a design or determining an appropriate underlying
system of logic to use for a verification system. Our goal is more modest: developing a
solution to the class of problems that can be solved in the near terin and could have a
dramatic effect on the way in which the verification/evaluation process proceeds.
Difficulties can be solved in akcas such as integrating formal verification into the software
life cycle, requirements tracing, specification-to-implementation mappings, configuration
management, and the basic organization of large-scale documentation. To this end, we are
designing a verification-aid called the Specification Browser (SB) that relies on intrinsic
CASE features, primarily graphics and hypertext. The Specification Browser will be a
prototype and will enjoy the novelty of interfacing with an existing verification system. T'e
prototype will be one step towards bringing together development and verification aids into a
single, unified environment.

Motivation: Organizing the Formal Evaluation Materials

From our experience as evaluators of secure computer systems, we believe there is an,
urgent need for a software tool that will reduce the burden of this task. By tying together
the many common aspects of software engineering and design specification and verification
into one sensible and coherent representation, such a tool could ease the fiustiation that
now accompanies the analysis of large-scale documentation.

MITRE's charter for performing this restearch is grounded in the area of formally
specifying, verifying, and evaluating "secure systems." Organizing the suite of documentation
that is required by the governinent-standard Trusted Computer Security Evaluation Criteria
('CSEC) [2] and the military standard for defense system acquisition, MIL-STD 2167A [3),
was the primary motivation for this tool (a fact that is underscored by the examples that
appear in this paper). It is-now clear, however, that application of such a tool would not be
limited only to security-related and government-standard document suites, but to any
company's corporate standards, guidelines, and design documentation.

Approach: Analyze CASE Tool Requirements

The question of "What designates or defines a CASE tool?", for our concerns, can be
defined simply as:

A tool (or set of tools) that when used under the guidance of a
particular methodology, enhances a software or systems engineer's
ability to build a software system.

We note that the vast majority of CASE tools rely on graphics and hypertext concepts to
reach the primary goal of assisting in the specification, design, and implementation of
software svstems. For our near-terni prototype, we will exploit both hypertext and graphic
fun ctionality.

Given that we wish to alter an existing off-the-shelf CASE tool as a basis for the
browser, it is important that the CASE tool have an open architecture: i.e., that the CASE

53

tool be designed in such a way that it can bc configured to meet users' needs and to allow
easy interface with another tool. No modification of source code is necessary when using a
CASE tool with an open architecture. We h ave toun1d that this s!ort of extensibility is built
into a very limited number of CASE products today.

We have performed a survey on twenty-one existing CASE tools and have concluded
that no single tool includes all the desired features for our prototype. Ilowcver, two tools
appear to be the most appropriate bases for the prototype construction. One of them
provides a nice linking functionality on which we can build a hypertext capability; the other
one is promising for its sophisticated graphics representation.

After investigating the work of many researchers, vendors, and theorists in the CASE
arena, we have found that the general quality and overall functionality of the software is very
admirable. However, the lack of a formal and well-founded basis for many of the most
popular methodologies is apparent. CASE tools with a formal semantic basis would help
produce software systems with a higher degree of assurance (consistency, soundness, and
completeness); but if one attempts to combine a verification methodology with an
incompatible CASE methodology, the degree of assurance could lessen. This is an area fo-
further research. With tile appropriate formal foundational work having been documented
by the CASE vendor, one could theoretically bypass any such potential "semantic clash" and
detect any likely inconsistencies early in the project. Another alternative is to support
various methodologies with one tool.

The hardware system we have chosen for the prototype is the Sun Workstation. We are
taking full advantage of the workstation's multiprocessing capability, resident windowing
system, and mouse device interface. In addition, it is the only workstation that supports
both verification environments and CASE tools.

In the next section, we lay the groundwork for understanding the problem at hand:
the management and organization of two sizable and separate documentation (requirements)
standards. It is important to understand how each of the required deliverables relates to
one another.

Large-Scale Document Organization and Topology

In Figure 1, we present the security-related deliverables required by the TCSEC and
Military Standard 2167A arranged as "vertical" columns. The most abstract elements are
presented at the top, and the most detailed elements are at the bottom of each column.
Explicit relationships have been defined at each step. On the left are the deliverables
required by the TCSEC: the Formal Security Policy Model (MODEL), the Descriptive
Top-Level Specification (DTLS), the Formal Top-I.evel Specification (FTLS), and tile
source code (the code is considered part of both the documentation suite. s shown
only once). The Model1 is specified as the highest level of abstraction and formally
describes the system security policy in terms of mandatory and discretionary access of active
entities (e.g., processes, users) towards passive data objects (e.g., files, directories). The
DTLS and the FTLS share approximately the same information, but the DTLS is written in
a natural language, and the FTLS is specified in a formal specification/verification language,

'The werd model in this case means something a little different from the traditional usage, since here
it is used in a very distilled sense, i.e., to refer to the modeling of security-relevant access mediation.

54

TCSEC Documentation Military Standard Documentation

MO L

LS S S

Figure 1. Parallel Organization of Software Documentation

much like first-order predicate logic. 2 The FTLS is formally proven to be consistent with
the properties and rules of the model. These two representations describe the precise
interface into the security-relevant software - more commonly referred to as the Trusted
Computing Base (TCB). The code is the realization of the design and requifements
specifications and is regarded as the lowest-level (implementation) of detail.-' Ihis
decomposition follows the typical "top down" design methodology, where each successive
lower level is a further refinement (and less abstract version) of its parent level.

Similarly, the Military Standard 2167A (Software Engineering Development Life cycle)
deliverables are listed in parallel as: the System Segment Specification (SSS), the Software
Requirements Specification (SRS), and the preliminary and detailed design versions of the
Software Design Document (SDD). The 2167A is a detailed government standard imposed
upon vendors and developers of defense systems. It covers the entire system development
life cycle from early system specification and requirements definition, to design and
implementation, through testing and maintenance. The linear organization in Figure 1
depicts the two suites as truly being parallels to one another; this is admittedly an
oversimplification. By adding the dotted lines to represent the hypertext relationships, this
high-level representation becomes arbitrarily close to the actual relationships between
documents (and portions of documents).

Graphics and Hypertext Involvement

To speed up the system understanding process and to help evaluators perform their
tasks more efficiently, it would be extremely helpful to connect formal documents required
by the, TCSEC to their corresponding MIL,-STD 2167A requirements and design documents,

2In our case, we are using the formal specification language Ina Jo [4] which is part of the Formal
Development Methodology (FDM) verification system [5].

3Ccrtainly there are othei levels below the code, but this project is focusing on the software aspects of
the development life cycle. Future enhancements may address the other relevant microcode and
hardware components.

55

and vice versa. For example, if an evaluator is trying to understand some Ina Jo construct,
s/he could follow a pointer that connects the predicate logic sentences to some descriptive
English text. This is a key feature of the Specification Browser; it is designed to provide a
method for building and traversing "links" witLhin each documentation suite and between
documentation suites.

Hypertext can be used to affirm explicit relationships between differing entities. The
links can be traversed, deleted, inserted, and modified, using an underlying database. The
beauty of this concept is that the deLails of the database are hidden from the user, and the
only contact a user has with data manipulation is via a bit mapped user interface, complete
with windows, and a mouse.

Graphics also play an important role in increasing the ease of conveying information
about the structural design of a system; they are what people turn to first when they would
like to understand a large and complex system. Besides giving a high-level view of the system
and increasing the sense of understanding the system structure, one can also create a
graphical representation to form an active part of the user-interface. When the user would
like to visit some section of the system, s/he positions the mouse-pointer on the appropriate
icon and selects the entry (after which s/he is left to continue the analysis). This is
accomplished by displaying a System Topology Diagram in a Sun window at the main menu
level of the Specification Browser. Regardless of whether the system is arranged
hierarchically, cyclicly, or linearly, the graphics can be used as a navigational aid to the
various sections of the system. The Specification Browser exploits other qualities of
graphics as well. Obviously, the graphics can be sent to a laser printer strictly for use as
presentation material, and as the field of of Visual Formalisms matures, eventually the
graphics may be used in formally specifying and verifying software designs and code. Some
of the graphics that are produced as part of the software development activity can be used
during verification and can help bring together the software engineering community and the
verification community.

For each system, the structure would be different, but easily reprogrammable using a
typical graphic capture algorithm. Also, the on-screen display of the chart would not be
passive, but could be used as an interactive map of the system topology. To illustrate some
of these concepts, a high-level view of the browser system is described below. It clearly
shows how powerful a specification tool such as this would be-one step toward providing
some real solutions to the large-scale documentation problem.

System Description

The Specification Browser can be invoked in two different manners, depending on
whether the browser has been configured for the vendor's own use, or whether the browser
is intended for the evaluator. The proposed additions to the existing interface will be
designed such that the develper/vendoi of the software product has both read and write
access to the hypertext database, whereas the evaluators' version of the browser will be
configured with read-only access to the hypertext database. The Read-Write Browser
(RWB) is the software specially configured for the vendor. The evaluator will invoke
another form of the tool, the Read Only Browser (ROB). This is the software that enables
the user to traverse links specified within the hypertext database, without affecting the
integrity of the database. The early prototype of this read-only version of Specification
Browser is being designed with consideration for future versions that might enforce a
discretionary access control mechanism, giving certain privileged individuals the benefit of
modifying the hypertext links. Figure 2 illustrates a general view of the browser and how the
proposed interface, the existing CASE tool, the Formal Development Methodology (FDM)

56

Proposed Existing
Addition Software Vendor's

-' 5" StftwareI Browser and 2167A

Monu j
Documentation

User Enhanced Annutatio
Linkir.g _______] Vendor's

Database

DBMS

Documentation

Figuxe 2. Browser System User Interface + CASE

system, and the documentation ielate to one another. The Specification Browser allows
users to invoke the FDM system via the same user interface. In this context, a "user" of the
browser system, is an individual, either an evaluator or a vendor. 'The evaluator opexates the
browser only after the database of links has been put in place by the vendor.

The Specification Browser's Role

'The Read-Write Browsei is for inserting the initial links befoxe the evaluation process
begins. Since the vendor has intimate knowledge of the system and the relationship-s among
ils components (formal or otherwise), the ve.dor is the only candidate for Inserting the
links. An implied assumption here is that the vendor will be required to go through the
entire system an6 ace documentation deliverables with code deliverables and formal
deliverables,

4

With each iniiial entry, a relational n-tuple is built and stored in the database. Each
relation contains a time stamp that will be used by a configuration management system
(CMS) and for future releases of the system being analyzed. The rationale 1F that the
bindings between various entities will come and go, and the time stamp information is
required to configure snapshots and proceed in the analysis during a changing (unfrozen)
design.

4The process in which the vendor ties together entities from throughout the system deliverabics is
referred to here as lacing. The idea behind lacing is that the many representations of the system
need to be related explicitly. It is reasonable to require some coherent relationship among the
documentation to bc supplied as part of the documentation.

57

When the evaluation is slated to start, the vendor delivers completed portions of their
source code, TCSEC documeiniation, any required MIL-STID 2167A D)ocumentation, and
the relutional/hypcrtext database to cacti of the evaluatois. Upon arrival at the cvaluator's
site, these items are installed on a San Workstation under a us,;r's account.

Evaluator's Scenario

As an example of how the ROB portion of the Specification Browser system works,
suppose we are evaluating some network software, call it "Network X." We will assume that
the vendor is responsible for both the formal work and the development of the software and
has laced the components together to form an initial hypertext database. The formal work
describes the network in terms of a massive collection of Ina Jo specifications, which must
be organized into some manageable structure. The partitioning of the trusted computing
base (TCB) across the major subsystems implies that the formal specifications are somehow
divided up across the entire system. 5 Figure 3 shows the breakdown or the topology' of the
formal specifications for Network X based on the allocation of security-relevant features.
This is an example display as the evaluator would see on his/her workstation nionitor and is
an example of use of graphics as an Active Graphic Interface. There are no limits (in
theory) to the number of levels that can be specificed using the FDM system. In fact, there
are formal specifications today that have been expressed in as many as seven (7) levels of

Net,,o, Ma& go,

TCPI K ' E.k

reow LvM616r30 acknowledge..mesI 'A

Figure 3. A System Topology Diagram for Network X

Ina Jo specification. We will assume our imaginary Network system contains three levels of
Ina Jo specification, in order to explain some of the Ina Jo specific features of the
Specification Browser.

r5The maiiner in which software is partitioned can vary drastically based on what the partitioning is
emphasizing. Software systems engineers typically divide software up based upon functional
requirements (or just "functionality"). Developers of security softwaie follow a similar design
paradigm, but emphasize security-relevant requirements rather than purely a functional
decomposition. Caveat Lector: these two views are almost certainly never the same.

58

To begin the scenario, the user would position the mouse pointer on (or near) a node
and select his/her area of interest. In Figure 3, the node that was selected is highlighted
(SENDMESSAGE). A window appears with the appropriate file(s) loaded into the
window's buffer, and the evaluator is free to begin perusing the contents. The original graph
is not lost, but turns into a system's Topology Icon and migrates to the upper border of the
workstation screen. This non-intrusive icon organization is a popular technique used by the
SunTools (tin) product (Sun Microsystems) and is a very useful short-term method for
tracking opened files.

Inter/Intra Document Traversal

A series of different pull-down menus is supplied to the evaluator so s/he can traverse
the system in many different contexts. The menu types available to the evaluator are shown
in Figure 4.

Coritinuing with our scenario, Figure 5 shows that the evaluator is now looking at a
particular FTLS transform for Network X. In Figure 6, the evaluator instructs the system to
load the DTI.S-the English language version of SEND_MESSAGE-into a new window
shown as Figure 7. This is achieved via selecting the pull-down menu option DTLS and the
transform SENDMESSAGE with a 'click' of the Sun mouse. Then, one by one, the text

Ina Parent

In. ChAd

Expand clef

2167A I •¢~
FSSS

S D O

Code

MI.n Menu Submenus

Figure 4. Pull- Down Menus of the Specification Browser

files that were linked to the selected transform appear in a new window. If there is more
than one I)TLS text file associated with FTLS transform SENDMESSAGE, one of the two
possible alternatives can be chosen:

1) Only the first paragraph in the linked list will be displayed (auid in a window of the
appropriate size). Each successive paragraph is read into a newly created window.

2) If more than one entity is contained in the refmence link, then a window is created
to display the members cf this chain. The user may then select one or more of the
littms (via clicking the mouse on pre-illustrated boxes) and upon leaving the selection
window, the selected files will be pipcd into a Unix-like "more" utility.

59

FTFLS.TAANSFORMS.SEND-MESSAG EI- . "°
Sun Window .

Figure 5. The FT-LS SEND-MESSAGE transform of Network X •

rck FTSPM

N ~o,-.c.....

* 4L M.TA SFORM. Cp.. •.C. *'..o"

Figure 6. T etingthe DTLS SENtDext Io S" for SSAGEtwSun Window IFEC Fl•rsa
••',N 1 N,,F.',m~,lll SOC. O:.,,.,.,l .n ,, .• *,+

Figure 6. Selecting the DTLS text for SENDMIESSAGE•:

If an attempt is made to traverse between documents or within a document, and no
associated correspondences are found in the database, then you are notified with the
appropriate message.

We assume that if no pull-down menu item was selected, we are automatically going to
browse files of the same type (i.e., other FTLS files) or remaining porti'ns of the current
file, i.e., other FTLS transforms within the current file. To change the context in which one
is currently working, a pull-down menu item must be selected.

If the evaluator now chooses to view the corresponding CODE for this particular
function, the same process is repeated, except the CODE pull-down menu option is selected
(refer to Figure 4). A new window would appear and the program would begin loading in
the computer code (see Figure 8).

If the pull-down menu option INA PARENT had been chosen when looking at the
FI'LS, the user could then click on SENDMESSAGE, and the upper-level transform (in
our example, this is TCP/IP) would appear in a newly cre-ited window. As long as one
reselects the INA PARENT menu option, any entity that is selected in the main window will
be subject to further ancestral searches.

60

FTL S TRANSFORMS SENOIMES3AGE --

OTIS NETWORK SIEND MSSG

• . .x•-.•l; TLS NETWORK SE.ND.MESSAGE

I" SC-.C '''' 0"*13C*1£

El*l

'a.,..'., .._-o2,150

01*1.00.55t"'9

S..."~~~ ".... ... "' I *0" .' 10Sa3
4~~~ ~~~ 00.o." 7410w ZI k01 0.I 0

Figure 8. ThNswtreground ow rihresentations of SEND__MESS.AGE

Besidtes enabling one to traverse various Ina Jo components (variables, types,
definitions, transform-s, etc.) at different levels of abstraction, there is a menu item
EXPAND DEF which pops tip a separate window and displays the right-hand side oft he
selected definition (definieps). This micro-leve16 intra-document binding is extremely useful
during the evaluation and theorem proving stages of verification. Both Parent-level and

6Comrotare with the notion of macro-level iintra-docurnent binding which is the power behind
supporting requirements traceability.

61

Child-level terms are displayed in a pop-uip window with a predefined format, and ai option
to generate an automatic report is supplied.

Transform Report

Child Transform: SEND) MESSAGE
Child Level: 2LS
Parent Transform: TCP/IP
Parent Level: TLS
Mapping: TCP/IP == SEND-MESSAGE

If the evaluator ventures across several links (and possibly several Ina Jo levels), s/he
could get lost in the system. This is no problem. At any point, reselection of the saved
System Topology Icon would enable the user to recall instantly where s/he is in relationship
to the rest of the system. Finally, if the user no longer requires the chart, the mouse pointer
is moved to the icon marquise, and selects a pull-down menu to close the chart ... with this,
the icon vanishes.

Once the evaluation begins, and each member is assigned his or her own section to
concentrate on, little will change with respect to the evaluator's working patterns.
Therefore, a profile of the user's common activities would be stored in a local file and
accessed upon entry into the system. The System Topology Graph, which appears
automatically at initialization of the browser, would be zdiared by all users.

Notecards

Although evaluators are only able to read files and links, they are able to write to
notecards associated with files. Each user can have one notecards associated with each file
he has access to. All the notecards associated with a particular user are implemented as
local files that are only accessible by this user. Comments can be inserted in these
notecards by both evaluators and developers/vendors. To insert or modify the content of a
notecard, a user first must select "notecard" on the menu, which opens a window containing
the current version of the notccard associated with the file in the active window. After the
note window has been opened, the user canu edit the content of this window.

The notecard feature is a very nice additional place to put comnIments, where they are
on-line, accessible, and always correctly associated with what they are cominenting on.
Without such a capability, notecards and other non-on-line note taking would have to be
typed in to be included in reports or electronic mail messages. This feature would be
helpful to include in the design and could easily be ported to other (Sun-based) tools as an
add on editor option. It is also a nice alternative to in-line comments and systems such as
the one proposed by Knuth in [6].

In addition to the notecard capability, a report containing information stored in these
notecards also can be generated by the selection of the "note..report" menu item. One
capability that we eventually would like to implement is to permit a user to specify the scope
of the information that should be contained in this report. For example, a user might want
a report that includes all comments for I'LS files only; he must specify the F FLS as the
scope foi this report generation. Another example would be to ask for a report that

62

includes all comments related to the Software Requirement Specification document. With
the proper permission, a user also might be able to generate a report based on the
information stored in other users' notecard files.

Future Directions

An example of some future advances in software technology that could be
incorporated into this prototype is in the axea of visual specification systems. An innovative
perspective on this subject has been initiated by Dr. Jeanette Wing at Carnegie-
Mellon University who is leading an effort called Miro' [7]. Miro' draws from David Harel's
design abstraction kr)cwn as "statecharts" [8], and centers on the MIT Larch Family of
Languages and theorem prover. The goal of Miro' is to design a visual specification
language applicable to security and concurrency.

With respect tc other verification environments, another notable reference is the
Penelope Verification System of Odyssey Research Associates [9]. Many of the methods
that are being developed and tested by this group are intended for code verification (a.k.a.
program verification) and certainly would integrate well with the Specification Browser
utility.

An enhanced design could incorporate a shared Configuration Management System
(CMS). Modifications are certain to occur with any development effort, and how these
decisions affect the various portions of the Verification Evidence could gracefully, be
handled by including CMS into this tool. By integrating the role of the software
development CMS into the verification process, one could better manage the changes to the
..sys.e.. Synchronizin. the updates to the shared C ,S would require adding q cv-tem of
communication between the two disciplines' view of the CMS interface and would enforce
changes to remain in lock-step with one another.

Conclusion

The Specification Browser tool we propose would be easy to use and to learn. The
leatning curve could realistically be in terms of hours, thereby giving evaluators a genuine
sense of accomplishment and dramatically impacting the pace at which individual
contribution would take place.

We see the browser as a major factor in promoting a professional exchange between
team members and vendors, while providing a less tedious medium for examining the
verification technical matter. Additionally, the Specification Browser will increase the level
of assurance in software systems. As technology advances, one-time burdensome tasks can
turn into enjoyable work, and the mystique and stigma that surrounds the verification
process may vanish. With the advent of well-developed verification environments, we could
begin to see an increase in the pool of those who understand the proofs-thus opening up
this discipline to many others. It is likely that this will have a positive effect on the field of
computer security.

63

BIBLIOGRAPHY

1. Benzel, terry C. V., "Analysis of a Kernel Verification," The MITRE Corporation,
MTR 9213 (Volume 1), Bedford, MA., 1984.

2. "Department of Defense Standard: Department of Defense Trusted Computer
System Evaluation Criteria," DoD 5200.28-STD, Department of Defense,
Washington, DC, December 1985.

3. "Military Standard: Defense System Software Development," DoD-STD-2167A,
Departmont of D,"fense, Washington, DC, 4 June 1985.

4. Scheid, John, and Holtsberg, Steven, 'The Ina Jo Specification Language

Reference Manual," TM-6021/001/04, Unisys Corporation, September 1988.

5. Eggert, P., et al, "FDM User Guide," TM-8486/000/02, Unisys Corporation, 1988.

6. Knuth, Donald E., "Literate Programming," The Computer Journal, 27(2), 1984.

7. Wing, Jeanette M., "Visual Specifications of Software Systems," Carnegie-
Mellon University, Pittsburgh, PA, 1988.

8. Harel, D., Pnueli, A., Schmidt, J. P., and Sherman, R., "On the Formal Semantics
of Statecharts," Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, Ithaca, NY, pp. 54-64, 1987.

0. "Penelrop An A ... VCr...i.ati. Svter," Odysyy Rezech As.jociates, Inc., Press
Release, Ithaca, NY, December 1988.

64

ENGINEERING RESULTS FROM THE Al FORMAL
VERIFICATION PROCESS

Timothy E. Levin
Steven J. Padilla
Roger R. Schell

Gemini Computers, Incorporated
P. 0. Box 222417

Carmel, California 93922

ABSTRACT

The GEMQOS TCB, currently under development, is targeted for the class
Al level of the Trusted Computer System Evaluation Criteria. The for-
mal methodology used to verify the security of the GEMSOS TCB is
reviewed. Specific results from making the formal verification process
an integral part of the engineering of the system are described. These
results are shown to have significantly contributed to the security and
integrity of the GEMSOS TCB. The concrete and definitive contributions
of the formal verification reflected in the GEMSOS design choices are
presented. These contributions are shown to provide more than just a
vagae sense of increased assurance.

OVERVIEW

The GEMSOS TCB under development is targeted for the TCSEC Class Al level. As
part of this effort, Gemini is formally verifying the TOB as specified in the
Trusted Computer System Evaluation Criteria (TCSEC) [TCSC]. This verification
includes the production of a formal security policy model (Model) and a formal
top level specification (FTLS), the demonstration of correspondence between the
FTLS and the TCB source code, and a covert storage channel analysis of the FTLS.

Since the business thrust of Gemini is on building commercial products [SHOCK1],
major attention has been paid to the impact of the formal verification on the
product. The experience has been that the formal work is much more that just an
adjunct to provide evidence for an outside evaluation. Making the formal work an
integral part of the engineering process has enhanced the quality as well as the
security of the product.

Gemini hes chosen the Unisys Corporation's Formal Development Methodology (FDM)
system for v irification and specification sapport. The GFMSOS Model and FTIS are
written in the FDM Ina Jo specification languege [SCHEiD]. The FDi'A Interactive
Theorem Prover (ITP) [SCHORRI is used to prcve (1) the Basic Security Theorem (of
Bell and LePadula) with respect to the policy defined in the constraints and
invariants of the model and (2) that the FTLS io consistent with the hlouel. The
Ina Jo specification of the FTLS is t;c.; basis for both the code correspondence
demonstration and the covert storage channel anal.vsis.

The GEMSOS TCB is partitioned into a kernel layer t-hat implements a reference
monitor for the mandatory access control policy [SCHElU] an•d a non-kernel layer
that onforces the discretionnry accea control policy. Each of these layers

65

enforces a separate security policy and each is verified through a separate Model
and FTLS; the policy enforced at the TOB interface is a combination of the policy
subsets enforced by the two layers [SHOCK2].

Verification of the TCB has taken place concurrently with development of the TCB.
In this strategy, the Model and FTLS are written primarily while the interface
design (B-spec) for the layer is written. Preliminary Model proofs, FTLS proofs,
and covert channel analysis are performed during development (C-spec and coding),
while code correspondence, covert channel measurements and final proofs are per-
fo med after completion of TOE code.

As this paper is being written, the formal verification of a pre-evaluation ver-
sion of the GEMSOS kernel has been completed in all phases. The specifications
of the Model and FTLS for the non-kernel TCB are in progress.

The interaction of the engineering and formal verification efforts has been
encouraging. We have seen positive feedback involving all areas of the formal
process through all phases of the development process. This feedback has been
effective in both directions:

1) it has allowed the verification work to remain accurate while progressing
concurrently with engineering,

2) it has provided formulative and corrective guidance to the TCB design and
implementation.

It is this second direction of input that is the focus of this paper, i.e., how
the formal verification process has contributed to the security and correctness
of the TCB design and implementation.

FORMUL METHODOLOGY DESCRIPTION

The goal of TCB verification is to provide assurance that a TOB implements a
stated security policy. To attain this goal, a chain of formal and informal evi-
dence is produced which is composed of statements of TOB functionality, each at a
different level of abstraction, along with assertions that each statement is
valid with respect to the next most abstract statement. The sequence of func-
tional statements are the security policy (Policy), the formal secarity policy
model (Model), the top level. specification (Specification), the TOB source code
(Source), and the TCB itself (binary and hardware). The result of the chain of
evidence is an overall transitive assertion that the TCB implements the Policy.
This chain of evidence is illustrated in Figure 1.

The Model is the linchpin of the argument. It is not merely a formal statement
of the Policy, nor just a precise mathematical statement of the security func-
tions of the TCB. Its critical characteristic is that it is a model of a refer-
ence monitor. This implies that by demonstrating just the TCB is a valid
interpretation of ths Model, it is shown that the entire computer system is
secure. In particular, this implies that the (untrusted) hardware and software
that is outside the TCB, and thus not modelec, cannot result in access to infor-
mation in violation of the Policy, since the chain of evidence was produced
without dependence on these untrusted components.

66

1. Policy

Assertion I that Model implements Policy

Proof -- > 2. Model

Assertion that Specification implements Model

C.Channel -- > I 3. Specification I
Analysis (CCA) - _

Assertion I that Source implements Specification

4. Source J
Assertion that TCB functions like Source

Testing -- > 5. TCB

Figure 1. Chain of Verification Evidence

TCSEC Requirements

For the verification of a Class AI system, the TGSEC requires (1), the above-
mentioned chain of evidence including a "formal" top level specification (FTLS),
(2), a set of empirical validations of the TCB functional statements, and (3), a
set of descriptive specifications.

The requirements for the chain of evidence consist of functional statements one
through five (from figure 1) along with connecting validation assertions prepared
using specific techniques. The requirement for the Model-to-Policy assertion is
satisfied by an informal discussion. The requirement for the Specification-to-
Model assertion is satisfied by a correspondence demonstration using a combina-
tion of informal and formal techniques. The requirement for the Source-to-
Specification assertion is satisfied by an informal (code-corresponCince) demons-
tration. The TCB-to-sourcu assertion (i.e., compiler and hardware validation) is
considered beyond the "state of the art" and is not required by the TCSEC (except
indirectly via testing).

The required empirical statement validations (see Figure 1) are a proof that the
Model is consistent with its security assumptions (axioms), a covert channel
analysis of the FTLS aud the TCB, a direct testing of the TCB interface, and a

67

testing of the TCB covert channels.

The descriptive (informal) requirements of Class Al verification consist of a
descriptive top level specification (DTLS), descriptions of various aspects of

TCB security, and descriptions of how the DTLS relates to the Model and the TCB.

In this discussion, the chain of evidence between the Model and the TCB source
code, and the corresponding empirical validations, are considered to be the for-
mal verification of the TCB.

GEMSOS Formal Verification Components

The GEMSOS Model and FTLS are specified in the FDM Ina Jo language. The FDM sys-
tem allows specifications to be related in "levels." Ina Jo includes a facility
for formally mapping the elements of one level to the elements of the next level.
The specification of a given level can then be shown to support the properties
(e.g., security) of the level above it. The uppermost level is used to state the
security criteria for the system. Lower layers are usually written at a less
abstract level than the upper layers and are used to provide concrete functional
detail about the TCB interface.

Model and Proof The GEMSOS Formal Security Policy Model is written as the
topmost Ina Jo level, with the FTLS the next level. The Model is a mathematical
statement of the GEMSOS access control policy. The MAC portion of the model
[LEVINI] states the mandatory access control policy and the DAC portion [LEVIN2]
states the discretionary access control policy.

The Model is "proven" to uphold the policy using the FDM Interactive Theorem
Prover (ITP). The Ina Jo processor produces theorems based on input specifica-
tions. The theorems are used as inputs to the ITI'. The theorems state that the
model rules (transforms) preserve the securiby conditions defined in the model.
The ITP negates each theorem, providing groundwork for a proof by contradiction.
The proof of the Model thus shows that the Model rules uphold the TCO security
policy, viz., that Model objects are only accessed according to policy. This is
done for both the MAC and DAC portions of the Model.

The Ina Jo constants, variables and criterion of the Model define the GEMSOS
interpretation of the Bell and LaPadula security model [BLPI. Ina Jo transforms
are used to express the Model "rules."

FTLS and Proof The GEMSOS FTLS for each of the two TOB subsots is written
to reflect exceptions, error messages and effects visible at the interface(s) of
the GOMSOS TCO. The GEMSOS kernel FTLS specifies the kernel interface (reflect-
ing the MAC Policy) and the GEMSOS TCB FTLS specifies the TOB interface (reflect-
ing the DAC Policy). The ITP is used to prove that the FTLS upholls the security
properties of the Model level.

At the FTLS level, there is a transform corresponding to each call plus two
hardware transforms which abstractly represent the hardware "read" and "write"
)perations. Each of these TCB calls is shown to map to a rule of the model.
Each FTLS level transform is structured as a large conditional followed by a no-
change statement. Within each conditional, exceptions are specified in the order
of occurrence in the corresponding call; the last case of the conditional con-
tains the primary change satements of the transform. The ordering of exceptions

68

is significant during covert storage channel analysis.

Code Correspondence The code correspondence between the FTLS and the TCB
source code shows that the code is a valid interpretation of the FTLS, and there-
fore upholds the security proporties of the FTLS. The GEMSOS code correspondence
report consists of three parts:

1. A description of the correspondence methodology

2. An accounting of the non-correlated source code

3. A map between the elements of the FTLS and the TCB code

The TCSEC requirements suggest two aspects of correspondence: the FTLS accurately
describes (viz., corresponds to) the TOB and the TCB is consistent with (viz., a
valid interpretation of) the more abstract FTLS. A specific objective of the
consistency requirement is to ensure that all security relevant functions of the
TCB are represented in the FTLS. Thus, any deliberate or accidental "trap door"
in the code is detected and identified.

Covert Storage Channel Analysis Covert storage channel analysis of the
FTLS shows that non-data infor.aation flows do not violate the security policy.
All information flow into and out of objects mapped to the Model (i.e., data
flow) is accounted for in the FTLS. In the proof of the FTLS data flow is shown
to conform to the security policy. Non-data information flows typically involve

theribubes of t ystem ado raothr than data itself. These are typi-
cally transmitted outside of the TCB through returned error codes.

The analysis[LEVIN3] utilizes the shared resource matrix (Sfl) methodology of
KemmererrKfAMER].

ENGINEERING RESULTS

Feedback to the development process has occurred in both the kernel and non-
kernel areas of the TCB. Below, several specific cases in each area showing how
this feedback has been beneficial are discussed.

TCB Kernel

In the kernel, primary input to the development process occurred as the result of
code correspondence, Model and FTLS proofs, and covert channel analysis.

Code correspondence Code correspondence of the kernel revealed two signi-
ficant instances where the implementation didn't match the specification.

In the process create call., a series of segments are passed to the child process
as parameters. Other parameters define the modes and privilege levels of the seg-
ments which will be "made known" (i.e., made accessible) in the child's address
space when it starts execution outside of the kernel. In the implementation, the
segments were being made known for the child with the privilege level that the
parent had, rather than the privilege specified in the parameters. This problem
was discovered through code correspondence of the segment manager layer of the
kernel. It can be assumed that the error may also have been caught during the
functional testing of the kernel. The problem was subsequently fixed through

69

implementation of an Engineering Change Proposal.

The second discrepancy involved the implementation of current access. The Bell
and LaPadula [BLP] notion of current access to an object is defined in the FTLS
as a subject having access to a valid segment selector for the object in the
local descriptor table (LDT). The makeknown segment kernel call is designed to
put a segment into a subject's current access set. However, during code
correspondence it was discovered that the LDT was not actually set during makek-
nown, but rather was set during the swapin segment kernel call that loads the
segment into RAM. This difference was known to the engineering staff, but had
been overlooked as changes were made to the kernel. It was subsequently fixed
through implementation of an Engineering Change Proposal.

Proofs The proofs of the Model and FTLS are designed specifically to
demonstrate that the security policy of the TOB is upheld by the TOB operations.
During the proofs, several overt security flaws (as opposed to covert channels)
were discovered in the kernel.

In the GEMSOS TCO, a subject is a process, ring pair. Each process is made up,
then, of a subject in each of eight rings. In addition to activating or deac-
tivating subjects, the activatesubject kernel call can be used to change the
label range for one or more subjects of a process. (Each subject has a
"readclass" and a "write-class" label [DENNiN] that form a range where
read class always dominates write-class. For untrusted subjects, that range is
nil.T The label range of each subject of a process must enclose the range of all
oC the subjects of: iess privilege in that process (see Figure 2). In the event
that this enclosure is not correct as the result of a change to a subject's
range, the kernel MOVES the less privileged subject's labels so that they are
properly enclosed.

Ring 3 Subject Range READ WRITE
Ring 2 Subject Range READ WRITE
Ring 1 Subject Range READ WRITE

(labels to the left dominate labels to the right)
(subject n is more privileged than subject n+1)

Figure 2. Subjects of a Process with Enclosing Label Ranges

The label range enclosure is required due to the use of hardware descriptors to
enforce current access and the implementation of those descriptors in the
iAPX286. In the iAPX286 a task (which maps to an active subject at the kernel
interface) is allowed the use of any descriptor which has a privilege level at or
above its own privilege level (e.g., a task in privilege level 1 can use a
descriptor in privilege level 3 to access a segment). Thus, the Ring 1 Subject
in Figure 2 can access all the segments that are accessible to the Ring 2 subject
in Figure 2. If the Ring 2 subject had a range which was greater than (or incom-
parable with) the range of the Ring 1 subject, then the labels of the Ring 1 sub-
ject might not permit access (from a security policy point of view) to some
object that the Ring 2 subject could access. If the Ring 2 subject were to gain
access to such an object then (due to the descriptor mechanism) the Ring 1 sub-
ject would also gain access to that object and a violation of policy would occur.

70

During the proof of the FTLS, it was discovered that an outer ring subject could
keep a label range that was not enclosed by the new range of the more privileged
subjects beneath it. This was due to inverted logic in a dominance check that
didn't MOVE the outer ring labels in the case where they were incomparable with
the new Inner ring labels. The InaJo specification of the incorrect design is:

dominates (ring3readclass, new-ring2read-class)
then move (ring_3_read-class)

and
dominates (new ring_2_write_class, ring_3_writeclass)

then move (ring3_write class)

This problem was subsequently fixed through an Engineering Change Proprosal to
implement the following ýnaJo specification:

,dominates (new_ring 2_readclass, ring_3_readcclass)
then move (ring 3read class)

and
,dominates (ring 3 write clasa. new ring 2_writfo class)

then move Tring3 writeclas')-

In another iteration through the proof of the activate_subject call, it wxas
discovered that the updated "MOVE"! upr••tor d•i not onsuro t1lat the outer ring
subject's new label range was correct, (i~e., the new read class did not dominate
the new write class) even though the inner ring subject's new label range was
correct. This problem was subsequently fixed through implementation of an
Engineering Change Proposal to the MOVE operator.

Covert Channel Covert storage channel analysis of the GEMSOS kernel
revealed two unexpected information flows. Both problems occurred in the
dismount volume call. Dismount volume is used to temporarily remove a set of
segments from the segment structure. When using GEMSOS, segments can only be
made known from a mounted volume.

The first problem occurred because the dismount-volume call returns an error if
any segments on the volume are madeknown by any subject. Although the security
checks (made during dismount) ensured that the calling subject could both read
and modify the segments on the volume, the checks did not ersure that the calling
subject had the proper label range to read the LDTs for the segments in all
processes. (It was possible for a volume which contained only unclassified seg-
ments to be dismounted by an unclassified subject. However, a top secret subject
could makeknown one of the segments on the volume and thus cause the dismount
call to fail due to the fact that the top secret subject had a valid LDT for a
segment on the unclassified volume.) This problem was subsequentlj fixed through
implementation of an Engineering Change Proposal that required, for dismount,
that the calling subject's labels (i.e., read class and write class) must range
from volume low to system high.

The second covert storage channel found in dismount volume was less dramatic and
involved the order of exception chezking. Several conditions about the volume
were checked before the calling subject's labels were compared to the volume

71

labels. This meant that errors about the volume could be reported to the calling
subject, even though that subject might not have the proper authority to view
that information. This problem is beinz fixed through implementation of an
Engineering Change Proposal that requires the calling subject's label range to be
checked before returning arrors relative to the volume condition.

Non-Kernel TCB

In the verification of the non-kernel T03, primary input to the development pro-
cess has occurred while in Ghe conceptual phase of writing the Model and FTLS,
and in providing a formal mapping between the Model and the FTLS. A •.jor bene-
fit has been that the designers are required to use clean abstractions that can
be readily represented in the FTLS. This has forced the developers to avoid
designs that would be difficult to evaluate (and understand). It is difficult to
identify the various poor designs that wexe avoided, but the following examples
of design analysis will illustrate the vL.lue of the formal methods to the design
process.

One example can be seen in the process create call to the TCB. This call creates
a child process and provides the child current access (i.e., that relationship
represented oy the Bell and Lai~adula "b" set) to a set of objects. In producing
the Model and FTLS of the process create call, it was realized that ths permis-
sion (i.e., that relationship represented by the Bell and LaPadula "M" matrix) to
the objects passed to the child was not oeing checked. The problem is, while the
parent mast have current a.ccess to the objects passed, this does not guarantee
that it haq permisqion to them at the time that it -ps..s them to the c-hild (In -
GLMSUS, permission in asserted each time current access,ý is gained, but not during
access.) Thus, current access waxs being propagated aeroqs process boundaries,
where perwissions for the child process had possibly been revoked. This problem
was fixed through a change to the functional specification (i.e., B-spec) such
that the TCO is now required To check the ch~ild process'o permissions to the
objects madeknown for it.

The work on the FTLS resulted in a change to t±:e design of the ACL checking func-
tion. Thr p level design was des]cribed in terms of a bit manipulation algorithm
(i.e., , c•ud XORis). In Urying to describe thia do:sign formally, it was decided
that)qrer, more umderstandablo design should be pursued. As a result, an
alt. sign utilizing PASCAL sets was adopted that was not only much
eas r.Itand and specify, but was also much sianlr and more efficient to
impl. .

Another problem was discovered in mappiug the FTLS to the l4odel. It was realized
that the named objects of the DAC Model were not being uniformly treated as
objects at the TCB interface. Named objects are those objects to which DAG is
applied. The nsmed ob:,jects of the TOB ar•c discretionary accuss control nodes
(dacls) and multi-segments (msegs). Segments are not named objects at the TOB
interface, although they make up po.Jons of msegs and can be made known indivi-
dually. The TOE interface calls did not providu an operation to create or makek-
nown mvegs. Rather, this was done by implication a:, the result of creating or
making-knuwn the mseg root segment (msags are Pade up of trees of segments). It
was decided that the interface would present a uleaner abstraction of objects if
there were explicit calls to create and makeknown the objects (i.e.. msse). The
create mseg and makeknown mseg calls were added to the DTLS.

72

TLe Model and FTLS also allowed us to focus on the policy (DAC) supported by the
non-kernel TCB. For example, the modes of access granted to any given segment (a
part of an mseg) is of no interest to the TCB after the initial check is made to
see that the modes are a subset of those granted when the mseg was made known.
This per-segment information was originally being maintained in the TOB; however,
once the checks are complete and a descriptor is created for the segment, subse-
quent access to tne seguent is controlled directly by the hardware. The kernel,
on the other hand, maintains tnis information and uses it in subsequent calls
such as mount, dismount, and makeknown where the individual segment will be used
in naming other segments. Since the DAC policy does not require this information
(i.e., the segment access modes) to be maintained, it was removed from the DTLS,
simplifying both the specification and the implementation.

CONCLUSION

Formal verification of the GEISOS TCO has helped significantly in discovering
conceptual and implementation errors that may have otherwise been overlooked or
carried forward. Formal verification has included the production of the formal
security policy model and the formal top level specification, specification-to-
model mapping, code correspondence of the FTLS and covert storage channel
analysis of the FTLS.

An important contribution of the formal verification is the high confidence that
non-secure information flows will be detected in the desijn. Errors in the ini-
tial TOB implementation have been discovered in all phases of formal verifica-
tion. These discoveries and their subsequent corrections have been instrumental
in ensaring the security and integrity of the G&E.60OS TCE

Of perhaps even greater importance is the somewhat subtle but pervasiv3 impact on
the designers of requiring a design that can be easily specified in an FTLS that
must be mapped to the implementation. By making formal verification an integral
part of the engineering process, the set of design alternatives that naturally
emerge are those that are easily evaluated. The practical experience in a com-
mercial product development strongly supports the conclusion that there slhould be
significantly higher confidence in the security of a system developed with formal
methods (viz., ,ass Al) than a comparable system (viz., Class D)) developed
without them.

73

REFERENCES

[BLP] Bell, D.E. and LaPadula, L.J. , "Computer Security Model: Unified Expo-
sition and Multics Interpretation," Tech. report ESC-TR-75-306, MTH--299'7
Rev.1, The Mitre Corporation, Bedford, Mass., March 1976

[DENNIN] Denning, D.E., Lunt, T.F., Schell, R.R., Heckman, A., and Shockley,
W.R., Secure Distributed Data Views (SeaView); The SeaView Formal Secu-
rity Policy Model. Computer Science Laboratory, SRI International,
July, 1987.

[KffivdER] Richard A. Kemmerer, "A Practical Approach to Identifying Storage and
Timing Channels," IEEE Report CH1753-3/82/0000/066, 1982.

[LEVINI1 Levin, T., Padilla, S., "Formal Security Policy Model for the G4MSOS
Kernel," February 1989, Gemini Computers, Inc., Technical Report GSC-
89-03-01.

[LEVIN2] Levin, T., Padilla, S. and Irvine, C., "A Formal Model for UNIX Setuid"
in Proceedings of the 1989 IEEE Symposium on Security and Privacy, May
3-5, 1989, Oakland CA., pp. 73-83.

[LEVIN3] Levin, T., Padilla, S., "Covert Storage Channel Analysis of the GEMSOS
Kernel," 1iarch 1988, Gemini Computers, Inc., Technical Report 30I-88-
09-01.

[SCHEID] Scheid,J., Anderson, S., Martin, R., and iHoltzberg, S., "The Ina Jo
Specification Language Reference Manual--Release 1." TM 6021/001/02.
System Development Corporation, Santa Monica, Ca., 1986.

[SCHELL] Schell, R.R., Tao, T.F., and Heckman., M, "Designing the GKMSOS Security
Kernel for Security and Performance", in Proc. Eighth National Computer
Security Conference, Gaithersberg, MD, October 1985, pp. 108-119.

[SCHOdR] Schorre,V. and Stein, J., "The Interactive Theorem Prover User Manual,"'
TM 6889/0OO/05, System Development Corporation, Santa Monica, Ca., Sep-
tember 1984..

[SHOCK1] Shockley, W.R., Tao, T.F., and Thompson, M.F., "An Overview of the GEM-
SOS Class Al Technology and Application Experience", in Proc. 11th
National Computer Security Conference, 17-20 October, 1986, Baltimore,
MD, pp. 238-245.

[SHOCK2] Shockley, W.R. and Schell, IU.R., "TCB Subsets for incremuntal Evalua--
tion", in Proc. 3rd Aerospace Computer Security Conference, 1987, Ameri-
can Institute of Aeronautics and Astronautics, Washington, D.C.

[TCSC] Department of Defense Trusted Computer System Evaluation Criteria, DOD
5200.2S-&TD, December 1985.

74

GUIDELINES FOR FORMAL VERIFICATION SYSTEMS:
OVERVIEW AND RATIONALE

Monica McGill Lu
National Computer Security Center

9800 Savage Road
Fort George G. Meade, MD 20755-6000

Barbara A. Mayer
Trusted Information Systems, Inc.
3060 Washington Road (Rt. 97)

Glenwood, MD 21733

ABSTRAI.

The Guidelines for Formal Verification Systems documents
the procedures for NCSC endorsement of verification systems.
This paper describes the history and current status of the
Guidelines, the endorsement process, the evaluation approach,
the major qualificaticns of and the possible future directions for
verification systems. The purpose of this paper is to inform veri-
fication tool and trusted system deve.lope.- s of the current en-
dorsement process, the rationale behind it, and how it may af-
fect the verification community.

INTRUD11rU'

The National Computer Security Center (NCSC) recntndy published a guideline to be used in
evaluating formal verification systems for possible plincernent onto the Endorsed Tools List
(ETL). This guideline, Guidelines for Formal Verification S)ystems (the Guideline), is the
culmination of several levels of effort.

This paper focuses on the rationale behind the Guideline and how it could affect the develop-
ers of formal verification systems who are interested in having their systems evaluated for
endorsement. A history of the development of the Guidefinc is given, followed by an over-
view. The overview describes each of its major sections, including the evaluation process,
the major qualifications to be evaluated, and possible future qualii icationw for verification sys-
tems.

75

BA`KGROUND

The Trusted Computer System Evaluation Criteria (TCSEC), DoD 5200.28-STD [1], and the
Trusted Network Interpretation of the TCSEC (TN1) [3] are the criteria used for evaluating
security controls built into Automated Information Systems anid network systems, respec-
tively. The TCSEC and TNI classify levels of trust for computer and network systems by
defining divisions and classes within divisions. Currently, the class providing the most trust,
Al, requires formal design specification and verification. As stated in the Design Specifica-
tion and Verification requirement in the TCSEC and TNT, "...verification evidence shall be
consistent with that provided within the state-of-the-art of the particular Computer Security
Center-endorsed formal specification and verification system used."

The earliest notion of what it meant fo" a verification system to be "NCSC-endorsed" was
rather loose. T'he authors of the TCSEC wanted to emphasize that evaluators of trusted sys-
tems are responsible for evaluating verification evidence, but are not responsible for evaluat-
ing the basis for the evidence. Evaluators are not responsible for having to learn and under-
stand novel, unfamiliar, or untried verification systems in order to evaluate the verification
evidence.

"The authors also wanted to restrain the proliferation of clones of existing verification sys-
tems. Ai "NCSC-endorsefd" verification system is to b. unprecedented and innovative. The
Computer Security Center Pr.oduc. Evaluation Program documentation states,

"[ain Endorsed Tools List [ETL] is maintained by the CSC [Computer
Security Center]. The ET'L specifies the tools and versions that are currently
supported. The current set of CSC-endorsed verification tools may expand or
contract as the need arises. A compelling reason wo ld have to exist to
justify the addition of a verification tool to the eridors,•d tools list -- the
proposed tool would have to offer some significant feature not provided by the
curert set of endorsed tools." [2]

The endorsement process was to be conducted via a social process. A verification system
would be endorsed as a result of usage, supportability, and acceptance by the verification
community. At that time, the endorsed verification systems included the Formal
Developmenit Methodology (FDM), the Gypsy Verification Environment (GVE), and the
flierarchical Development Methodology (HDM). It eventually became clear that, in order to
implement a-i effective program, a more rigorous defimition of the endorsement process was
needed.

The NCSC established a Verification Committee in June, 1986, to enact policy decisions re-
garding the endorsed tools. The Committee consists of the NCSC Deputy Director (who
serves as its chai-person), NCSC Chief Scientist, representatives from the NCSC's Office of
Research and Development and Office of Computer Security Evaluations, Publications, and

76

Support. The Committee is responsible for adding and deleting tools from the ETL, as well
as making policy decisions regarding the NCSC's verification research and support programs.

In conjunction with the 1987 IEEE Symposium on Security and Privacy, NCSC representa-
fives held a Birds of a Feather session to present the first attempt at "factors" for endorse-
ment. Rather than discussing the factors, the meeting focused on the existence of an ETL.
A few individuals opposed the notion of an ETL and expressed the concern that rating or
ranking verification systems, which are largely research tools lacking production-quality fea-
tures, would not be possible.

In concert with these efforts, the Committee directed the Publications Division of the NCSC
in 1988 to complete and publish the Endorsed Tools List and the Guidelines for Formal Verifi-
cation Systems. The first publication of the ETL was in January 1989.[4] The Guideline un-
derwent three extensive reviews. The final draft was reviewed by over forty individuals in
the verification community. After incorporation of the comments on the final draft, the Guide-
line was approved for publication by the NCSC Director in April 1989.[5]

OVERVIEW OF THE GUIDELINE

The Guideline has five major sections. The first describes the evaluation and endorsement
process. The second and third define The technical and support requirements, respectiveiy.
The fourth contains a list of possible future directions, while the final section consists of a
glossary of terms.

The Guideline defines requirements that can and should exist in current vetification technolo-
gy for production-quality systems. A production-quality verification system is defined as
one that is sound, user friendly, efficient, robust, well-documented, maintainable, developed
with good software engineering techniques, and available on a variety of hardware.[5] The
Guideline addresses only verification systems that provide automated support, although
there are manual methodologies for performing formal specification and verification.

Evaluation Approach

The verification system developers play a crucial role in the evaluation process. Developers
need to be available to answer questions, provide training, and meet with the evaluation
team to discuss outstanding issues. Beyond support, their degree of participation depends
on which one of the types of evaluations is being performed.

The types of evaluation processes are:

"• evaluation of new verification systems being considered for addition onto the ETL,
"• evaluation of new versions of systems already on the ETL for addition onto the ETL

(reevaluation for endorsement), and
"• reevaluation of systems on the ETL being considered for removal from the ETL

(reevaluation for removal).

"77

One of two types of reports is issued at the end of the evaluation. The type of report issued
depends on the type of evaluation performed. Each report fully documents the evaluation
team's findings. Upon completion of the evaluation, these documents are available to both
the developers and zhe users.

The ETL is updatcd when a new system or version of a system is added or a system is re-
moved, If a new version of a verification system that already exists on the ETL is endorsed,
the new version is added to the ETL and the old version is archived ais a previously endorsed
version.

.Eywhigtion of' a New System: A new system is considered for evaluation if it provides
some significant feature or improvement that is not available in any of the currently endorsed
tools. Upon determination that this condition is met, the evaluation team (assigned by the
Verification Committee Chairperson) analyzes the verification system, concentrating on the
qualifications sections (sections 3 and 4) of the Guideline. Studies or prior evaluations per-
formed on the verification system, as well as any history of use, shall also be considered
when evaluating the verification system.

Upon completion of the evaluation, a TFAR is written by the evaluation team addressing each

of the qualifications discussed in the Guideline. The TAR is presented to the Verilication
Committee, and the Committee Chairperson makes the final decision of endorsement based
on the Committee's recommendation. If the system is endorsed, the ETL is revised and
issued to include the newly endorsed system.

Reevaluation for Endorsement: A reevaluation for endorsement may be warTanted after
significant amounts of change or after enhancements to a currently endorsed verification sys.
tem have been made. The intent of this type of reevaluation is to permit improvements to
endorsed versions and advocate state-of-the-art technology on the ETL while maintaining
assurance of the original endorsed version. The developer is responsible for submitting evi-
dence that the improvements to the system have not affected the soundness or integrity ef
the system. This evidence is summarized in the form of a VR. The VR assures that only
listed changes have been made and unchanged code is not affected by the changes. Addition-
ally, the VR includes sufficient commentary to allow an understanding of every change made
to the verification system as well as the implications of the changes.

The evaluation team is responsible for the final evaluation of the system. The evaluation
team's primary responsibilities are to review the VR thoroughly and test the functionality of
the changes. Upon completion of their analysis and discussion of their findings with the Corn-
mittee, the Committee Chairperson approves or disapproves endorsement based on their rec-
ommendation.

Reevaluation for Removal: Once a verification system is endorsed, it shall normally
remain on the ETL as long as it is supported and is not replaced by another system.

78

Re~as&,ns which inay warrant removal of a verification sysie, froin the ETll are too many
bugs, no users, elinination of support and maintenance, anud unsoundonoSs. ilm veification
community (including the Commnittee) may question the endors~ement of a verification system
on the ElL. Upon bringing this to the attention of the Committe, an eva!unation teanm begins
a reevaluation of the system, focusing on the area in question.

Upon comrpletion of the reevaluation for removal,., TAR is written by the evaluation teani ad-
dres-,.sing cach of the concerns that instigated the reevaluation for removal. The TAR is pre.
sented to the. Verification Coimmittee, and the Commnittee Chairperson makes the final deci-
sion on removal based on the Committee's recommendation. If the system is to be removed,
the ETh. is revised adissued to exclude the removed system.

Beta Versionk: The version of the ve~ification system that bas bee-n endorsed may riot bt
the newe~st and most capable version. These intermediate versions are not cadorsed and arc,
known as, "beta" Tool versions. The goal of beta versions is to stabillizte the verification sys-
tem- before. its submiission fRx evaluation. Beta versions are useful in helping systeni devcl-
opers uncover bugs before. submitting the verification systemv for evaluation.

U sers should not assume that any particular beta \vetsiofl will be evaiuated or enkiorsed by

tion syste.m, specifications and proof evidence shall be submitted to the NCSC which can be
completely checked. without significant modification using an endorsed tool as stated in the
Al requirement. This can be accomplished by using either the currently endorsed v'ersion of
a verification system or a previously endorsed version that was agreed upon by the tmusted
systemi developer and their evaluation team. Submitted specifications and proof tvidence
which are not compatible with the endorsed or agreed upon version of the tool may require
substantial modification by the trusted system developer.

Main Categories of F~acturs

Pte technical factors for endorsed verification systems are. divided into two major categories:

* methodology and systern specification, and
* implementation and other support factors.

The methodology and systcxn specification section c!overs the. underlying principles as well
as specific features, assurances, and docurneriiiion rn.q-airewents. Other support factors in-
clude user intlerface, hardware zand maintenanice siupport, configuration manage mernt, -icsting,
and doci aientation requirements for the implementationm factors. Thie Ciuideline, was divided
into these two main categories to address these separatc issues.

79

M.h,%.1v •n#i " Sncification: The Guideline divides verification systems into a
minimai set of components that are necessary to perform design verification. These compo-
nent we;e chosen since they are found i'a current verification systems and include:

- a mathematical specification language that allows the user to express correctless
conditions,

* a specification processor &.at interprets the specification and generates conjectures
interpretable by the reasoning mechanism, and

- a reasoning mechanism that interprets the conjectures generated by the processor
and checks the proof or proves that the correctness conditions are satisfied.

The me.thodology or underlyig principles and rules of organization of the verification system
provide a sound, logical foundation for the verification system. For this reason, the require-
ment for a methodology is a necessatry but not sufficient condition for endorsement.

The fk tures, assurances, and documentation requirements extend across each of the compo-
nienis of the verification system. The requirements dictate that each component provide suffi-
c?2nw functionality and assurance, both technically and in the form of documentation, to dem-
onstrate that it works correctly and collectively. These factors were chosen because the
state-of-the-art verification systems have the capability to implement each of these factors.

For exam~ple, the specification iaiiguage should be sufficiently expressive to support the
rnehodology of the verification system. It also should include precisely defined and docu-
nented syntax and semantics. Correctness conditions need to be expressible.

The specification processing component should be able to accept as input the constructs of
the specification language and should be able to convert the specification into a form or lan-
guage that is acceptable to the reasoning mechanism. Conjectures derived from the correct-
Yess conditions should also be generated.

Current verification systems lag behind the state-of-the-an in theorem proving. The factors
for the reasoning mechanisrmis were specifically chosen to elevate their functionality to meet
the state-of-the-an. The reasoning mechanism should be capable of processing the conjec-
tures produced by other components. Additionally, it should provide a means of document-
ing, reprocessing, reusing, and validating proofs.

I•wJ1gnimjen i t•2•A th_ at r _& !"ot Factors: Support factors are measures of usefulness,
understandability, and maintainability of die verification system. For example, the user inter-
face should be user-friendly, providing understandable input and informative output. The
haniwa~re that the verification system runs on should not be obscure or obsolete and the pro-
cessing efficiency should be reasonable.

80

In order for a verification system to be adequately maintained, ongoing support should be
available. Additionally, comprehensive testing should be performned and supporting documnen-
tation should be available

The most extensive factor in this category is configuration management. A configuration
management plan, along with the supporting procedures and tools, is essential to demion-
strate that additions, deletions, or changes made to the verification system do not jeopardize
its soundiness or its ability to satisfy any of the requirements. Configuration management al-
so ensures that changes made to the verification system takes place in an identifiable and
controlled ervironment. The core of this requirement was derived from A Guide to Under-
standing Configuration Mana gement in Trusted Systemns.161

Future Directions and Beyond AlI

During the review process of the draft Guideline, a few individuals iremarked that the future
directions section was not appropriate for the Guideline and should be removed. This section
was added and kept as part of the Guide-line for several reason~s. First, the section demon-
strates that the NCSC is looking at verification systems for levels of assurance "beyond
Al V. Second, many of the reviewers commented on the lack of concern with code verification
in the Guiideline. The primary goal of the document is for design verification, so code verif ica-
tion is addressed in the future directions section. Third, the NCSC encourages thc research
and development of new verification systems, whether or not they are targeted for beyond
Al.

This section is not intended to limit areas of future research. The list merely contains possi-
bil;i~ies for future research -- areas which researchers may choose to investigate, such as
code v'erification, hardware verification, high-level debugging, and concurrency. The NCSC
recognizes that there are many other directions for verification research that are not mnen-
tioned on the list, and strongly encourages these as well.

Glossary of Termis

Although small in size, the glossary required a considerable amount of concentrated effort.
The glossary covers terms used throughout the document in an attempt to assure that the
readers have a common basis for understanding the Guideline. Certain definitions had to be
incorporated, since those definitions appear in the TCSEC (i e., fornial verification, verifica-
tion). Other terms were derived from standard textbook definitions. For those not appearing
in the TCSEC or standard textbooks, definitions had to be created and repeatedly fine-tunled.

81

CONCLUSION

The extensive history involved in the development of the Guideline indicates the amount of
effort that was expended by the NCSC as well as the verification community. From the nu-
merous reviews, the breakdown of the threc types of evaluations evolved. After a
determination of the type of evaluation to take place, the evaluation proceeds with emphasis
on the major qualifications discussed in the Guideline. In addition, the future directions sec-
tion discusses many possibilities that the developers may or may not incorporate into verifi-
cation systems.

The Guideline will be updated to keep it consistent with the state-of-the-art of verification
systems; therefore, the NCSC encourages feedback from the verification community. The
NCSC's efforts in and support of current as well as future verification systems is ongoing.

REFERENCES

[11 National Computer Security Center, Department of Defense Trusted Computer Sysiem
Evaluation Criteria, DoD 5200.28-STD, December 1985.

[2] Department of Defense Computer Security Center, Product Evaluation Program, Au-
gust,1984.

[3] National Computer Security Center, Trusted Network Interpretation of the Trusted Com-
puter System Evaluation Criteria, NCSC-TG-005, 31 July 1987.

[4] National Security Agency, Information Systems Security Products and Services Cata-
logue, Issued Quarterly, January 1989.

[5] National Computer Security Center, Guidelines for Formal Verification Systems, NCSC-
TG-014-89, I April 1989.

[6] National Computer Security Center, A Guide to Understanding Configuration Manage-
ment in Trusted Systems, NCSC-TG-006, March 1988.

82

COMPARING SPECIFICATION PARADIGMS:
GYPSY AND Z

William D. Young
Computational Logic, Inc.

1717 W. 6th Street, Suite 290
Austin, Texas 78703

The application of formal methods to the analysis of computing systems promises to provide higher
and higher levels of assurance as the - ,histication of our tools and techniques increases. But evolution of
the state of the art of formal progran ýialysis is matched by increasing demands upon the technology. In
the security arena advances in program verification methodologies, automated reasoning systems,
specification techniques, and security modeling have been met with continuing reassessment of acceptable
levels of assurance. System developers contemplating certification at the Al level as outlined in the
Trusted Computer Systems Evaluation Criteria [3], for example, can expect that the assurance requirements
will become more rigorous with each year that passes.

Conversely, the desire for enhanced assurance drives the evolution of tools and techniques for
providing it. One way to assure that technology keeps pace with evolving expectations is by continually
re-evaluating our entrenched tools and techniques in relation to possible alternatives. The alternation of
evaluation with informed refinement and selection can incrementally improve the research environment for
all.1 The verification community has been quite willing to compare and contrast various technologies and
syst.m.. [!5,) IA I6, sl]toughit unjinrlp! how much -he-ep remnnripnneo httve IPA fn' eo_'ifit Ahnnope.

One of the most entrenched tools for providing assurance in the security area is the Gypsy
Verification Environment [7] (GVE). The GVE is one of two systems endorsed by the National Computer
Security Center for use in meeung the verification requirements for Al certification. It has been used
extensively in secure system specification and verification projects including the Encrypted Packet
Interface [21], Message Flow Modulator [8., Honeywell SCOMP [5], Honeywell LOCK [1], and ACCAT
Guard [14].

The Z specification language [9,22] evolved within the Programming Research Group at Oxford
University. We are not aware of its use within the sectuity community though it has been used to specify
significant software systems including a subset of the Unix filing system [18], the Computer Aided Visitor
Information and Retrieval System [4], the ICL Data Dictionary [23], and a CICS System at IBM in the
U.K. These examples suggest that Z might provide a viable specification language for secure systems.
One goal of our research was to investigate this suggestion.

We present a comparison of the Gypsy and Z specification languages in the context of a nontrivial
example. Our example is a previous specification of a subsei of the Unix file system functionality [18]2 in
Z and the translation of this specification into Gypsy. We compare and contrast the iwo spccifications. On
the basis of this comparison, certain conclusions are arawn which we hope can suggest refinentents to the
two languages and possibly a direction for future langpage designs which will avoid the pitfalls and
capitalize on the strong points of each.

11his paradigm of scientific promes is often blocked by prejudice for oe agamat oenain rsearch directioms. the personal and

financial investments researehers and user oommuniues have in those directions. and the momentum of ongoing system development
projects.

2We are experts in the use of Gypsy but did not feel confident to write a creditable Z specification. We chose a ptoblem which had
been specified by Z experts to present Z favorably; we wish to make it absolutely dear from the outset thai all of the Z text in this
paper is taken abnost verbatim from 1181. It is included here only to make the cunvvt presentation self-contained.

83

The Two Languages

Gypsy
Gypsy 16]3 is a program description language composed of two strongly intersecting components: a

programming language and a specification language. Some parts of the language are used for
programming, some for specification, and some for both. Among other advantages, this provides a
common framework for expressing specifications and programs and obviates the need for elaborate
mappings from specifications to programs. A potential disadvantage is that it is quite easy in Gypsy to
write specifications which are semnantically quite similar to the implementation.

Gypsy is descended from Pascal [111 and contains features for data abstraction, condition handling,
dynamic memory management, and concurrency. The specification component of the language contains
the full expressive power of the predicate calculus and the ability to write recursive functions.
Specifications may be written as Floyd-Hoare style program annotations, algebraic-style axioms, or state
machine descriptions.

The Gypsy Verification Environment 17] is a collection of software tools which form a development
environment for creating, specifying, maintaining, and verifying Gypsy programs. These tools include a
parser, verification condition generator, interactive proof checker, and algebraic simplifier. Gypsy is fully
described in [6] and a methodology for using the language effectively is documented in [7].

The Z Specification Language
Key to understanding Z is the designers' "conviction that real software can be specified and that

ordinary mathematics is the proper tool" [9]. Z purports to offer a standard mathematical notation which is
"easy for a scientifically trained reader to understand; is rigorous; denotes rich concepts; and is an open
notation. bewcaus you can enlarge it at will" [9].

The basic structuring concept is the schema [24]. A schema is an association of variable declarations
and observations about those variables. An observation merely expresses some relation among variables.
An observation can be viewed as placing a constraint upon any implementation of the specification.
Schemata can be written in either a tabular or linear form; the tabular form seems to be the preferred form.

Consider the following schema for a portion of a specification of a symbol table abstraction [9].

LOOKUP
st, st' : ST
s? • SYM
v1 :VAL

st, - st
s? e dom (st)
VI = st (s?)

The top portion of the schema defines a collection of variables: a variable at which is a mapping from
symbols (SYM) to values (ViL.), an input variable a?, and ..n output variable v! of the indicated types.
The intelligibility of the schema relies heavily upon certain conventions. The primed variable at' is
assumed to be the final value of at; variables suffixed with "?" and "!' are assumed to be for input and
output, respectively.

The bottom portion of the schema is a collection of observations stating relations among the
variables. These are merely predicate calculus expressions involving the variables of the schema and may
involve any of the standard operations of predicate calculus, elementary set theory, or mathematics. A

3We devote somewhnt less attention to the, description ot Gypsy thai to Z since most security researchers have at least a passing

acquaintance with Gypsy.

84

standard notation is defined in [9]. In tile example above, the observations indicate that the ;tate variable is
unchanged by tie LOOKUP opcration. A precondition of the operation is that input symbt l s? is in thie
domain of dte state mapping. The output value v! is the result of accessing the value currcntly associated
with s? in the state. Notice that the specificaiion is highly nonprocedural and places no constaints on the
implementation other than the logicel consequences of the observations.

The top portion may also include the names of other schemata indicating that these are to be included
as subparts of the current schema. Common variables arm shared and the collections of observations arc
conjoined. Inclusion is the simplest operation in a schcma calculus which permits building up complex and
well structured specifications by defining and combining schemata. The schema calculus provides a
notation for expressing complex schemata compactly; the schema operations seem to be. entirely eliminable
in favor of a (possibly quite large) list of variable declarations and observations.

The Unix File System Example

A specification in Z of part of the functionality of the Unix filing system is given in 118]. The system
modeled is UNIX Level 6. Operations covered include nine system calls-read, write, create,
seek, open, close, fstat, link, and unlink-and the commands Is and move. The specification
seems to have been intended as a tutorial example of the use of Z and proceeds by dcfining a series of
progressively more elaborate mechanisms for accessing and manipulating fileq. At each level, additional
complexity is added by defining new schemata from variable declarations, observations and previous
schemata using logic and the schema calculus.

We developed a srl'cification of the same functionality in Gypsy trying to follow as closely as
possible the development style while still constructing a reasonable Gypsy specification. Our approach was
to define a sequence of Gypsy scopes reflecting the added functionality at each step in the development of
,te f.c:ti,. -or example, ,he authors of the Z-spcificationdfine an in.. . merhanim for re-adinc

and storing files considered as byte sequences. The) .hen elaborate this into a mechanism for reading and -

storing files with a level of indirection representing the filing system. To mimic this structure, we first
wrote a Gypsy scope modeling the reading and storing of files as byte sequences. A subsequent scope used
the types and procedures defined there to define othef procedures adding the leviel of indirection. Our goal
was a Gypsy specification which would be as easy as possible to compare to the Z specification. In this
section we illustrate the two specifications by considering the successive elaborations of WRITE operation.

The Basic Types

The Z Version: Types in Z seem to be rather informal; we merely declare, for example, that we want a
type BYTE. We can declare sets, sequences, tuples, bags, relations, mappings, and functions. We can state
whether fanctions are partial or total and (with a lamnbda expression) how they are computed. For our
purposes we need the types

BYTE

FILV =- seq BYTE

We'll also need the naturals, but these are primitive. A constant ZERO of type BYTE is required, but there
seems tc be no need to explicitly define it.

The Gypsy Version: The typing mechanism in Gypsy is more formal and more restrictive. Basic types
such as INTEGER and B,3OLPJ. are available as are the static type compositions arrays and records and
the dynamic type compositions of sets, sequences, and mapping. Gypsy also has buffer types for
communication between concurrent processes. The Gypsy analog of the Z types above is:

85

type BYTE = pending;

type BYTESEQ = sequence of byte;

conat ZERO: byte := pending;

type FILE = byteseq;

The keyword pending in Gypsy is a conceptual place-holder which makes no commitment to the ultimate
implementation.

Defining the natural numbers as a type in Gypsy is awkward. Whereas the integers are unbounded in
Gypsy, there is no satisfactory way to specify an unbounded subset of them. The naturals are characterized
in our specification as the collection of integers between 0 and some unspecified constant. The lemma
(axiom) MAX•NATPOSITIVE guarantees that this range is nonempty.

conat MAXNAT : iateger := pending;

lenma MAX NAT POSITIVE =

MAXNAT > 0;

type NATURAL = integer [0..MAX_NAT];

This characterization of the naturals in Gypsy is clumsy. It is likely that for any language which is
mechanically processed (as Gypsy is) there will be interesting concepts which cannot be formalized
conveniently within a fixed notational framework. A language such as Z wiich is more freely extensible
seems to have a distinct advantage in this regard. On the other hand, many would argue that the desire to
include too much in a formal language is exactly the cause of complexity and inelegance in languages such
as PLfI and ADA. [10]

Writing Files

The Z Version: The operation of writing a file is defined in the Z specification by the schema:

_ writeFILE
file, fie' • FILE
oflset? : N
data? : seq BYTE

file' = zerooffset? G file @ (data?Opredoffset?)

where zerok = (Xn:N I 15n!5k * ZERO)

The uninitiated may find this specification rather daunting. Actually, it is quite simple once the meaning of
the operators is understood.

zerok is a sequence of length k all of whose bytes are ZERO. (D is the function overriding operator,
fG)g (x) equals g (x) unless g (x) is undefined, in which case it equals f (x). pred is the predecessor
function. The specification states that to determine the value of any byte in the written file one must look
first at the wiitten data, then at the previous contents of the file, and finally to ZERO.

Notice again the very nonprocedural nature of the specification. There is no prescription how the
final value of file is obtained, only of what the final value must be.

The Gypsy Versio.n: It is possible in Gypsy to state the specification corresponding to the Z schema
writeFILF, in a very abstract fashion essentially as a functional relationship between the input and output
values of the file. This might be expressed as:

86

functicn WRITE TOSEQUENCE (in-file : file;
offset : natural;

dana . byte_seq) : byteseq =
begin

exit (result =
if (offset le size (infile))

then infile [i..offset-1] 6 data
elme in file @ nzeros ([offset - size (in-file)] + 1)

@ data
fi);

end; (write-to-sequence)

function NZEROS (n: integer): byteseq w

begin
exit (result

= if n le 0
theft null (byte_seq)
alse zero :> nzeros (n - 1)

fi);
pending;

end; {n_zeros)

The Gypsy version is somewhat more verbose, but quite similar in spirit to the Z version. Preference and
experience determines which is more daunting. Notice the need in Gypsy to declare the auxiliary function
NZEROS comparable to the Z construct zero .

The Gypsy function ..rTE_- TO EQU',TCE define.s the de-sired innutl/outut relation of the WRITE
operation, but it is not the operation itself. It is natmral in Gypsy to characterize the operaCon itself as a
function or procedure and use the specification function WRITETOSZQUENCE to state a constraint on
its behavior. 4

procedure WRITEFILE (var fl file;
offset natural;

data byteseq) =
begin

exit fl = writeto_sequence (f2', offset, data);
pending;

end; (writefile)

This has essentially the same content as the Z schema, where the exit specification gives a postcondition
of the routine analogous to the Z schema observation. The presence of .he keyword pending in ph-ce of
the procedure body indicates that no commitment is cm.enrly made to an implementation. Any
implementation supplied later must satisfy the specification.

File Storage

The Z Version: In the file system we access a file via its.file id, a number supplied by the system when the
file is created. This implies a mapping from filejid to files specified in Z by a new type FID and a schema.

I fstore : FID I *FILE

A concept that recurs in several operations on stored files is the notion of accessing the file within the store.
This is expressed in the following framing schema:

4Primed variables such as fl ' represent the inpul values of variable paraineteer in Gypsy as opposed to the oatpw value, in Z.

87

s.,ss
SS, SS'
file, file' : FILE
fid :FID

file fstore (fid)
fstore' = fstore 0 {tid -• file')

In traditional mathematical parlance this schema might translate as: letfstore be a storage system in which
file is associated with fid. Notice that we specify explicitly how file is computed; thus in an expansion
of this schema, we couid replace all occurences of file by fstore (fid). This notion is called hiding
of the variable in Z.

Given the framing schema OSS, the notion of writing a file in the storage system can be expressed in
quite a terse fashion as:

_ writeSS

writeFILE

If desixed, the e.pansion of this schema can be obtained by conjoining its constituent schemata. Common
variables and observations are recorded only once. The result is

_ writeSS
S'SS,

f- : F;D
file, tile' F IILE
offset? • N
data? : seq BYTE

file Istore (fid)
file' zerooffst? e file I (datacpred)ffsot?)
istore'= fstore D {fid - file'}

where zerok = (Xn:N I 1ln_<k e ZERO)

which may be simplified using any of the ruks of predicate calculus.

The Gypsy Version: These same concepts may be expressed straightforwardly in Gypsy. The types we
need are declared as follows:

type FILE ID = pending;

type STORAGESYSTEM = mapping irom file id to file;

The functionality of wr.i '.eSS is expressed in the following Gypsy procedure'

I..I

88

procedure WRITESTOREDFILE (,iar SS storage system;
FID file id;

data byte seq;
offset natural)

begin
entry FID in domain (SS');
exit SS = SS' with (into [FID]

:= write to sequence (SS' [FID], offset, data));
write file (SS[FIDJ, offset, data).7

end; (write stured file.}

Notice that this procedure makes use of the earlier version just as the Z schema made use. of its predecessor.
T'he specification is the exact analog of that for WRITE FILE, with the change made to a component of
the file. structure rather than to the file in isolation. This is the Gypsy counterpart of the Z notion of
"hiding" discussed above. The key difference between the Gypsy and Z versions is that in the Gypsy code
we have procedural abstraction rather than the schema abstraction of Z.

In this case we give a body to the procedure iather than leaving it pending. It seemed natural to do
so for two reasons. It illustrates that WRITE STORED FILE is merely a specific instance of
WRITE_.-FILE, where the file var parameter is obtained via indirection through its filejd. Also it allows
us to prove the correctness of this procedure assuming the correctness of WRITE_.FILE.

There is a subtlety in the Z specification which becomes more explicit in the Gypsy version. In the Z
version, fstore is declared as a partial function; the observation file = fstore ifid) assures that
it is defined at fid. This is stated explicitly in the entry specification on the Gypsy routine.

Sequential Access to Files
• The next step in the develujli V, is to add "--h; notion of seuntial access to file_- vi", chnnng!s. A

channel records an association between a file id and a current position in the file. Sequential access in the
file commences from that position.

The Z Version: This association is made in Z with the schema:

-CHAN
fid: FID
posn N

An additional important property of channels is that the fid of the channel never changes, expressed by:

_ACHAN
CHAN, CHAN'

fid' = fid

The operation of writing a file via a channel makes use of the previous schemata writeSS and ACHAN
along with some observations ao characterize the result.

writeCHAN_
writeSS
ACHAN

offset? = posn
posn' = posn + #data?

lere the # operator returns the length of its argument. Notice that the parameter offset? to schema
writeSS is supplied by the posn component of the channel.

89

Finally, we wish to add a named system of channels for performing sequential access. We add the.
data type CID of channel ids and a mapping From channel ids to channels.

We, need also a scacenia describing the writing of a channel accessed via the channel system. This is merely
an instance of the wrZitQCH.AN schema with posn supplied from thc channel store.

__writeCS_____ ____
COS, C SI
writeCHAN

posn = cstore (fid)

The Gypsy Version: The most natural way in Gypsy of associating two dissimilar pieces of data is a
record structure. We could have defined a CHA1NNEL record type of two fields. In the writeCHAN
operation, this would be convenient. Howevcr, looking ahead to the use we'll make of channels, it seemed
that this way of structuring would be inconvenient.

This illustrates a characteristic difference between Gypsy and Z. In Z, the association of data within a
schema has no connotations for an im~plementation structuring. Individual pieces of data can be aggregated
into various different schemas. In Gypsy, on the other hand, associat'ng data items into a structurc, a
record for example, makes it very difficult to re-associate those data items differently at a later point.

Our declarations and the definition of the operation for writing a file via a channel are specified as

follows:

type POSITION =natural;

type CHANNELID = file-id;

procadure WRITECHANNEL (var SS :storageý_system;
data :byteL_seq;

chan-id :channelId;
var posn : position)-

begin
entry chan id in domain (SS);
exit SS =7 SS' vith ([chan id)1

:= trite-to sequence (SS~chanid], posri', data))
Spoan =posn' + size (da~ta);

write-stored file (SS, chan. id, data, poon);
poan := poon + size (data);

end; (read channell

Because we did not want to create a single data structure representing the: channel, it was necessary to pass
the channel-id and position as separate parameters. This has an associated benefit of guaranteeing
syntactically that the channel~id parameter could not be altered by the procedure invocation as cailled for in
the Z schema ACwAN since it is a- consy rather than a var parameter. If the channel id and position
parameters had been fields in a recoid parameter to this routine, it would have been more difficult to assert
that WRITpeChANNEL does not alter the channel id.

We now define the channel system as the fulowiisg mapping:

type CHANNELSYSTEM = mapping from channel-id to position;

Te operation which allows us to write a file sequentially using the channel system is ceded in Gypsy as

follow3:

90

procedure WRITE_CS (var Ss storagesystem;
var CS channel system;

chan id channel id;
data byte _sLq)

begin
entry chanAd in domain (Cs)

& chan__id in domain (SS);
exit SS = SS' with ([chan Ad]

write co sequence (SS' [chan id], CS' [chanid], data))
& CS = CS' with ([chanid] = CS' [chan id] + size (data));

write channel (SS, data, chan_id, CS[chanid]);
end; {writeCS)

It is necessary to pass in both the storage system and channel system since both the file and the current
position are updated by the WRI:TE CS operation. Notice also that we need to assure in the entry
specification that the channel id is a proper filejid in the file system. We'll address this issue again in the
next section.

The Access System

The last component of the specification we'll consider is the access system. The access system is
merely the combination of the storage and the channel system. However, we want to assure that no channel
contains a file id for which there is no associated file in the storage system.

The Z Version: This is expressed in Z by the following schema.

-AS_
I SS

ran ((iddcstore) c dom fstore

The observation in this schema expresses an invariant which must bc preserved by every operation on the.
access system. Since the schema abstraction is nonprocedural, the invariant is simply inherited by every
schema which uses As.

The write operation using the access system is specified asing the framing schema

ýASý
AS, AS'
ACHAN
cid : CID

CHAN = cstore cid
c;,ore' = cstore D (cid -, CHAN'}

and the following combination

writeAS S•AS
writeCHAN

The Gypsy Version. The desire to associate an invariant with a collection of data structures leads
naturally in Gypsy to the abstract data typing facility. In this case the data type represents the aggregate of
the storage system and the channel system.

91

type ACCESSSYSTEM <SS, setSS, > -
begin

AS: record (SS: storage system;
CS: channelsystem);

HOLD domain (AS.CS) sub domain (AS.SS);
end;

The type ACCESS SYSTEM is a Gypsy abstract data type. The abstract typing mechanism in Gypsy
serves two distinct purposes: to hide the 'inplementation of a type and to permit the association of an
invariant with the type in the form of the HOLD splcification. The access control list including SS,
set SS, and possibly others gives the list of routines which are permitted access to the concrete (record)
structure of the type. Each of these must be proved to maintain the invariant.

The use of Gypsy dau abstraction for our example is somewhat unfortunate because we are really
concerned only with maintaining the invariant; the data hiding aspect of abstract typing is primarily a
nuisance in the current context. Since we will want to access the various components of the access system,
it is necessary to write functions which will permit us to access and set components. For the storage system
comp-nent, such functions are:

function SS (AS: access system): storagesystum _

begin
cexit result = AS.SS;
result :- AS.SS;

end; (SS}

procedure setSS (var AS : access system;
SS : storage system)

begin
cexit AS = AS' viith (.SS := SS);
AS.SS := SS;

end; (setSS)}

We would ha, e similar functions for the chapnel system component of the abstract type. It is also
necessary to dfine a special function which characterizes equality for the abstract type.

It Ls syntactically disallowed for any routine to refer to the concrete structure of the abstract type
except those routines mentioned on the access control list. Even these cannot refer to the concrete structure
in their abstract external specifications "entry and exit). The centry and cexit specifications of
these routines may refer to the structure, but they are visible only in proof contexts in which the concrete
structure of the type is visible. Thus SS and set SS are abstract Pcessors which must be used in most
contexts in place of direct access to the SS component of the record structu~re.

The write operation using the access system then becomes

procedure SMITE AS (var AS : access -ystem;
chanid : channel id;

data :byteL seq)
begin

entry chan id in domain ICS (AS));
exit SS (AS) = SS (AS) wit:' (cnanid]

: write_to_sequence (SS (AS) [cbin_id],
CS(AS) [chanid], data))

& CS(AS) = CS(AS) with ([chanid]
:; CS (AS) [chanid] + size (data));

write channel (SS(AS), data, chanid, CS(AS)[chanid]);
end; (wýite _AS)

The astute observer will have already noted that this is exactly the definition of WRITECS with

92

adjustments made for the abstract data typing and the combination of CS and SS parameters into one
structure.

Though w, siop our exposition of the specifications here, the intercstcd reader is invited to
investigate the complete specifications. The Z version of the full spcc is described in [18]. Our Gypsy
version is available upon request.

Comparing the Specifications

Our investigation of the UNIX Filing System example has highlighted various features of the two
specification languages. Though the resulting specifications arc superficially quite different, we have
attempted to point out the underlying similarities. We would aver that both specification languages can
result iii elegant readable specifications it used with skill and care. There are distinct differences, though,
which are worthy of note.

Exppressivenes of the Lainguýges
The fact that Gypsy is an implemented language means that there are certain constraints upon the

expressiveness of the language imposed by V • parser. Gypsy contains the full first order predicate calculus
and the ability to define functions recursively. In addition, there is an extensive collection of data types
including sets, soquences, and mappings. However, we have seen that it is sometimes awkward to express
certain concepts---the natural numbers are a good example-in a satisfactory fashion. Also, the lack of
polymorphism in Gypsy means that it is often necessary to writ,- very similar functions to perform
analogous operations on, say, sequences of integers and sequences of Booleans. Many concepts which
might be desirable from a programming s:andpoint-pointers, floating point, global variables, functions
with side effects--are explicitly excluded because of the difficulties they present for verification.

Z suffers from no such lack of expressiveness. In addition to the huge notational variety suggested
by OleC laniguafe designcrs ,19", -, ,,writer of Z s-cifications is free to us, cu- iovent notation at will. This
gives the Z uscr f-eedom to write the cleanest specifications possible.

On the other hand, the free and easy use of notation in Z may have some disadvantages. The
semantics of Z is inherited from mathematics and in that respect well defined. However, this is an
extremely powerful underlying theory. There is certainly no way to insure that Z specifications are
realizable or even consistent. The same can be said of Gypsy specifications, though the procedural nature
of the language imposes a bias toward constructive specifications. Z specs are. often highly non-
constructive.

Also, much of the readability of a Z spec derives from various notational conventions: the suffixes
distinguishing input and output variables, for example. Since these are not enforced by a language
processor it is possible to violate them quite easily.
Structuring of the Speci~fications

The primary structuring concept in Z is the schema abstraction; in Gypsy it is procedural abstraction.
Either permits a well structured development style and a clean modular spccification. Z seems to win for
sheer brevity and abstractness of the resulting specifications.

Much of the verbosity of the Gypsy specs comes from Gypsy's proscription of non-local referencing.
This requires that all data structures accessed within a module be either local or passed in as parameteis and
this tends to clutter the procedure header. However, this has the strong advantage that Gypsy modules can
be understood in isolation from their calling environments and that the effects of a Gypsy procedure afe
very strictly constrained. A constraint on the language called the Independence Principle assures that any
module is analyzable/provable with regard only to its own code and the extenial specifications of any
routines it calls.

Fully understanding a Z spec may require expanding all of the schemata in the tree of schema
definitions defining it. This could be formidable indeed. The use of schema nraming conventions seems to
make this seldom accessary. However, again this requires that the specifier follow the standard
conventions.

93

Data structuring in Z is much less constraining thia in Gypsy. Consider our foriialization of the
Unix access system. By cncapsulating the stonc system and cht.um!n. system into a singl" abstract data
type, we conceptually bind them together. In a later context (nwr di(icussed al)vc) it is convcnicat to
consider a combination of the storage system with sonic other conibii.ations of systems (not including the
channel system). In Z, this means simply including the appropliate. schemata; including one schma within
anothcr does not "hide" it from any future uses. In Gypsy, there is a concepiuni structural mnismatch arising
from considering the "same" system compxmCnt as a piece of two diffcrent aggrcgatiuns.

Procedural vs. Nonprocedural
The debate over the relative merits of procedural verstus non-procedural specifications at times takes

on an almost religious fervor. Suffice it to say that Z is highly non-proceduial. Gypsy specifications can
be non-procedural though this is typically not the most natural style. The advantage of non-piocedural
specifications is that they are largely implementation independent. This is evident t1 om the Z tile syslMni
example. The danger of non-procedural specifications is the lack of assurance that thcy arc realizable.

The ability to supply bodies to our Gypsy procedures proved seductivc and insofar as these prccedure
bodies arc considered as part of the specification, they constrain allowable imlnpementations. On the other
hand, the advantages of executable specifications for rapid prntotyping have often been cited. Gypsy
specifications are not executable because of the current lack of an interpreter for the language. It would not
be difficult to supply one, however. 5 Also, some aspects of the Gypsy specification language are intended
for run-time validatihn, the evaluation of specification expressions during program execution. This allows
the checking of specifications very directly against the run-time behavior of a system.

Amenability to Code Level Specification
A difference in these specification styles which may be particularly relevant to secure system

development efforts is the applicability to specifications at or neat- the code level. One of the increasing
demands upon verification technology alluded to earlier is the demand to close the gap between the
specification level and the machine code implementation of the system running on actual hardware. This is
evident particiflarly in the reqnhrcnents of th: -twyond A I certiltceation level 1ols 1rusted t.otriniuvter
Systems Evaluation Criteria 13].

Z has been used for specifying some "real" software systems of impressive size including one system
of over 80,000 lines of code at IBIt-Hlursley. There is no reason why a specification in Z cannot be as
detailed and as near the code level as is required. Thcre is also ongoing research into refining Z
specifications into code in a guarded command language 117]. Presumably this could then be translated
into C or other suitable implementation language.

Gypsy hIs been used for ,:ode level specification and verification on several projects. [21, 19] For
these projects Gypsy was used as the implementation language and mechanically translated into Bliss
which was then compiled. [201 Most current uses of Gypsy in the development of secure system
applications, however, have been for specification at the design level. There is currently no Gypsy
compiler available except a protolype verified compiler for a very small subset of the language 125]. The
result is that Gypsy design level specifications are translated by hand into C or some other suitable
implementation language, an en-or-prone process 126].

Arguably, Gypsy has an advantage over Z in this process in that there is a clearer mapping from
procedural Gypsy code to an implementation than from a non-procedural Z specification to an
implementation. However, it may also be that tie procedural nature of a Gypsy specification obscures
rather than clarifies the mapping if the implementation is structurall) quite different froni the spec.

51t might be possible to supply some such notion for Z as well. Logic pongramming gives a procedural as well as u dcclarative
interpretation to logical formulae. However, Z is a much icher language than typical logic programming languages.

94

* Mechanical Support
The ,learcst distinction between Gypsy and Z is in tl'e area of mechanical suporitl for language

proeCssing. lhere currcntly secnrs to be no language processing capability for Z. ilic Gypsy Verification
Environencni (GVE), on the other hand, is a mature and well intcgratcd collection of software tools for
developing and processing Gypsy programs and specifications. These tools include a parser, database
system, verification condition generator, interactive proof checker, and algebraic simplifier.

A mechanical parser is particularly beneficial from the point of view of writing consistent
specifications. We noticed in studying the Z Unix File System specification 1181 that there was a least one
schema (createCS) which is referenced but never defined. 6 This sort of oversight is very easy to
eliminate with mechanical parsing.

Proofs about the Specifications
For both languages, it is possible to do proofs about the specifications. For Z, this follows from the

fact that the specification language in szone senses just is elementary mathematics. Users interested in
doing proofs will find themselves on the safe and sure ground of elementary mathematics. Proof, however,
does not seem to be a high priority for Z users. Possibly this is because the focus of Z use is on
.pecification of software systems, not on formal verification which tends to focus on proving the
conformity of specifications and code.

The Gypsy system is very heavily oriented toward pioofs of correctness. An overriding design
criterion for the language was that every construct have associated proof rules. The verification condition
generator processes programs annotated with assertions to gene rate verification conditions (VC's) adequate.
to assure the conformity of code and specificatioris. These verification conditions are conjectures which
can be proved using the Gypsy interactive theorem provcr. It is also possible to state and prove lemmas.

Tlhc need to resort to the process of verification condition generation for Gypsy programs is due to
the prv-,_itiral natire of the. language. It is sometimes argued that the Process of VC generation obfuscates
the relation between specifications and code. The VC's often bear little obvious r-latio- to the code.
However, this seems to be a necessary price for having procedural constructs in the language. It is possible
to reason about procedural programs directly with respect to a formal semantics, but it is much more
difficult to do so 125].

Conclusions

We have compared and contrasted two specification languages--Gypsy and Z-in light of a
common example. Each provided some obvious advantages and disadvantages.

Z allows the construction of very clear and elegant specifications. It has been used with good results
in specifying large software systems. The principle failings of the language and its current usage seem to
be the following.

1. The expressive freedom allowed by the language can, if abused, easily result in specifications which
arc either not satisfiable or for which there is no efficient implementation.

2. Because of the highly non-procedural character of specifications in Z, there may be no clear mapping
from specification to implementation. Thus it might be very difficult to construct a believable
specification to code correspondence argument.

3. The. greatest failing of Z currently seems to be the lack of mechanical support for language
processing. Inconsistencies and gaps in the spccifications could be easily eliminated by a parser.

Gypsy is a combined specification and programming language with extensive software support. The
followirg comments can be made about Gypsy and its implementation.

1. Some common mathematical notioas are difficult to express in Gypsy. We noted the natural number

t'Interestingly enough, this is actually evidcnt from the index of schemas and components givtn by the authors. Schema

creat*Cs is listed as being used within schcma creato; there is no seprate entry for the definition of createCS.

95

data epc a aan example; t, cause of tihe abenuce of poinlters, tices are also awkwaiti to expicss.
11owevcr, it is not quite accurate to say that Gypsy is unifornly less expressive than Z. It is unccal,
far example, how difficult it would be to specify in Z concutrent programs which Gypsy allows.7

2. The mechanisms of abstraction in Gypsy--procedural and data abstraction -a,'u less flcxilIc than
schema abstraction. In particular, it is difficult to associatc components of a systcm into various
different aggregations.

3. Schema based specifications tend to be more succinct and abstract than the procedural slccilications
of Gypsy. T1his can be interpretcd as implying that the procedural nature of Gypsy' speciticatiOns
imposes unnecessary constraints on an implementation.

Our experience in comparing Gypsy and Z leads us to believe that the relative strengthls of the two
spccification languages arc in fact quite complcmcntary. The major failing of Z---the lack of niechanizcd
language support-is also the easiest to remedy. Tlie lessons learned in the development of the Gypsy
Verification Environment could serve as a model for the dcvclopment of a mechanical support environment
for Z.

Because of its procedural constructs and strong mechanical support for proofs ab1out programs,
Gypsy will likely continue to have the edge over a language like Z in secure systeum development efforts.
But the lessons gained by comparing these very different specification paradigms may inform future
changes and improvements in both languages and their support environments.

Acknowledgments

Thanks to MaLt Kaufmann and to the reviewers for some quite insightful comments on an earlier
version. This work was supported in part at Computational Logic, Inc., by the Defense Advanced Research
Projet.ts Agency, ARPA Orders 6082 and 9151. The views and conclusions contained in this document art:
thoose of Lie audhor and should not b interpreted as repre.;cnting the official policies, either expres•e•d or
implied, of Computational Logic, Inc., the Defense Advanced Research Projects Agency or the U.S.
Government

References

1. W.E. Boebert, W.D. Young, R.Y. Kain, S.A. Hlansohn. Secure ADA Target: Issues, System Design.
and Verification. Proc. Symposium on Security and Privacy, IEEE, 1985.

2. M. Chcheyl, M. Gasser, G. Huff, J. Millen. "Verifying Security". ACM Computing Surveys 13, 3
(September 1981), 279-340.

3. Department of Defense. Trusted Computer Systems Evaluation Criteria. DOD 5200.28-STD,
December, 1985.

4. Bill Flinn and Ib Holm Sorensen. CAVIAR: A Case Study in Specification. In Ian Hayes, Ed.,

Speciication Case Studies, Prentice-Hall, Englewood Cliffs, N.J., 1987, pp. 141 -188.

5. D.I. Good. SCOMP Trusted Processes. ICSCA Internal Note 138. The University of Texas at Austin.

6. D.I. Good, R.L. Akers, L.M. Smith. Report on Gypsy 2.05. Tech, Rept. ICSCA-CMP-48, Institute for
Computer Science and Computing Applications, The University of Texas at Austin, February, 1986.

7. D.I. Good, B.L. Divito, M.K. Smith. Using The Gypsy Methodology. Institute for Computing Science,
University of Texas at Austin, June, 1984.

8. D.I. Good, A.E. Siebert, L.M. Smith. Message Flow Modulator Final Report. Tech. Rept. ICSCA-
CMP-34. Institute for Computing Science, University of Texas at Austin, December, 1982.

7 TheM is apparently ongoing resest.ch on specifying concuntnt programs in Z based ci. the approach of 1121

96

9. Ian I laycs (cditor)- .'ptcrfiuatin Ca.%C S~uim hr% ,,PIIice c-11,111, 1. njgcwoxd ('lilIt s, N.J., 1Q87.

10. C.A.R. Illoarc. "The Linipetot s Old Clothes: 1 980"luring A%%ard I ekcture". C omnunialitu'in.% of thre

ACMf .4, 2 (Febrtuary 1981), 75-H3.

11. K. Jensen and N. Wirth. Pamcal ti6c, Alanrial and Repo lI. Spiiinger Verlag, 1974.

12. ('.1. Jones. "Tentative Steps Towaid a I)cvelopiiiert Method I tit It aiterring l'togymns". A CM I rant..
on I'togrtvrrnung Languagc.% and %S~wciP'z 5,4 (Otlr1983), 590 019.

13. Niatt Kaufmann avid W.L). Young. C'omparing Speed recat ion l'aiadignis tot Secure Syst.'rns:
and the Boyer-Moore Lo~gic. l'occelirig% ol the 10th Nationali ('oniplute Security ('onlervnke, National
Bureau of Standards. Septenibier. 1987.

14. J. Keeton-Williainis S.R. Attics, B.A. I lartman, anti R.C. Tyler. V.-ril ication of the ACCAT-(tiaud

Downgrade Trusted Process. Iee?'. Relit. N'IN 8.403, The Mitrc (orporation. Ited[Ord, MIA., 1Q82.

15. Richard Kenmmerer. Verification Assessment Study Final Re;xirt. In 5 volunies, uniptiblished'.

16. Carl F. Landwehr. "The Best Available Techolo01gies 101 ('oniputter Security'". 11L (.1'Conipu , 16, 7
(July 1Q83), 86- 1(W.

17. C. Morgan. K. Robinson. 1P. Gardiner. On the Refinement. Calculus. Draft. July 1Q88H.

18. Carroll Morgan and Bernard Sufriri. Spiecification of the UNIX F~ilinig System. lit Ian I ayes, lid..
Specification Case Studies, Prenttice-Hiall, Lnglewoodx Cliffs, N.J,. 1987. pp). 91 -140,.

19, A.E. Siebert and DlI. Good. General Miessage How M~odulatoit. Tech. Relit. ICSCA-0MP.42.
Institute for Computing Science, Unimesity of TecAx' at Austin. Mlarch, 1084.

20. L.M. Smith. Compiling from the Gypsy Veriffication Env'ironmenet. Tech. Relit. ICSCA-CMP-20.
Institute for Computifng Science. The University ol Texas at Austin, Augus~t. 1980.

21.- -~ siivi F1. v..,.. E.r i-) ik P..~ e I,..i...(. V

. 111 ,A. SrI ' tL -j~jitno andD ,('Uc i. 15 " 'cmiii14iLIS II4 I.' I l l.II., .. 1'J"I'I

Engineering Notes 6, 3 (Juily 198 1).

22. J.M. Spivey. Understanding Z: a Specification Language anti it.% Formal Semantics. Canibridge
University Press. 1988.

23. Bernard Sufrin. Towards a Formial Spe~cification of the ICIi. D)ata Dictionary. In Ian Hlayes, Ed..
Specification Case Studies, Prentice-Hiall, Englewood Cliffs. N.J., 1997, ppi. 181)-217.

24. J.C.P. Woodeo k. Structuring Six'eificati0iiS: Notes on the Schema Notation. O.,ford University

Computing Laboratory. August. 1987.

25. W.D. Young, A Verifited CodeGeneraltorfora SuibsetofCGypsýy. Tech.TRept. CI.l.33. CI~nc.
November, 1988.

26. W.D. Young. J. McHlugh. Coding for a Believable Sp-cification to InipleinentatiOrt Mapping.
Proceedings of the 1987 Syniposiurn on Security' and Privacy. IEEE. 1987.

97

EVALUATION OF SECURITY MODEL RULE BASES
John Page, Jody IHeaney, Marc Adkins', Gary Dolsen

Planning Research Corporation
Government Information Systems

1500 Planning Research Drive
McLean, VA 22102

ABSTRACT
The findings presented in this pape; are results of a contract effort to establish the fcasibility of rule-
based TCB's for SDIO and RADC [1].2 A TCB with interchangeable rule bases would be able to
respond to changes in policy or military readiness without a redesign of the kernel, and would promote
the maintenance of secure systems. The initial phases of the effort covered the derivation of rule bases
for three computer security models: the Bell and LaPadula model, th2 Military Message System model,
and the MAC portion of the SeaView Relational DBMS model. The derivation process was automated
to a large extent by the Security Model Development Environment (SMDE) which was developed as
part of this effort. While the primary purpose of the SMDE is to generate and exercise model rule
bases, its tools provided highly useful information about the models themselves. The end result was a
new way of viewig and analyzing security models by observing their rule bases.

INTRODUCrnoN•'

The primary aim of this evaluation was to view three different security models from the
common point of reference provided by the Security Model Development Environment (SMDE)
prototype. This form of analysis differs from many current practices since it places a strong
emphasis on the functional aspects of the model represented by operations and riles. As it is
important for the rcader to understand the context in which these observations are made, a brief
summary of the SMDE prototype is offered. Results for each of the three models are presented in
turn. While common themes may be seen from model to model, the material represented herein
has been selected to portray the scope and breadth of model evaluation with the SMDE prototype.
Although it is hoped that the reader will have some familiarity with the models, supplementary
material is provided to re-acquaint the reader with key model features. It was also necessary to
provide a number of interpretations to adapt the models into the SMDE format, and these are
identified as they appear. A full description of these activities is found in [2].

CREATING RULE BASE Fog SECURITy-MODELS _

It is first necessary to define what we mean by a rule base. A rule base is a collection of
rules that can be mapped one-to-or's onto the set of operations the model is to support, much like
that found in the Bell and LaPadula (BLP) model. Each rule is a pre-check for a given operation,
specifying what conditions must hold in order for the operation to execute without breaching the
s.ecurity of the system. When presented with an operation request, the kernel control mechanism
will evaluate the rule for the operation. The operation is then allowed to proceed if the rule is
satisfied. Otherwise, the operation is disallowed and any appropriate action will be taken.

Not all models are necessarily suitable for the derivation of model rule bases. The
methodology underlying the process assumes that the model is based on an inductive state machine
schema of secure states and secure transitions, like the one proposed in the BLP model. More
abstract models would need to be decomposed into a state machine representation. The operational
aspects of the model to be represented must also be explicitly stated. If a model does not provide a
set of operations, a representative set must be defined. The SMDE process of deriving and

(1989 Planning Research Corporation
1 This author's current address is Booz-Allen & Hamilton, Inc.. 4330 East West Highway, Bethesda, MD 20814.
2 Contract number F30602-86-C-0190 for the Strategic Defense Initiative Office and Rome Air Developmerat Center.

98

evaluating the rule base for a given model requires several steps, as shown in Figure 1. The
process starts with a paper model which is expressed in the Common Notation, a machine
processible format. The model expression is parsed by the Model Translator and a rule base is
derived by the Rule Generator. The rule base can then be exercised in the Testbed to determine
how the components of the model interact. Each of these steps is described in greater detail in the
following paragraphs.

Figure 1. The Derivation Process

The model must first be represented in the Cotmmon Notation, a notation for the expressionof computer security models developed for the SMDE and described in [3]. A full representation
of a model in the notation consists of three major components: data structures, constraints, and
operations. Data structures are declared in type and variable declarations common to many
programming languages. The example below illustrates the sequence of type declarations

necessary to define the current access matrix for the BLP model:

-... type declarations for current access mnatrix
type Accessos is (read, write, append, execute);
type Access set is set of Accesses;
type Access _matrices is

Array from Subjects, Objects to Access set;
--- variable declaration for current access matrix
current-access : ACcess m,,atrices;

Constraints represent the security properties of the model. Constraints may take one of two
different forms, static or dynamic. Static constraints are state invariants, such as the Simple
Security Property. which must hold on all data structures in a given state for that statc to be secure.
This property of the BLP model is reprcscnted in the Conmmon Notation as:

99

static constraint SimpleSecurityProperty is
begin

---for all subjects and objects it must be true that
for all sub : Subjects; ob : Objects J

--- current read or write access between a subject and
--- an object implies that

read in current access(sub,ob) or
write in current access(sub, ob)) -- >

--- the current security lalIel of the subject dominates the object
current_security_label(sub) >=

security_ label (ob);
end Simple_SecurityProperty;

Dynamic constraints correspond to properties which must be satisfied during secure transitions.
(The security properties of the MMS model are phrased in this manner.) Dynamic constraints often
compare the values of a variable between two different states, or refer to knowledge which is only
available during the execution of an operation. An example of a dynamic constraint in the context
of the BLP model is presented under the Control Attribute discussion.

Operations describe the functionality of a system based on a model. An operation is a
description of the changes that the real operation's execution would make to the system state. In
essence, they describe the state transition resulting from the operation. The GetRead operation
for the BLP model, for example, describes the addition of read access to the current access set:

operation GetRead (user: Subjects;
ob: Objects);

begin
---. .�..• en _a,., I ,,.#•*&__L.t,..*.)J fl.,* t/L,

current access(user,ob) :=
current access(user, ob) + read;

end GetRead;

Note that the operation description does not include an,, pre-checks to ensure that the execution of
the operation will not breach the security of the system. Pre-checks are automatically created for a
given model using the SMDE.

The Common Notation representation of the model is then parsed by the Model Translator
"fool, and an internal representation of the model is stored in a parse tree. The next step of the
derivation process involves producing a rule for each of the operations. Rules are produced by the.
Rule Generator, an innovative software tool which derives rules from the parsed description of the
model. This complex process correlates the changes represented by the operation with the
conditions specified by the constraints in order to determine what conditions must be satisfied for
the operation to execute without breaching system security. For the GetRead operation cited
above, the output of the Rule Generator is:

function GETREADRULE (user: Subjects;
ob : Objects

return Boolean is
begin
-- From static constraint SimpleSecurityProperty:
Dominates (current__securitylabel (user),

security label(ob)) and
-- From static constraint Discretionary_Security_Property:
Memberof (read, access-permission(user, ob);

end GETREADRULE;

This rule specifies that user may attain read access to ob if user's current security level
dominates that of the object and user has the necessary discretionary access rights.

100

Once rules have been generated for each of the operations supported by the model, they are
stored as the rule base of the model. The final stage of the process involves loading the rule base
into a specially designed Trusted Computing Base (TCB) kernel. Since one goal of our work was
to investigate the feasibility of the latter, it was necessary to design a TCB Testbed which simulates
the control mechanism of a TCB kernel that mediates operation requests. The Testbed allows a
modeler to simulate the execution of the model rule base by executing scenarios. A scenario is a
Common Notation program that describes an initial secure state configuiation, and then presents
the rule base with a series of operation requests. For each request, the Testbed invokes the rule
that tests to see if the necessary conditions are satisfied to preserve the security of the system. If
the rule returns true, the changes described by the operation are made to the system state, otherwise
the operation is rejected.

While the SMDE is primarily designed to investigate the feasibility of rule-based TCBs, it
also contributes to the analysis and evaluation of computer security models. The syntactic
demands of the Common Notation require a full, explicit representation of a model. In many
cases, it was necessary to flesh out intuitive assumptions within models in order to create a
satisfactory rule base. These interpretations, which would be necessary in any implementation
from a model, have raised many interesting issues that may not have arisen under traditional
metthods of model evaluation. Another distinctive aspect of the SMDE is its emphasis on the set of
operations which a model is to support. While many traditional model development methodologies
postpone operational specifics until implementation, our experience has shown the operational
considerations as indispensable to security model design.

THE BELL AND LAPADQULA RULE BASE

The BLP model, Volume 3, [4] served as a baseline in our effort to generate a functioning
rule base from a security model. Not only did the model (volume 3, unless otherwise stated)
provide a full suite of operations, but it also contained a manually derived set of rules to compare
against the output of the rule generator. This greatly simplified the derivation of a rule base for the
model. Nonetheless, our initial attempts highlighted some aspects of the model which required
further exploration.

The Control Attribute
A subject controlling an object may alter its access permissions, change its security label

within certain restrictions, or delete it from the object hierarchy. A control attribute is not
represented explicitly within the model. It is assumed instead that if a subject has write access to
the ancestor of a given object, then the subject "controls" the object. If a subject does not have
writt access to the object's ancestor, then the subject does not have the benefits of controlling the
objec.

How is the control attribute enforced within the model? There are no formal properties of
the model which state that a subject must have write access to the ancestor of an object in order to
modify its access permissions. Instead, this property is embedded in the BLP rules for the
operations that modify access permissions, such as Grant, Create Object and Delete Object.3 Since
the SMDE derives rules automatically, to include this embedded property into the rules requires an
explicit statement of the corresponding property from the original model. Therefore, it was
necessary to define a constraint which stipulates that the access pernmissions of an object may not
be modified without the subject initiating the operation having write access to the object. Two
additional constraints that we defined require a subject to "control" an object in order to attempt to
alter its security label or to alter the object's position in the hierarchy. All three of these constraints
had to be phrased as dynamic constraints, because the properties they specified applied to state
transitions as opposed to a state at rest. Since the BLP model was formulated in terms of static

3 This control attribute discussion does not imply any incorrectness :n the original model tormulation. The authors'
intent here is to show the Common Notation requirement for clarity of cxpresion.

1.01

constraints (state invariants), the only way for the authors of the model to represent these
properties was to splice them into the rules for the operations that were affected. Our interpretation
represented the control mechanisms of the model in the form of global security properties.

Pr.pagation of Access Permissions
It is possible for more than one subject to control an object at a given time. Since there is

no numerical bound to the number of subjects which can have write access to the ancestor of a
given object, this implies that there is no limit to how many subjects can control a given object at
the same time. Aside from any difficulties springing from an object being simultaneously observed
and modified by a variety of subjects, this notion of multiple ownership can lead to an interesting
degenerate state. Suppose that an authorized but malevolent user wishes to seize control of an
object that is currently shared with others. Is it possible for a subject to t:ke advantage of the
discretionaiy access mechanisms to usurp control privileges from the original owner of an object?
What limitations do the mechanisms of the model place on such activity?

While the previous topic was investigated by direct analysis of the rule base, exploration of
this issue was not best performed in this manner. In this case, it was more beneficial to simulate
the behavior of the rule base in the Testbed. A scenario was written to create a system state where
two subjects (one benign, and one malevolent) have control of the same object. The malevolent
subject attempts to take undisputed control of the object, while the benign one tries to maintain
control of the object.

The output foro the Testbed revealed several interesting points. It was indeed possible for
a malevolent user to seize control of the object. When two subjects are locked in battle for the
possession of an object, victory goes to the subject that has write permission to the highest object
in the hierarchy. Once this subject achieves write access to the highest ancestor, the subject may
sweep down the tree, altering access permissions until it has sole control of the object. If the
highest .. write pe.r*sson ,for both subjects. to the s.me object, a stale. . ..at .Occurs, ai.d "ach sd-'-

alternates taking control of the object and yielding it to the other.
The model does provide some limitations to stem this sort of activity. Since the root object

has no ancestor, it cannot be controlled. Thus a subject is prevented from controlling the entire
hierarchy. It also implies that the access permissions of the root may never be altered during the
course of the system's history, given this interpretation of the control attribute. The downward
spread of control is confined by security levels, since a subject could never get control of an object
whose ancestor had a higher security level than his maximum level. Therefore, a subject may not
always be able to extend its control down to the bottom of the hierarchy.

Object Deletion
Deriving a rule for the Delete Object operation also raised some thought-provoking issues

about the control attribute. If a subject controls an object, it is entitled to delete the object. If the
object is a leaf node in the hierarchy, this creates few difficulties. All accesses to the object are
broken, and the object is removed from the hierarchy. What happens if the deleted object is not a
leaf node, but has descendants of its own? It is necessary to perform the same process for all of
the object's descendants. Amputating the entire branch from the hierarchy, leads to some delicate
considerations.

There is no way to guarantee that the subject deleting an object controls all of the
descendants affected by such an operation. The operation as it stands can allow an object to have
its access permissions set to null by a subject who may not actually control it, which seems to
bypass the discretionary access mechanisms of the model. This is not truly the case, but it does
imply that there exists a different interpretation of control for the Delete Object operation than that
used for the Grant operation.

An undesirale possibility arises at this point. Consider the directory branch pictured in
Figure 2, with two unclassified directories linked to two Top Secret directories. Assume that an
unclassified subject has write access to the unclassified object at the top of the hierarchy. The
access right allows the subject to control the object directly beneath the unclassified object.

102

Assume that, through clumsiness or malevolent intent, the subject decides to delete the object. The
deletion is allowed to proceed, resulting in the removal of the object and the two Top Secret
directories beneath it. The deletion of the lowest Top Secret object raises some questions. There is
no way for an unclassified subject to control this object, since it could not get write access to the
object's fop Secret ancestor, Nonetheless, the subject is able to delete the lowermost object which
it does not control. Thiis deletion is clearly undesirable, and implies that great care must be taken in
the organization of directories. In addition, there are no mechanisms in the model which test to see
if any of the objects to be deleted are currently accessed by other subjects. These are integrity and
denial of service issues respectively, not secrecy. Since the original model incorporates a delete
object rule within its purview, however, we point out the potential need for additional controls
when using the model.

Subject: Unclassified
Operation: Delete Object

,~~~~~~~~~:! .ii ...iii
~~MitesAcWrit

Sbect Uujc

..................:•: ..i============

-. -::--: : • ,::.•:;- x --: +:--- -:..- --•::::.:;.;;" : :::. .: : .:::: .:.:: .::5 .: .: :: :.:...'. ..

0 7::i~::::: :::i? " "." '

konirol

Figure 2. D.. .. t Example.

.he Activity Principle

The BLP model is the only one of the three models studied which directly addressed the
creation and deletion of objects. One of the difficulties initially encountered while generating rules
for the Create Object and Delete Object operations was the absence of a formalized scheme of
object reuse. An informal description of object reuse is found in the second volume of the
model [5]. Unused objects are stored in an object pool of inactive objects. The creation of an
object involves the activation of the index for an inactive object, while deletion corresponds to
marking an active object inactive and returning it to the pool. The model assumes that only active
objects may be accessed by subjects. This assumption is termed the Activity Principle.

What then is the status of an inactive object? The model text states that every active or
inactive object has a security label.4 (Its contents are assumed to have already been purged, in
accordance with the Erasure Principle. However, since the model itself dues not represent the
contents of an object, there is no way to enforce t6 .s.) Bringing an object into creation requires

4 See Reference 5, page 11: "Using this point of view, however, the created object Oj may have a classificaton and
set of categories which do not match the requircmerits of the requesting subjects. (hi the model, every object,
active or not, has a classification and a set of categories assigned to it.)"

103

overwriting its original security label with the desired classification of the new object. Even
though no data is currently associated with the object, overwriting an inactive object with a higher
label with a lower one could be construed as a downgrade.

In order to generate effective rules for the Create Object and Delete Object operations, it is
necessary to explicitly represent the Activity Principle for the model. Representation ot the Activity
Principle requires two primary additions to the model. The first is an Active Stctus mapping
for all objects which returns the active status of a given object. The second is a constraint which
prohibits any subject from having access permissions to an inactive object which appears as:

dynamic constraint NoAccessToInactive_Objects is
begin

for all sub: Subjects, ob : Objects I
---for all subjects and objects in the system it must be true that

Active Status(ob)! = inactive .->
--- cn objict boing inactive in the next state implies that

accesspermission(sub, ob) = null;
each subject must have no access permissions to the object

end NoAccessToInactive_Objects;

Note that it was necessary to test the active status of the object in the next state. This test avoids
the difficulties that arise when an object comes into existence between state transitions. Note that
this constraint is enforced by limiting the access permissions to an inactive object, not current
accesses. Since current accesses are always bound by discretionary permissions, this forbids any
current accesses to an inactive object.

Tht rule base generated for this modified version of the model still contained some
inconsistencies in the rule for the Create Object operation. These difficulties stemmed from the
status of security labels for inactive objects. Overwriting the label of an Inact.vc objcc, whifl e
creating it could be interpreted as an uncontrolled downgrade, since the wording of the *-Property
does not specify that it is only to be enforced over active objects. (None of the formalized
properties of the model differentiate between active and inactive objects.) It was necessary to
install a short-circuit clause of the form "if the object is active then no write down else the
constraint does not apply" in the representation of the *-Property in order to achieve the proper
results. While concerns such as these have long been addressed in the implementations based on a
given model, the tools of the SMDE unearth these issues much earlier in the design process.

THE SRI MAC MODEL RULE BASE

Generating a rule base for the SRI SeaView Mandatory Access Control (MAC) model
required more interpretation than the BLP model, because the model did not provide an explicit set
of operations [6]. Since the accompanying text of the model suggested a likely set of primitives, it
was not too difficult to define a set of operations. While the MAC model may seem loosely
patterned after the BLP, it provided many novel features worthy of furtf.er investigation.

The Tranquility Principle
One of the salient characteristics of the MAC model is its reliance on state-independent

functions to map subjects and objects to security label:.. The use of state-independent functions
was motivated by the need to facilitate theorem proving for the model. The result of this decision
is a very strong interpretation of the Tranquility Principle for the MAC model. Since the Common
Notation does not distinguish between state-dependent and state-independent mappings, it was
necessary to find a means to enforce this interpretation of the Tranquility Principle within the
confines of the Common Notation.

It was surprising to discover th..t this property was already enforced by default. Since
none of the operations suggested for the MAC model attempt to change the security labels of
subjects or objects, there is no immediate need to constrain the changing of labels. Therefore, we

104

conclude that somie model properties can be enforced by restricting the operations available to the
model.

Nonetheless, we decided to test the ramifications of explicitly representing the tranquility of
object labels by a constraint. This constraint, Object Tranquility, stipulates that the security labels
of all objects must remain the same from state to state. In order to test the efficacy of this
constraint, it was necessary to also define an operation which attempts to overwrite the label of an
object with a new value. A new rule b:ise was then generated for the model.

The iule generated for the new operation only allowed the operation to proceed if it
overwrote the label with the same value. Although the tranquility of object labels is protected, an
interesting question is posed. If this overwriting was somehow visible to the system, could it
serve as a covert channel? Probably, yes, but this operation was not meant to be used so this is not
a pressing problem, although it does highlight an interesting observation about current security
models. Security models tend to constrain the values an object may take, but do not model the
actual setting of a variable to a value. This allows the value of a variable to be overwritten with an
identical value many times, as opposed to preventing the value from ever being reset.

Information Flow
The MAC model offers an innovative blend of information flow and access control

concepts. While the model's access ccntrol mechanisms are quite similar to those of the BLP
model, the information flow mechanisms represent a new point of departure. Generating a rule
base which reflects the information flow concepts unearthed a few qaestions.

The MAC model addresses the flhw of information via ihe ObjectContents mapping,
which represents the data that objects contain. This feature is not found in the BLP model. This
supports the modeling of the flow of information between objects. A write operation, as pictured
il Figuir 3, overwrites the contents of an cbjcct wihanew valuc. if the contents of an object
have changed during the course of an operation, it is said that information flows to the object.

• ,• '• . ' .~~. ". , , , ,

~i~e iJObjet ect Object
Objec

SOperation Write •O,.eration Read

information from the contents of the object to the subject. Unfortunately, the model does not

provide a mechanism to store the inf ,nrnation which flows to an object. (Given the data structures
of the model, a read operation creates no v'isible changes to the system state.

This issue is reflected in the model's Information Transition property which unifies the
access control and information flow mechanisms of the model. This property states that, if the
contents of an object are changed between states, then the subject initiating th" operation must

already have write access to the object. The property can be loosely paraphrased as "an operation

105

that behaves like a write operation must have write access in order to e.\ccutc." Tile cffcts of the
Information Transition Property on rvad and write operations are portrayed in Figure 4.

WithutrriteWitoutRea A~~ cess

Subject t S ct !I je

With Write Acce ss WihRadAcs

.iur 4. The .n fomtinTrnitin.rpe.

n un opertio.A th i t 'u- io h wOu ed rea

acces pro oraiga object, : this•- is.W: no tfrmlze in th n" od- l.

; '.~ ~.. 'X_ _ i , - -,- _ - , • ,

,.It. should be noted that1 tisii1ii1iii1iiiii!ii 11 ssensaraybenscesul addressedi in th FTii S for!

...4 _- n R a " 4 ---

c et t at d perationswrte I pv to be invapelratin R intuti

Figure 4. Tne onfomation Transition Propetoy

Wnat about the r hisd operation? oDffs the meiion Transition Property require it subject
to have read access prior to reading tioe contents of usiin obrect? Since a reai operation leaves novisible effect on the system state, it is impossible for the Information Transition Property to catch

an unauthorized read operation. Altdogh it is intuitively obvious that a subuf ect would need read
access prior to reading an object, this is not formalized in the pomodel. t a

It should be noted that this issue as already been stccessfully addressed in the FTLS for the
the SeaView model [7]. The scheme employw d took advantage of if re-opnrations and a Boolean flo
flag to insuremati n to s eas well as o obtaining read access. The authors of that report also
commented that defining operations for tr e t odel proved to be invaloable in forcing intuitive
asso mptions out into t.e open.Another solution to this question offers it more explicit modeling of information flow by '
challenging the esitablished convention of using reads and writes bs primitive operations. In a real
system, these activities correspond to copying data between the 1/0 buffers representing objects
and process buffers representing subjelts. Would it be more natunid to use a copy operation torepresent reads and writes'? Using copy would guarantee that tile source and destination of the
information flow are stated explicitly, allowing constraints on infonnation flow to restrict the flow
of inforeation to subjects well as objects. In the case of tile MAC model, an additional SubjectContents mapping would be required to hold the data that flows to a subject during a readi".
operation.

Vinj..__.i Po- ection
Htow resistant is the MAC rule base to infection by' a computer virus'? A scenario was z

written to represent a viral attack, so thait it could be simulated by tile Testbed. 'I lie virus required
some interpretation, since the mnodel did not provide any mechlanislns to represent the effects an
execute operation would have onl tile system state. Write operations were used to Simulate viral u
infec~tion, since a virus Would need to write to an cxecutable file hi order to infect it.

The rule base performed reasonably wel in the face of viral attack. The Program-Integrity
Property of tile model insured that integrity and secrecy leve;, would not be compromised when a

306

subject sought execute access to a given program. The secrecy controls alone were not very
effective in warding off the virus, because secrecy controls are established to restrict the downward
flow of information. Thus, an unclassified program could infect (write to) a Top Secret program,
although the reverse would not be allowed. Since a virus is likely to inf'-ct a system through a
commonly used utility program, secrecy controls would not prove very effective to counter it. The
integrity controls were much more useful, since they aim to prevent the upward flow of corrupt
information. They could protect sensitive programs from being infected by utilizies. The
Tranquility Principle also proved helpful in preventing the flow of a virus, since it prevented the
virus from altering the label of an object to allow an infection where it would normally not take
place.

THE MILITARY-MESSAGE SYSTEM RULE BASE
The rule base derived for the Military Message System (MMS) model [8] reflects many of

the innovations present in the original model. This modei differs from many previous state
machine models in that it places its emphasis on dynamic security properties. It also relies
exclhsively upon information flow controls to enforce mandatory security. Since the model was
created to support a whole family of message systems, only one operation (Release) is formally
defined. The Release operation models the application-specific task of formally releasing a
message. Its inclusion in the model is mandated by the Release Secure property, which only
allows the releaser field of an entity to be changed during the Release operation. (The Release
Secure property is the only example we have seen to date of a security property explicitly
referencing an operation.) The model also offers a powerful authorization mechanism with its use
of entity access sets for discretionary access control. Creating a rule base for the model required
defining a base set of operations. Defining operations for the model proved to be very helpful in
UiiUildc IIiULIng II c ill. I CIRJ.

Entity Acce s Mechanisms
Discretionary access control in the MMS model is achieved by the use of access sets

defined for each entity. The access set for a given entity is a set of triples of the form: (<User ID
or role>, <operation>, <index), where <index> represents the position in the parameter list that
the entity may legitimately occupy. The Access Secure property of the model insures that the
operation may only proceed if, for all entities in the parameter list, there exists an entry in the
access set which corresponds to the operation request. Consider the example in Figure 5. The
third entry in the entity access set for Entity 1 specifies that Use ri may use that entity in the
Copy Entity operation when it occupies the seccnd position in the parameter list. In this
example, Userl may copy from Entity 1, but not to Entity 1. This is roughly analogous
to the statement that Userl has "read permission" to Entity 1, but only in the context of the
Copy Entity operation.

The entity access mechanisms provide a fine level of granularity for discretionary access
control, since they make it possible to specify how each entity may be used by each user for any
given operation. The fineness of granul:rity. however, encourages a much larger amount of
overhead than would be required by the disci 'rtionary mechanisms of the BLP model. The task of
defining accesses for a large number of operations and users for each entity would be time
consuming as well.

Propagtion of Access PermissionsThe MMS model does not provide any notions of "ownership" such as that found in the
BLP model. In the MMS model access permissions are modified through operations that allow a
user to edit the entity access set. In our efforts it was necessary to define the operation
Update AS, which allows a user to specify the access set for a given entity. A user "controls" an
entity if its access set authorizes the user to perform the UpdateAS operation upon it. It is also

107

conceivable that a user could extend UpdateAS rights to another user, thereby extending
control of the entity to someone else.

Operation Copy Entity User Users;

Target EntityE

ENTITY ACCESS: y Cop y Useri, Entity 1, Entity 2ENTITY 1 --:

(SWC), Copy Entity. 2) EN ENTITY

(SWO, Update AS, 2)

Useri, Copy Entity, 2)

(User2, Copy Entity, 2) Copy Entity (User1, Entity 2, Entity 1)

Usar2. Copy Entity, 3)
(User3, Display, 2)

Figure 5. Entity Access

Can a malevolent user seize undisputed control of an cntity once granted Update AS
rights? A scenario was written for the MMS rule base which duplicated the conditions described
earlier for the BLP rule base. In this scenario, a benign user .,rants UpdateAS permission to a
malevolent user, who, in turn, attempts to seize control of the entity. Unlike the BLP rule base,
the MMS rule base did not provide damage control mechanisms to limit the scope of abuse. Once
granted UpdateAS rights, the malevolent user was able to assume complete control of the entity.
While it can be argued that an intelligent user would never extend Update_AS rights to another
user in most situations, one must remember the large degree of overhead present in entity access
sets. Consider a pressured environment where a user must make an entity available to another
user. Faced with the prospect of defining every legitimate position the entity may take for every
operation, the user may succumb to the temptation to extend UpdateAS rights instead.
_User Attribtges

The user ID is a character string denoting a specific user. It is not classified as an entity
pg. s, but as an extension of the user instead. One of the definitions underlying the model
specifies that the mapping between users and user IDs be one-to-one, which prevents two users
from sharing the same user ID. In order to test the strength of this property, an operation was
defined, Defi ne ID, to overwrite the user ID for a given user with a new value. A new rule
base was then derived for the model reflecting the addition of this operation.

The rule generated for Define ID did contain the necessary check to insure that the one-
to-one property of the ID mapping was preserved. However, it was surprising to note that there
was no access set check incorporated by the rule, as would normally be required by the Access
Secure property. Thus the user was allowed to alter his ID without explicit authorization. Why
does this occur?

This unauthorized alteration results from the unique status of a user ID. Since it is viewed
as an extension of the user and not as an entity, it does not have an entity access set to protect it
from unauthorized i * Any operation being performed solely on user attributes does not need

108

authorization, given a literal reading of the original moocl. Of course, the text accompanying the
model 191 states that user attributes should only be modified by the System Security Officer (SSO).
This stipulation could be formalized quite easily within the model. This exanmple also touches on a
theme introduced in the SRI MAC model discussion: constraints may be implicitly represented in
the model by limiting the set of operations. If no operation is provided that would change a user
1I), then there is no need to constrain the setting of user IDs. It would be possible to define a
security model in terns of operations that would guarantce secure transitions to secure states. This
approach would serve as the dual to the commonly accepted practice of basing models on security
properties and leaving operations largely unspecified.

Copy Qperations
Operations which copy data from one entity to another play a large role in the activity of a

message system. Since the original model supports a family of systems, details concerning the
implementation of copying are not specified. In creating a rule base for the MMS model, we
defined three different copy openrtions, each of them altering the system state to a different degree.
The first, Copy Entity and Security Label, copied the security label, releaser field and
value from the source to the target entities. The second, Copy Entity, only transferred the
value and releaser fields. This definitional difference was used to detenrine how the properties of
the model would constrain any possible downgrade. The final copy operation, Copy Value,
had the smallest effect on the system state. It merely copied the value from the source to the target.
The different effects of each operation on the system state are illustrated in Figure 6.

Cpoy Entitytity S ityLab .

Label Label

Releaser Releaser
FieldF Field .hre .f t M M..el

SValue Value

ds s i p r .T r gee.e f Copy Entity adSu.

ze I

::!Label Label Label •:: .•:•- Labe

:ielasr . Releaser elae :•::-:---.Releaser
Fi elId Fi elId F i eld :: : i! i• ••:• F i eld

: Value =r~=. Value Value iiValue

...

Figure 6. Three Copy Operations for the MM$ ModelI

The rules generated for these three operations give a good insight into the behavior of the
reader's security properties. The rule generated for Copy Entity and Security Label
did not include any clauses to prevent a downgrade because inforrmation extracted from the source
inherited the proper classification. Since the Copy Ent ity operation did not copy the security
label, its corresponding rule disallowed any downgrades unless the user had the downgrader role

109

in their role set. The rules for both operations disallowed copying onto relcased messages whcn
this would alter the target's releaser field. (The releaser field of an entity may only be modified by
the Release operation.) The rule for the Copy Val ue operation. however, allowed any user to
overwrite the value of a released message providing they had authorization via the entity access set.
This overwriting seems undesirable from an intuitive standpoint and, like object deletion in the
BLP, would require additional integrity controls.

Virus Protetion
A scenario was written to simulate a viral attack on the MMS rule base. The viral attack

was primarily modeled in terms of copy operations, since the model did not provide any
mechanisms to represent the unique characteristics of executable code. Each attempted infection by
the virus was a copy operation launched under the authorization of an unwitting user.

The MMS model seemed to be less resistant to viral infestation than the MAC model. The
major weakness was a lack of integrity features. While secrecy controls halt the downward flow
of valuable information, they do little to halt the upward flow of corrupt data. In order to prevent
infection of an important program file from a corrupt compiler, the compiler must be classified at a
higher level than the program. Hlighly classified source files, paradoxicall , are best protected
from viruses by lowering their classification

The entity access controls do offer a means to resist viruses. Combined with an effective
administrative policy, they can shut down many of the entry points a virus would take into the
system. In an application-oriented envirounment such as a message system, very few users should
be authorized to modify executable code. Therefore, a strong policy of limiting users from writing
to executable files could prove very effective if properly enforced. The only foreseeable
shortcoming with this approach is that, if the user running the infected program has UpdateAS
rights, then an intelligent virus could attempt to modify the access set in order to allow an infection
to take place.

C,..CLUSIQNS

The process of creating rule bases with a tool such as the SMDE offers a new paradigm for
the creation, refinement and evaluation of security models. The impartiality of the Common
Notation and Rule Generator force an explicit representation of the intuitive assumptions
underlying models. The security properties of a model are examined in light of the operations a
model is to support. Not only does this highlight issues which are often postponed until
implementation, but it offers a dual to the commonly accepted approach of enforcing security in a
model by propertics. Careful definition and redefinition of a model's operation set can be as
helpful in preserving system security as the definition of security properties. The simulation of a
model rule base in action can offer a modeler valuable feedback that cannot be obtained by static
methods of model analysis, such as the efficiency of modeling mechanisms which would no doubt
be represented in the implementation based on such a model.

REFERENCES
11] J. tteaney et al., Final Report for the Security Model DevelopmeQ t Environment, A023,

McLean, VA: Planning Research Corporation, December 1988.

12] J. Page et al., "Strategic Defense Initiative Battle Management C3 Technology Program:
Security Model Evaluation Via KB TCB Prototype Tools," A01 1, McLean, VA: Planning
Research Corporation, June 1988.

131 J. Heaney et al., "Strategic Defense Initiative Battle Management C3 Techlology Program:
Upgraded Common Notation," A007, McLean, VA: Planning Research Corporation,
March 1988.

110

141 1). E. Bell, ecure CoAmpulnU .IIIAit-ine nt of the Ma:hcniatical Model, ESD-
'R-73-273, Vol. 1i, Bedlord, MA: The MITIRE Corporation, April 1974.

151 D. E. Bell arid J. Lalladula, Scjcrs: Computer Systems: A Mathematical Mode, FSL)-TR-
73-278, Vol. I1, Bedford, MA: The MITRE Corporation, November 1973.

11 D. E. Denning, T. F. Lunt, R. R. Schell, M. lleckman, and W. R. Shockley, "The
ScaView Fonmal Security Policy Model," A003: Interiw Report, Menlo Park, CA: SRI
International and Montercy, CA: Gemini Computers, July 1987.

171 1'. F. Lunt, and R. A. Whitchurst, "'he SeaView Fornnal Top Lcvcl Specifications," A004:
Interim Technical Report, Menlo Park, CA: SRI International, February 1988.

18j J. McLean, C. F. L.ardwehr, and C. L. Hleitmeyer, "A Fonral Statement of the MMS
Security Model," in Procecdings of the 1984 IEEE Symposium on Secsurity and Privacy,
April 29-May 2, 1984, pp. 188-194,

19] C. E. Landweh,, C. L. llcitmcycr, and J. McLean, "A Security Modcl for Mililtary
Message Systems," NRL Report 8806, Washington, D.C.: Naval Research Laboratory,
1983.

111

HOOK-UP SECURITY
AND GENERALIZED RESTRICTIVENESS

Prof. Robert S. Lubarsl-y

Dept. of Mathematics, Franklin and Marshall College

PO Box 3003, Lancaster, PA 17604-3003 (717) 291-3872

topic: evaluation and certification

This work was supported by the Air Force Systems Command at Rom('ir Development Center under contract

#F30602-85-C-0056. The views and conclusions contained in this paper are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of the Air Force or the U.S.

Government.

The author would like to thank Dacyl McCullough for insight into the meaning of hook-up security, and Steve Vintcr of

BBN for many useful discussions on distributed system design. He would also like to acknowledge Doug Weber, whose

help in the development and the writing of this paper would be hard to overestimate.

Much of the work contained herein was done while the author was employed by Odyssey Research Associates, Ithaca,

NY.

112

1, Introductioln

Recent work in computer security has centered around the notion of inlbrmatior not flowing in certain ways.

For instance, there have been attempts to make precise the idea of information not flowing from one level to another and

to verify this property of rmodels of actual systems. A limitation of this approach is that in most real systems

information does flow even between levels where it's not supposed to. This makes it impossible to prove that it doesn't.

There are some common examples of this phenomenon. One is that of downgrading. It is common that for the

sake of flexibility a system will includz a downgrading facility. The effects of this high-level act are clearly visible to a

lower-level user, as they are supposed to be. There is aiso the case of limited access processes. Some system

components can be accessed by only one user at a time, and will return a reject message if another tries to do so. So if a

high-level user gets there first then this i.ight be visible later to anyone. (Notice that this example is very similar to the

leak caused by using the high water mark protocol.) Slightly different from these is the instance of uncertainty of the

level of information. When someone tries to log on, it is unclear at first what the level of that message should be. There

are any of a number of ways of formally labeling ihis message, but its real effect will be at the actual level of the user,

which can be determined locally only after receiving the acknowledgement from the password database.

We would like to extend the current theory of security to handle such cases. Our approach is to determine a

norrow r-.-,c within which all the possible k -ks occur, since once a user knows where and what the leaks are a different

kind of analysis of them can help decide whether the system is acceptable regarding security. One reason to do this by

generalizing what is already known is that some of the work would then be done for us. Yet this desire is not just
pragmatic, it also follows from the ideas themselves. Consider restrictiveness (see below), the best curnent example of a

security property. The intuition behind it is that all the information possibly available to a user at some security level I

is unaffected by the inputs at levels not less than or equal to I. A cnicial part of the formalization of this property is

the restriction operator 1T 1, which takes a sequence of messages and returns the subsequenceý of those messages at a level

less than or equal to 1. This is used to define the notion "everything that an 1-user could possibly know". But if some

high-level information does not remain strictly above 1, then 1T I is not the right restriction operator.

At this point one could attempt a simple generalization of 1 I. Instead of just throwing away a message with

a high label, one could replace it with a message containing all of the information less than or equal to I. In the

examples above, the message "downgrade X" would be replaced by "write(contents(X))", possibly with certain items,

such as the identity of the user, also deleted. In a limited access process, the high-level command "I want you to do

such-and-such" would be replaced by "Somebody wants to use you for something". For a login attempt, however it is

actually labeled by the system, we would consider it at the level of the user, assuming that the users an, their leveis don't

change.

Allowing for alterations of messag•s such as these, we could then define the view of a system to a user at level

1, ft 1, which takes a possible history of the system and returns what that history looks like at level 1. 'tl can be

defined inductively: (Au = (), and (UAx) Pll = (2ftl)Am(Ox), where 0 is the empty string, A is

113

concatenation, and m is some appropriate function. Presumably m(07,x) = x if the level of x <-• 1, and is as

suggested by the examples otherwise. Thus all the leaks are confined to those a and x such liat x i I but

m (a, x) # () , and they can be analyzed, possibly to get a quantitative measure of the rate. of the leaks or to indicate to

a supervisor where to check to see if leaks have occurred. Note that we allow the previous history as a parameter to m,

as in the downgrading example.

Such an attempt, while mathematically sound, is in some measures inadequate. In the downgrading example,

while the locus of information transfer is restricted to that one message, the content of the transfer is really unclear. On

what does "conients(X)" depend? For limited access processes, presumably most of the calls to them do not interfere

with one another, so by noting them all we carry around a lot of baggage which makes it seem as though more

information is being transmitted than actually is. Regarding logins, we had to make the assumption that the users and

their passwords are constant, which is related to the problem that the suggested function m cannot be computed

locally.

All of these problems are related to the fact that we know what high-level information is available only

retroactively. The downgraded message "write(contents(X))" should depend only on the writes to the file. We would like

to retain those writes in a ft 1 and make m a function not of Cc and x but of C c l and x. But any file

might be downgraded, and saving the writes to all of them wou!3 .!e~t the purpose. m knows to retain writes to a

downgraded file only retroactively. Similarly, the only holds on single-user processes of importance are those that later

cause a reject message. Therefore m should retain the traces of only those requests, necessarily retroactively. For

attempted logins, the situation is the clearest: the level of a login attempt is fhe level eventually assigned by the

acknowledgement.

Another advantage of this more accurate modeling of real systems is that we are interested in not only what data

somebody gets, but also when. As an example, when downgrading we woldd like to know not only that what the low-

level user saw depended only on the writes to the file, bat also that it didn't depend on even that much until a certain

time.

As before, the restriction operator can be defined inductively, using the auxiliary function m. This time,

though, whether to append m(OXx) or not may depend on later messages in the sequence. Also, m(ax) depends

t;_on a f I instead of aO, so we know that the information leaked is contained in what we have been saving.

What follows is a formalization of this latter approach. Examination of the details of this program reveals

manipulations not found in the development of standard restrictiveness nor suggested by the intuitions above. We will

try to explain and justify them as they occur. We begin with some basic definitions and notation, and an exposition of

McCullough's restrictiveness. The centerpiece of the paper is the definition of ft, a generalized version of T, which

allows for a generalization of restrictiveness.

114

7. Definitions and Notation

If X is a set, X* is the set of all finite sequences of elements of X. If Y is a subset of X, X\V is the set

of objects in X and not in Y.

If aL, PE X*, (XLI (the concatenation of aL and 5) is the sequence consisting of ax followed by P. For x

E X, the sequence \x) is often identified with x itself.

(x T Y, the restriction of aL with respect to Y, is the subsequence of a, obtained by removing all

components not in Y. Inductively, "T" =), (a(x) T Y = (CX 1" Y) A x if x e Y, and (CXLx)" Y = aL T

Y if x0Y.

A process P = (E, I, 0, -1) is a set of events E, with d&., int subsets I and 0 of input and output events

respectively, and T• E* the set of traces, thought of as all possible histories of the process. For the sake of this last

property, all initial subsequences of a trace are traces: if WO'{3 F T, then oX e T.

A process with security is a process P with a function "level" from E to a partial order L of security levels.

For example, L might be (unclassified, classified, secret, top secret), ordered the obvious way, and level(e) is the

sensitivity of the event e. If L contains the levels above for each of the incomparable categories Army, Navy, and

NATO, then L is no longer a linear order, but a partial order. All processes will henceforth be assumed to be with

security, even if not explicitly stated as such.

If I is a level (that is, Ie L), then CX T I is at T (xi level(x) _ 1), and L I- r -- I= cc T

level(x) 1l) .

3. Hock-Up. Securit,. and Restrictiveness

Security is a difficult problem. One way to handle difficult problems is to break them up into smaller ones.

After solving those, they must be pieced back together. It is the latter activity that concerns us now.

A computer system can be broken up into a collection of inter-communicating processes. To fit the pattern just

suggested, we would like a security property such that, if it holds for each component, it holds for the whole system.

dLQ Processes P1 = (El, I 1, O 1 , T1I and P2 = (E 2 , I2 , 0 2 , T2 ý are coherent if ElC',-E2 = (II K 0 2) U

(12 n' 01): that is, their common events afe those that are inputs to one and outputs to the other.

115

df If P1 and P2 are coherent, then their hook-up process P1 IlP2 = (EI,O,T) issuchthat

E = E1 UE 2

I = I '.UI2-(EI("1E 2)

0= 01 U 02 - (Ein F,2)

tE T41(tTEI)eT and(t"E 2)ET 2 .

le A property is a hook-up property if it holds of P1 I jIP2 whenever it holds of P1 and of P2 .

Regarding hook-up security properties, the first discovered as such seei !o be restrictiveness, due to

McCullough. The intuition behind it regards non-deducibility of higher-level inputs. It states that if some inputs

invisible to a user at level I are changed, then there iso a way of changing the future behavior of the system again in a

manner invisible to the user.

&J P is input-total if any trace may be extended by any input: VX E Tardx E I, WX c- T.

TChAA.vvC',,1.,-h\ P h rpectr the with v,•pc• o ,, l I if it ' inp,,,-tod - ind

Va, 'IE E* IV13 I*

if L' 3 AY r T and P T1 = PT1i then

3 Ye E* such that OW'WY'r T.

Y'll = YTI, and "'TI"/= 0.

This notion is justified in part because it implies a more natural and apparently stronger non-deducibility property.

(Notice that it does not preclude deducibility based on probabilities or on Liming channels.) It is justified also by the

following
lhbgrem(McCullough) Restrictiveness is a hook-up proplrty.

4. Generalized Restrictiveness

A. Limitable Processes and ý A limitable process is a process P, along with a subset N of E and a

function m: E* x E x E* -4 E. These extra objects N and m are enough to allow us to define the

restriction operator f described earlier, to allow for modeling limited information flow. To save on notation, we will

drop the I from cdl) , defining COl ; the new notation is unambiguous since I is implicit in me choice of m.

The empty sequence, (, is assumed to be an event. This way m can return (), allowing for

aA m(Pe,, ' a

116

As described above, 1 takes a sequence a and replaces each event with its low-level content (as given by

m). What constitutes the low-level content of an event might be affected by future events, with aX 1 being merely the

degenerate case of having no future events. So aX 1 is actually defined using an auxiliary notion a 1'3 where 03 is

meant to be the sequence of events occurring after Cc . CC 1i is defined inductively on a:

0113= 0

aAe =[a1 e A J Am (a 1 eAP, e, T EW) .

Then Cc = a >0.

Some explanation is in order. In general, m is the identity on some set S such as the events at or beneath

a given level. If m returns 0) off of S , then 11 = T S. Since we want to allow for some information to

trickle through, we have m possibly extracting some information from an event e (in the context of the prior events

Cc and future events P3). On what parameters should this extraction depend? Clearly it depends on m itself, which

is assumed to be public knowledge. It should also depend on the previous history, or at least that part which is
potentially visible, a f[c A , and also the current event e. It also must depend on future events, , as desriue.

But if we allow P3 as a parameter, we defeat the purpose of trying to pinpoint the influences upon 11. Using P as a

parameter, we might permit highly classified information that it contains to trickle through. Therefore we select a

presumably large body of events N to be the neutral events. They don't have the power to influence decisions about

information flow. We focus all potential factors into the set EW\ of non-neutral events. The effects that they could

have are determined by m. So by studying E\N and m, we could understand the leaks, maybe even quantitatively.

Notice that we understand E to be sufficiently abstract. Sometimes m will return its middle argument

cleared of much of its information, leaving something which could never be an actual message in a real system but

which we consider an event. For instance, m might remove the client and the level from a downgrade message,

leaving only that a certain file is to be downgraded. Such an event might never i;ppear in any tiace in T by virtue of

its ungrammaticality, but we still consider it an event since we need it in the pseudo-histories aX 1

B. Examples The problems adduced as motivation were the login procedure, limited access processes, and

downgrading. By way of illustrating this approach, we show how to express what is actually happening in these cases

using our language.

To model the login, we consider a system with three components: a human user, the local host, and the login

authenticator. The human's language includes the output "login request" at level X , the inputs "request approved" at

each level I except X, and the input "request denied" at X. The host has all of those events with inputs and outputs

117

reversed, along with the output "login check" at X , inputs "check approved" at each I except X, and the input

"check denied" at X. The authenticator has the "check" events of the host, with inputs and outputs reversed.

A login attempt would consist of a request initiated by the human and passed alor.g to the authenticator. This is

at level X since so far no one outside of this small group can know anything about this sequence. The authenticator

then consults its database, and either approves the login at a fixed level, or denies it again at an isolated level. This reply

is then passed along to the human.

How would we define m to represent the view at level I ? Requests and checks are invisible if they have not

yet been confirmed, so rn(0, "login request or check", 0) = (). Once the check is approved at level I, the check-

event that caused it is visible at 1: rn(cL, "login check", "check approved at 1") = "login check at I". Note that at

this point "login check" is visible at 1, while the "login request" that caused it is still at X ,invisible to I. This is

for reasons of coherence. That is, the host now knows enough to reclassify ihe request, but the human doesn't. So

mhost could use the non-neutral event "check appioved" to reclassify the request it received from the human, but muser.

couldn't. To retain the coherence of the local m functions, the original request cannot yet be affected. The next event,

though, is that the host transmits "request approved at I" to the human, and both processes reclassify the initiating

request to 1: m(oC, "login request", "request approved at i") = "login request at I". ThW neutral events are

everything but the approvals. We speak more about the coherence of rn's below.

For a limited access process, consider a file accessible to at most one user at a time. The languages for the

clients each include outputs open, close, read, and write, and inputs confirmed and denied, a! all levels. The language for

the file is the same, with inputs and outputs reversed. The file will confirm an initial "open", then confirm any future

sequence through th2 first "close", and wait to confirm the next "open". Anything else it denies.

When there is no leak, it suffices to use the standard restriction operator:

m(a, x, P) = x if level(x) < 1, () otherwise. The only time there is a leak is when I tries to open tme file

and either it is currently being used by someone 4 1 or, follo wing an earlier denial, the request is now -onfirmed. In

the first case, the denial is tagged with a'i identifier for the currently operative "open". This is necessary so that in the

inductive definition of fl we know exactly which "open" to retain. So m(ia, open(tago), denial (tag])) = open

if tag0 = tag1, () otherwise, and m((X, denial(tagj),()) = denial. Observe that m does strip off some

information from open(tagO) and denial(tagj), since all that matters to the latest request is that somebody somewhere

already has it. The second case is handled similarly, with the confirmation tagged with an identifier for the close that

made it available. The neutral e-'ents here are everything excepL the denials and the subsequent confirmations.

For downgrading, the non-neutral message is "downgrade(X)". it makes visible the previous writes to X,

removing all information such as client identities and levels from the writes and leaving only the content: m(O,_

write(tag), 0) = 0; m(ft, write(tag), downgrade) = write.

1.18

C. Generalized_ Restrictiveness By analogy with T and restrictiveness, we say that a limitable process P is
generalized restrictive (g.r.) if it is input-totUa and

Va,a'E E* and x r N, if

Cc = aft and

^Ax• a'r T

then E3'" E* and 3ye E so that

aAXf= a'A-D'Ay ft, a'A^'Ay 6 T,

P' TI (), Ond 1 'Ay r N*.

We can assume without loss of generality that a f = 0(' AD' f (To see this, let D3" be the longest initial

segment of o3' such that aAO"t a . Note that P" might be (). Let y" be the next event in A'Ay

beyond 1" (which also may be () Then Ps" and y" are as desired.

First we argue, necessarily informally, for why this is a useful property to use. Then we discuss its relationship

to standard restrictiveness.

A sane notion of security is non-deducibility. A certain set of events w is secure from the view determined by

m if:

for any trace aX and legal sequence ui w*

there exists a trace 13 such that

a f= 13 f1 and 3 Tw = u.

(A legal sequence is one which is realized by some trace: u = Tw , tor some I E T.) With this property, an m-

viewer can deduce nothing about a T w. Usually the information we want secured are the inputs of level not less

than or equal to 1. In this context (letting T = 1) , these ideas are intuitive, precise, and their formalization is

implied by restrictiveness.

In our more. general setting such simplicity does not work. We might try to have w be those inputs with no

I - effect. For starters we want more than that. If an input has an 1 - effect then it would not be in w, but if two
have the same I - effect then we would not want to be able to distinguish between them. Even more seriously,

"inputs with no I - effect" can not be well-defined, since m depends on the previous and future histories a and

as well as the current message x. Maybe sometimes an input is visible and other times not.

119

Our way to handle such problems, especially tie second, is to consiler deducibility of information in context, as
a trace is being generated. The system is secured from deducibility if we cannot predict the future, nor find out that a
previously reasonable guess as to the actual history was incorrect. This is meant to be necessary only when all the new

events are neutral, so we can assume as much. That is, suppose that the real history a has been unfolding, and we

have guessed that the actual history is 0(, based on our view 1: a f = (' P . Then we are given the opportunity

to guess those inputs with na l- effect, using only neutral events. Think of unrolling more of a' until all inputs

before the next l- visible event occurs. In response, more of a is revealed, up to the next I - event, and including

only neutral events. Note that we still have a f = a' ý . Then the I - event x is revealed. Sinceo it is also

neutral, there is a way of extending 0' to catch up with this new event. Without changing our earlier guess, nor our

arbitrary prediction about future inputs, we can extend a' by neutral I - invisible non-inputs P.', and then another

neutral event y visible to I. The nature of y cannot be restricted beforehand, since m may be one - to - one,

determining y completely. Still, in the general case we have circumscribed those events about which we :an deduce

something to those that are I - visible. Of course, given a particular in to analyze we can hope to do even better.

The assumption that all new events in sight are neutral is necessary. Suppose that a and U' are the same

except that a includes a session in which a high-levtL user writes a file. If we extend a by the (non-neutral) x =

"downgrade X", that will affect the beginning pant of (XAX ft. There's no way that the beginning part of a' can be

so affected by any extension. If a non-neutral event is introduced, we may have to revise our earlier guess. It is for these

instances that another kind of analysis in necessary. What we need is some measure of how much information comes

through, possibly by measuring the changes forced upon a', when x is non-neutral. Then some judgement could be

made about whether a particular system is acceptable for its purposes.

Generalized restrictiveness implies a limited form of standard restrictiveness. Using standard notation, to show

standard restrictiveness, we are given certain or, o, y, a(, and a3 have to find a ,' with no inputs out of 1. If

Y has non-neutral events this may not be possible, so assume it doesn't. Consider the events of 7 one by one. Use
g.r. for each to find an appropriate extension with only neutral events, and at most one input out of 1, that one being

visible. So we can find a T , not with no non - I inputs, but whose only non - I inputs are I - visible, always

avoiding E\N. This is the best we could hope to do, given the set-up, and indeed it works.

D. Coherence and the Hook-un If the Pi are limitable processes, with associated functions mi and sets Ni,

they cohere if

"* they cohere as processes,

"• Non El = NI n' E0'_,•

" for a, P3 E E* and x a common event

120

mo(aO, X, %0) = mI (a 1,x, 0 1)

where cx = a T Ei , and similarly for Pi , and

.if x is not in E(I_i) then mi(aifx'"P , x, fi TE\N)

is also not in E(l..i) .

If the Pi cohere as limitable processes, then P = P0 I P1 is also limitable, as follows. Let

N -- N0 U N 1 . By the second clause, we don't lose any non-neutral events. Let. m: E* X E X E* -4 E be

rn(a, x, [5) = m:(OXi, x, Pji), where x is in Ei This is well-defined by the third requirement, and induces

:E* -E*. By the last,(a 1) TEi = (a TEJ)fI.

Incidentally, the final clause is not just an technical convenience. It is necessary for security reasons. If

m0(Ov x, P) is a low-level input from P 1 , but x 0- E1 , then P1 does not know to cover up for P0 's lie, This

informal leak can be expressed formally.

E. The ltook-Up -Theorem We would like to have the hook-up of two g.r. processes be g.r. This is not true, as
the following example shows.

Let EO = I',Ia, Ob), E) =f{I", Oa- I1b. Ia = Oa, 'b = 0 b, and all other symbols are distinct. A

symbol with an I is an input, an 0 is an output. Let To I= U (I" A E6); T1

(1"^ I,)tJ.(El\"'A E). Let Ni = Ei, and mi(LX, X, 3)= () ifx = I' or '",1t0O otherwise.

It is easy to check that each Pi is a process (input-total, closed under initial segments, and disjoint inputs and
output) and is g.r. Furthermore, the processes cohere and the mi cohere. Nonetheless. P0 I I P1 is not g.r. Let

a = I', Cc '= I", and x = 0b. Notice that the aspect of retroactive changes is irrelevant here; even in the

simpler case of replacing a message x by m(x) we would ilave the same example.

The problem is that we need a certain amount of coordination between the pr:esses. Each process agrees on
what the restricted trace should look like, and can accommodate that with a real trace, but each insists that the real trace

contain an input to itself. Neither is willing to put out.

Therefore, we say that a limitable process P puts out if, whenever m (a 11, x, 0) is an output, a A X

I' and x e N , there exists • and there exists y so that c)3- Ey T,

aO x "= fl~y 1',J 3 • (NXA)*, and y is a neutral output.

121

Theorem: If Po and P1 cohere as limitable processes, and each is g.r. and puts out, then P0 II P1 is g.r and

puts out.

Sketch of proof: First we show g.r.

Given X 0(' and x, we must find appropriate f3 and y. If x is not in E(li) then apply g.r. to Pi

only. This produces R and Yi" Let f3 = and y = Yi.• The important points to note are that P(1 -i)

finds this acceptable because all of we shared messages in i are inputs to P(I i) which is input-total. Also, f is

unaffected on 0(' because i contains only neutral elements.

If x is a shared event, let i be such that m (a i, x, ()) is an output for Pi. Use g.r. on P(l-i) to

get 0(1-i) and Extend a' by ý(1i) . Atiy new common event is an input to Pi. Now apply g.r. for

Pi to a i and a followed by the new inputs, [(14)T Ii. The later is a trace by input totality, and has the same

view as ai by the coherence o. m and m1 . Extend a'Ap'(1)-i by I . If is an output, extend again by

Yi if no!, ,Se ph 1-.nnn. Unn.. d.5 ,i~ np~ ~ ~ ~ ~~~pt.. r ----- r-z-: p.*~ 1-1 ~ 'SfUJ

The putting-out property is even easier to check. If m (a 1X, x, 0) is an output, then x is not a shared

event. Therefore one can apply putting-out to the Pi such that x is in Ei Notit e that this uses only input-totality

and not generalized r"strictiveness in full, so that being input-total and putting out is itself a hook-up property.

References

[McCullough 87] McCullough, D. "Specifications for Multi-Level Security and a Hook-Up Property", Proceedings of
the 1987 IEEE Symposium on Security and Privacy, May 1987.

[SDOS 88] BBN Laboratories, "The Secure Distributed Operating Design Project", RADC-TR 88-127, June 1988.

[Weber 87] Weber, D.G. and Lubarsky, R., "The SDOS Project -- Verifying Hook-up Security", P.oceedings of the 3rd
Aerospace Computer Security Conference, December 1987.

122

THE. ARGUS SECURITY MODEL
Marc M. Adkinst, Gary Dolsen, Jody Heaney, and John Page

Planning Research Corporation
Government Information Systems

1500 Planning Research Drive
McLean, Virginia 22102

Ab~tr&
An overview of a new security model is presented. The Argus model features the use
of copy instead of read and write, as the lowest level information movement operation,
and the combination of the Simple Security Property and the Security *-Property into
a single information flow restriction. Other features include support for the handling
of removable media (including hardcpy) and protection against viruses.

The Argus computer security model described it. this paper contains features of interest to the
computer security community. While parts of the model are common to other current security models,
these parts have been combined into a hybrid framework. On top of this we have implemented several
new policies to extend the capabilities of the model to address areas not covered by other models.

The Argus model features the use of copy instead of read and write as the lowest level
information movement operation, and the combination of the Simple Security Property and the
Security *-Property into a single information flow restriction. The security perimeter has been
extended to include the handling of objects on removable media (including hardcopy). Finally, the
model includes special mechanisms for resisting viral infection and controlling the damage that may be
done by Trojan horses.

This presnrtation is designed to provide an overall view of these features for critical review
within the community. In addition, it may be desirable to incorporate aspects of the Argus model into
other ongoing model development efforts. Due to space limitations, a complete explication of the
model can not be provided. Full documentation of the model is contained in [1].

The development of this model was part of a contract sponsored by the SD1O and monitored
by Rome Air Development Center (RADC).2 This particular sub-task was to use the tools developed
under the contract to construct a hybrid model from relevant sections of other, existing models. The
model was to be specified in the Common Notation3 for model expression developed under the
contract

The Argus model combines features of the Bell and LaPadula (BLP), Military Message
System (MMS), and SRI SeaView models. 'These models were evaluated during previous phases of
the contract. The Argus model is a simple, general model with wide applicability, in the tradition of
the BLP model. Unlike the BLP model, however, it is based on restricting information flows and
utilizes a multi-level entity scheme, following the spirit of the MMS model. In addition, the Argus
model incorporates two new policies that rely on the structure of the core model. This approach of

D 1989 Planning Research Corporation
1 Mr. Adkins is currently employed by BoozoAllen & Hamilton. Inc., 4330 East Wesi Highway,

Bethesda, Maryland 20814
2 Contract number r-3060^. 86-C-0 190.
3 The Common Notation is a language for expressing security models with surface similarity to the Ada®

programming language. Developed for use with a set of automated tools, the Common Notation was used to
express three existing models during earlier phases of the contract. Full documentation of the Common Notation is
available in 12]. Ada® is a trademark of the United States Government (Ada Joint Program Office).

123

layered policies borrows a fundamental concept from the SRI SeaView model, wherein the application
specific TCB model is built on top of the MAC model.

In the construction of the Argus model there were two main goals. The first was to address
features of the above three models that appeared overly restrictive or incompletely specified. While it
is not our intention to criticize particular models, previous work led us to some reservations about
specific features (or their lack). The second goal was to add new features to address issues outside of
the basic framework.
Existing Security Model Issues

In some existing models, the use of read and write as atomic operations does not provide
enough information to check for a security violation. There are cases where the source and/or
destination of an operation is implicit, and therefore untraceable. This is due to the way that the
system state is represented. During a write, it is generally obvious that the object written to is
changed, and this change is measurable either empirically or theoretically. During a read, however,
some models do not mepresent the destination for the data read, and the source object does not change
in any measurable manner. In other words, we can measure a difference between the new value of
the object to which we have written and its old value, but not between the object from which we have
read and its old value. This the read operation makes no observable change to the system state in
these models (for a complete description cf this problem see [31).

Most existing models are not intended to handle the current trend towards multi-window
workstation environments. For example, non-secure window-based environments allow users to cut
and paste information between windows and interact in a variety of other "user-friendly" ways.
Users of secure versions of these systems desire the same kind of interactivity, but the security-related
questions raised by these operations are not handled well by models that treat devices as simple data
receptacles.

In some models the file structure for the system to be implemented is sperified explicitly in the
model, making these models incompatible with certain tasks, functionality, or other models. For
instance, the BLP model specifies a hierarchical file structure. In addition to providing a structure for
the storage of files, the control attribute for a file is incorporated implicitly into the file structure. Any
user with write permission to the ancestor of an object can alter the access permissiozis of that object.
Thus, not only is the file structure specified in the model, aspects of the BLP model are dependent on
its file structure.

In addition to known model characteristics, we attempted to address some issues outside of
the scope of models that we had studied. One such issue was the treatment of computer peripherals
using removable media such as printers and disk drives. In non-secure computing facilities it is
common to locate a high-speed printer in the computer center. Print jobs are sent to this printer and
then picked up later. In a secure computing facility it is important to regulate access to the listings to
provide some mechanism for assigning responsibility for the output of the printer.

Similarly, the handling and storage of removable media are the responsibility of computer
center personnel operating on behalf of the entire user community. Currently this type of protection is
implemented via physical security measures outside of the computer system. In general, connection
between the security model of the system and these physical security measures is loosely specified at
besL We theorized that a model could be built that extended the security perimeter to link up with the
manual handling of computer media of various types.

It was also hypothesized that a type of virus protection could be built into a model by the
special treatment of executable files. A computer virus is a code fragment hidden in another program.
When that program is executed, the code fragment executes (without ihe user's knowledge) and
creates a copy of itself in other program files. There may also be other side-effects, either benign or
destructive. Generally the virus also acts as a Trojan horse once embedded within a host file, often
with a time delay so that the damage is done at a later time (known as a "time bomb"). Since a virus
breeds by spawning into executable files, it seemed that special protection for these files would be a
first step towards preventing viral infection.

124

Argus Model Features

In the interests of brevity, a formal description of the Argus model in the Common Notation is
not provided Instead, the important aspects of the model are discussed in an informal manner.
Crucial details are illustrated with fragments of Common Notation source code. The notation used
should be, for the most part, self-evident. A full presentation of the model may be found in 11]. The
Common Notation is described in 121.

The architecture of the Argus model consists of a number of support modules (referred to as
packages) and the model itself, as shown in Exhibit 1. A number of lower level modules common to
a variety of models are referred to as Support Packages. The Core Definitions of the model are data
definitions and simple security restrictions that support those definitions. Basic Policy is provided in
the form of the Mandatory and Discretionary packages. The Enhancements to the model embody the
two additional features added to this basic framework.

Argus Model

Caretaker Virus Enhancements

Mandatory Discretionary Basic Policy

L StateStability
1W N' 'Core

DfArgus Dinitions

Support Packages

Exhibit 1. Argus Model Architecture.
Arrow denotes dependencN of a higher-level module on a lower one.

An important point about this architecture is that most of the packages are independent,
allowing them to be removed or replaced with different functionality. For instance, the Caretaker
package might be removed as unnecessary for a particular system implenmntation, without affecting
the rest of the model. The Discretionary module might be replaced with one that supports usei roles
in the tradition of the MMS model. This gives the Argus model a great deal of flexibility.
1281A.,Structure

The basic entities of the Argus model are blocks, objects (files, processes, and displays),
users, and devices. Security labels for some of these entities are specified as the accepted
combination of level and category set. A security label range used for other entities consists of a low
security label and a high security label. The data structures themselves are described in the Argus
Data package. Restrictions on these data structures are contained in the State and Stability packages.

The most important data structures used in the Argus model are blocks, which represent
single-level data entities, and _bj._, which represent multi-level data entities. Unlike the hierarchical
data structures of the BLP and MMS models, the Argus model only allows a single level of nesting Uf
blocks into objects. Exhibit 2 shows a typical object. On the left is a set of blocks containing the data

125

that comprises the object. Each block has a security label, and the labels of the blocks are restricted to
the security label range associated with the entire object. The set of data blocks for an object is
considered the value of that object. Changes to the data blocks of the object are interpeted as changes
to the object itself.

Object a ndlock secret)

Data lockk A Date Block C Property Block Ai

Viden idal Sec reSit Secret b

ato Block B Ddta a Blct Z Property Block BiUnossified Confidential Confidential

PropertysereBlock Z!

Exhibit 2. Object and Block Structure within the Model.
Data blocks are on the left and property blocks on the right.
The security label range for the object is at the top.
Individual block security labels are inside of each block.

In addition to data blocks, each object may have properf y blocks describing aspects of the
object that ar outside nf t) e actual data content of the object (shown at the right of Exhibit 2). These
could include such things as file name, prcess priority, creation date, print form type, or filep
structure infspec tia d irco thoe. nre alpropertie a the re prblcctsd by t ir o secuity label, uthis
labels which must conform to the security label range of the object itself.

The property mechanism allows file structure to be represented in a controlled but
implementation-dependent manner. Note that the nestng of blocks into objects does not replace a file
structare (or equivalent): each object would be one item in such a structure. Properties could be used
to point to descendent and/or ancestor objects in a hierarchical structure, or this data might be kept
within special directory objects. Sinc h .al properties are blocks, with their own security labels, this
information is astack of ur r s without proper clearance or need-to know. A particular example
Tis the name of a file. If represented as a property, the file name may be set to a high security level,
making it impossible to copy the property block to a display o f hro py or of an improper security
tlevel. Thus objects may be made invisiblu to users with lower clearances.

There are three types of objectsh files, processes, and displays. The file is a standard
eseondary storage repositoryl for data. Each process is an execution session, representing a user. A

ueprocess has a stack of current images, where an image is the executing form of an executable file.
This stack represents the execution of programs by the process. A display is a document resident on
drcan inputeoutput device. Examples of displays include a page of hardcopy or a window on a video! termidnal. Since all objects are made up of blocks, these three types of objects are conceptually
constructed from the same atomnic units (blocks).

Sare the human users of the computer system. Each user has a security clearance,represented by a security label. This is the highest level of access that the user may exercise. Some
users have special attributes: a Security Watch Officer (Sr, o) is a user with a wide range of special
capabilities, and a downg fader is a user able to change the security label of data in a downward
direction. The security label and special attributes of a user may only be changed by a SWO.

Each user owns the objects within the system that s/he has created. The security label of the _

owner must always dominate the high end of the security label range of the owned object. The
security label range of an object may only be changed by the owner of that object. The owner of an
object may only be changed by a SWO. In the case of processes, the owner of the process is

126

considered the "current user" during operations of the process. This is true even for background oi
batch jobs (thus these jobs can not be run "by the system").

Devices are used to represent the hardware of the system. Objects are hosted on devices: files
on secondary storage devices, processes on CPU devices, and displays on input/output devices.
Objects do not migrate between hosts, an object is permanently resident on the host on which it is
created (meaning that an object may only be moved between devices by copying it). Devices have
security label ranges, and objects resident on a device must have security label ranges contained
within that of the device. The security label range of a device may only be changed by the SWO.
The Copy Qperation and Infomation Flow

The copy operation4 , used to copy the value of one block to another, is the most important
operation of the Argus model for several reasons. First, the copying of blocks between different
types of objects provides a common interface, supporting the movement of data between different
types of media in a common, secure manner. Second, since objects cannot move between hosts, it is
necessary to copy the blocks of an object from one host to another in order to "move" the object.
Finally, it is the operation underlying both read or write, avoiding the problem of invisible read
operations. The definition of the copy operation is contained in the model itself [1].

A copy represents the movement of data between any two blocks, regardless of the type of
the objects to which the blocks belong or the devices on which these objects are hosted. While this
may be implemented in a number of different ways in a particular implementation, the security
relevant issue is always the movement of information from one block to another.

Instead of breaking data movement into separate read and write components, all data
movement within the Argus model is described in terms of the copy operation. The basic copy
operation is from one block to another (since blocks are always at a single security level, this is
always a single-level copy). Using this model of computation, it is not necessary to have a read
operation at the most basic level. The read is simply a copy from the source block (for example, a file
record) to a destination block (for instance, a process 1/0, butif.IC). .Likewise ,vmte may be a copy
from a process 1/O buffer to a block on a printer display. By explicitly modeling the often ignored
destination of a read operation, the Argus model is able to track the entire flow of data in any copy
operation.

The use of copy as the basic operation is supported by the Common Notation changes
operazon and its implicit model of information flow. Since crucial aspects of the model are expressed
using the changes operator, we digress briefly into a discussion of its semantics. In the Common
Notation, an operation is specified as the effects that the execution of the operation will have on the
system. For instance:

operation Copy (from block, t-o block: Blocks) is
-- Copy data from one bTock, overwritinrg another block.

begin
value _of(toblock) := valueof(fromnblock);

end Copy;
states that the data within the destination block will be overwritten by the data in the source block.
Since this information is available, it is possible to express a clause such as:

blockl changes block2

4 From this point on we use the terra "operation" to refer to a transition of the system represented by the model from
one state to another. This may be considered a function or operating system call, or a similar concept to the BLP"request." The security relevant aspects of an operation are those changes that are made to the entities that make up
the system (the system state) during the execution of the operation.

127

within the body of a model constraint 5 and determine whether or not the clause is true. This
determination is always done within the context of a particular operation. While this is simplistic, it
does specify for any single operation the potential movement of information.

It should be noted here that the changes operator does not handle all classes of information
flows, When discussing the information flows for an operatic , we make the distinction between
direct, indirect, transitive, and temporal information flows. A sta -ment such as:

alpha := bravo;
in an operation represents a dkc flow. Indi=ct flows are characterized by modification of the actual
assignment statement by values other than the direct source, Examples:

(1) alpha :- array-var(index);
(2) alpha il var then valuel else value2 end if;

In example (1), an assignment from an array reference, the index of the reference (index) is the
source of an indirect flow to alpha. In example (2), the variable var is the source of an indirect
flow to alpha, since changing its value may be reflected in the value of alpha. In both cases the
value of the indirect source has an effect on the value of the destination, but the source value itself is
not necessarily transferred.

A nsitive flow involves multiple assignments within a single operation. The example:

alpha valuel;
bravo := alpha;

demonstrates a transitive infornation flow from valuel to bravo via the intermediate alpha (there
is also a direct flow from valuel to alpha). Note that these two statements must occur in the same
operation to be a transitive flow.

A transitive-like flow that stretches across two or more separate operations is referred to as a
ieMpoa1 flow. Unlike the first three types of information flow, a temporal flow is not calculable
except at run-time, since there is no way of determining (prior to run-time) the relative ordering of
operations in a running system. The temporal flow is not covered by the changes operator,
therefore user collusion and covert channels require separate analysis.

Mandatory and Discretionary Policies
These definitions are contained in the Mandatory and Discretionary packages.
The mandai.ry security policy is built directly upon the changes operator. This is done

with a sing' .- constraint, subsuming both the Simple Security Property and the Security *-Property:

dynamic constraint Secure Information Flow is
-,- Replaces both the Simple Security-Property and the 3ecurity *-Property.
begin

for all blockl, block2 : Blocks 1
blockl changes block2 -> -- implies

Dominates (securitylabel (block2),
security_label (blockl));

end SecureInformationFlow; 6

For information to flow from a source block to a destination block, the security label of the destination
block must dominate the security !abel of the source block. Normally, the Simple Security property is
used to block reading up and the Security *-Property is used to block writing down, but this
constraint blocks both as they are just different ways of viewing the basic mechanism of copying

5 We use the team constraint to refer to a security restriction with the model. An example of a constraint would be
the Simple Security Property.

6 This is similar to the Flow Policy frem the SRI SeaView Policy document.

128

information. At the level of mandatory security control, the copy operation and changes operator
allow an elegant replacement for both properties.

The mandatory policy is modified by the downgrader policy. In essence, the mandatory
constraint may be circumvented if the owner of the process executing the operation (the "current
user") is marked as a downgrader. In addition, a security label for a block may be changed in a
downward direction only by a downgrader. In any event, the security label for a block must be
within the security label range for the process executing the operation both before and after the
operation. Thus a process may not reference a block outside of its label range, nor change a block
label to be outside of its security label range.

The discretionary security policy is also built upon the concept of information flow between
blocks, but in this case the user is presented with an interface based upon read and write access to
multi-level objects. The actual restriction of information flow is best modeled using the changes
operator, as with the mandatory control. However, actual access controls presented to the user must
be of a more traditional type, as shown in the DiscretionaryInformat ionFlow
constraint:

7

dynamic constraint Discretionary_Information_Flow is
-- Discretionary access to objects
begin

for all blockl, block2 : Blocks;
blockl changes block2 --;> -- implies

read in z- ccess..permissions -- read from source legal
(owner(process), part_of(blockl)) and

write in accesspermissions --- wri te to destination legal
(owner (process), part_of(block2));

* nd i rtonar, Tnformation FlOw;

where owner (process) refers to the current user and partof (block) specifies the object of
which block is a part.

The main diffeience between this formulation and the more traditional read/write based
formulation is that the Discretionary_Informat ion Flow constraint is tracing the movement
of information in a dynamic manner. The BLP mechanism, as a counter exiamrple, traces the start and
end points of the copy, but does not respond to the actual read and write (not in any way modeled).
In the Argus model, the copy operation is directly modeled, so the results of the operation may be
seen in terms of the flow of information during that operation.

In order to ensure that the discretionary policy works correctly, it is necessary to constrain
blocks to remain with a single object. To this end blocks are created already attached to a given
object, and they do not move between objects. Blocks must be copied from one object to another
(including the creation of a destination block if necessary). All blocks must belong to some (one)
object at all times.

The ability to change the access permissions for an object is embodied in the control
permission. When a user is granted control permission to an object, s/he is able to alter
discretionary access permissions for that object. The owner of the object is constrained to always
have control permission to that object (preventing hostile takeovers by other users with control
permission).

Permission to execute an object is given with the execute permission. For an object to be
executed by a process (present in the execution stack of that process) it is necessary that the owner of
the process have execute permission to that object.

7 For each user/object pair, a (possibly empty) set of access permissions is defined. A user has access permission to
a given object if access is a member of the set defined for (user, object). We have defined the possible access
permissions as read, wrk e, cont rol, and execut e, where write is write-only and read/write access
requires both read and write permissions.

129

Caretaker Protecion
Physical devices are included in an extended security perimeter that makes users responsible

for objects hosted on (or sent to) those devices. This mechanism is used to provide accountability for
the physical handling of secure data that is produced by (or consumed by) the computer system. In
particular, this policy is designed to handle the printing of do'uments on communal printers and the
handling of removable secondary storage media.

Each physical device on the system is assigned a set of caretakers. The set of authorized
caretakers for a device may only be changed by a SWO. At any given time, exactly one of these
caretakers will have accepted responsibility for the device and its contents, which will be some set of
data objects (as described above). The only time that there can be no caretaker for a device is when
there axe no objects on that device.

The responsible caretaker for a device can only be changed by a two-step process. First, the
current caretaker informs the system of the identity of the next caretaker. Second, the new caretaker
accepts responsibility for the device. This is modeled after the changing of the watch in a military
environment. The two-step process prevents a caretaker from taking responsibility away from the
currently responsible caretaker without his or her permission.

Constraint CaretakerLabelDominates places restrictions on what may be stored on
a device:

constraint CaretakerLabelDominates is
begin

for all object : Objects I
-- Objects may not be placed on a device that does not have
-- a responsible caretaker
caretaker(host(object)) /= null
and thenThe se.curi t ab,, onel f ,h,• ,b i,,ec~ co de ic ,7 4,,; -o uv be,,• t d•M, ,r., b,• .

Tethe clearance othe responsible caretakerfor the device
Dominates (security_label (caretalker (host (object))) ,

label range (object) .high);
end CaretakeraLabel rominates;

The combination of requirng a responsible caretaker for a device that hosts objects and requiring that

the responsible caretaker's clearance dominate the classification of all hosted objects prevents the
operator of the device (who would be the responsible caretaker) from access to data for vhich s/he is
not cleared. In this manner, a communal device may be placed under the responsibility of a cleared
operator who will be responsible for the distribution of the products of that device. This is patterned
after the manual handling of hardcopy documents in a secure document control area.

The caretaker policy also extends to terminals used for access to the computer system. During
the logon process, the user would accept responsibility for the terminal. This allows users to be
restricted from using certain terminals (by removing the user from the authorized caretaker list for
those terminals). Logoff would proceed by clearing all objects from the terminal and relinquishing
responsibility to the system. During a session, the user would be responsible for all data displayed on
the terminal.

This policy extends the security perimeter of the computer system to include the direct
handling of media used by (or produced by) the system. Full accountability is preserved by the
caretaker mechanism, providing a connection between the electronic and paper versions of the same
data. At the same time, the mechanisms described here have been designed to mimic existing manual
methods so that there should be no additional encumbrance on the security officers and computer
operators involved in using such system based on the Argus model.

]]A.YkuisQll f
By representing the execution of programs and treating objects that contain executable images

in a special manner, the Argus model reduces the entry window for viruses. This involves the
identification of executable files, the identification of tools allowed to manipulate such files (if any),

130

and a representation within the model of the execution of programs within a process. These three
facets combine to reduce the chance of viral infection of a system.

Executable files, those that may be directly loaded and executed by the system, must be so
marked by the system at the time of file creation. Only the SWO may change this attribute of a file
(known as the image attribute) at any later time. A subset of these files (possibly empty) will qualify
as linker files: this attribute is also protected such that it may only be changed by the SWO. Only
linker files are allowed to manipulate image files.

The execution of a program loaded from an image file is referred to as an image. That is to
say, a program is stored as an image file, but when loaded into a process it is referred to as an
image. The representation of executing programs used in the model is a stack of images, with the
currently executing image on the top of the stack. An image is considered to be suspended when
another image is executing "on top of' it. Other models of execution may be desirable, but for the
purpose of the virus mechanism it is only necessary to identify the image cuirently executing and the
attributes of the file from whence it was loaded.

Viral protection is provided by restricting the modification of image files to processes
currently executing images from 1 i n k e r files (as in Exhibit 3) by the
"ImageManipulationSecurity constraint:

dynamic constraint ImageManipulationSecurity is
- Simplified version:
begin

for all blockl, block2 : Blocks I
-- for any information transfer

blockl changes block2
-- where the destination block is part of an image file
and then partof(block2) : Files
and then image (part_of(block2))
S-> -- the executing image must be a linker:

linker (Top (execution stack (process)));
end ImageManipulationSecurity;

Any virus (other than one that has been placed within a linker file) that attempts to modify another
executable file will be prevented (as in Exhibit 4). Other than a collusion with the SWO, the only
window for viruses is the linker itself, before it is placed on the system. After it is placed on the
system it is protected because it is an image file. We intend that linkers be developed in secure
environments and treated as highly classified data en route to computer sites, closing the loop around
the system. Any system on which no development work is done needs no linkers, providing a virus-
proof environment with no entry points.

Command files (or batch files) are not handled explicitly by the Argus model at this time.
Since these are also subject to viruses, similar safeguards would be recommended. Unfortunately,
most systems use simple text files as command files, making it difficult to provide the same type of
controls. The solution appears to be some type of special-purpose command file editor that is marked
similarly to the linker attribute and is the only legal tool for use with a specially marked command
file. Similar techniques might be used in a development system to handle source files for various
programming languages; or in a special-purpose system for data files connected with various
applications.

In addition to virus protection, damage control for Trojan horses is provided by labelling the
executable image objects as trusted or untrusted, and restricting the capabilities of untrusted images.
This is in contrast to the Bell and LaPadula model (wherein a process would be trusted or untrusted)
and serves a different purpose. In the Argus model, we intend that the trusted attribute for an
image file be used to signify an executable image that is trusted to operate over multiple security levels
simultaneously (the default for all newly created image files is to be untrusted). The trusted
attribute is also protected so that it can only be changed by a SWO.

131

Process 1

Image 'link' File 1
.. linker: image: true
Strue -information flow -"
(I,

"I Image 'cc'0 _
Slinker:
Sfalse
X

Image 'cli'
linker:
false

Exhibit 3. Legal manipulation of an image file by a linker.

Process 2

lmege 'filter File 2
Slinker: image: true

Sfalse -info lo -

0 Image 'edit'
' linker:
a falsex
UJ

Image 'cli'
linker:
false

Exhibit 4. Attempted infection of an image file by a virus.

This does not bypass other constraints or policies, specifically the mandatory and downgrader
policies. A trusted image is not allowed to downgrade information unless the normal downgrading
requirements are met. Rather, a trusted image is allowed what would be considered normal execution
in many other models. The security label range of an executable (image) file is used to restrict the
range of security levels accessible by the executing image loaded from that file, but operations may be
done within that entire range. For instance, a copy from a confidential block to a secret block is
allowable for a trusted image marked confidential to secret.

By contrast, an untrusted image (from an executable file not marked with the t rusted
attribute) would only be able to use operations of a single level during its execution. This is modeled
by restricting the security label range of a process to have its top label equal to its bottom label dining
the execution of an untrusted file. Thus, in the example above, an untrusted image from a file marked
confidential to secret would be able to copy from confidential to confidential, but not from confidential
to secret (or ever. from secret to secret in the same execution of the image).

The intent of this is to prevent Trojan horses from rampant movement of data. In particular,
an image with a Trojan horse should be prevented from downgrading data even if the current uscr is a

132

downgrader. If such an image has not been explicitly marked trusted, then this cannot happen.
(thus downgrading is only possible using trusted image files). It is up to the SWO to determine
whether or not an image should be trusted in this sense.

Evaluation of the Argrus Model

The model features presented in this paper demonstrate a number of interesting extensions to a
hybrid model constructed by borrowing characteristics from several existing models. The basic
framework of the model provides a flexible, multi-level object structure, that is protected by
information flow constraints. The combination of these features provides much more flexibility for
implementors of both the system and utilities to be used on that system. Another major benefit is in
the ability to provide a more flexible and productive (and less frustrating) user environment.

The use of copy as the atomic data manipulation operation explicitly specifies the source and
destination of all data, thus providing enough information for security-relevant decisions to be made.
In particular, this eliminates the use of implicit destinations for read operations, as the equivalent
copy operation must have an explicit destination. Where necessary, the copy operation may be
interpreted in terms of reads and writes (for instance the Discretionary policy), providing both
mechanisms without conflict. Finally, the use of copy as the basic operation leads naturally to an
information flow view of the entire model.

The block/object structure of the Argus model, coupled with the information flow mandatory
security mechanism makes it possible to manipulate the contents of multi-level objects (such as
workstation windows) in a straightforward manner. In particular, consider the case of two editing
windows on a workstation, as illustrated in Exhibit 5. If the implementation of the editors takes
advantage of the block structure of the displays (the windows) properly, the user will be able to copy
secret data from one window to another (assuming that the security label ranges of the objects are
appnnrriAteP) even though a mix of security levels is displayed in each window. This is the type of
capability that makes a system more productive for the user, but is difficult to support with less
flexible models.

Eitor #1 Secret -, Top Secret

E ibh the greatest of haste
si(S) Preparations are co n strte f rb
Don's surprise party.]

(TS) By the way, that wasn't your
wife I saw you with last night! Who

if you could get the cake.

(C) Bob's bachelor partý

Exhibit 5. Copying between windows on a workstation.

Using +fý property mechanism, implementors can construct arbitrarily complex, secure object
structures (,, --.;-as file structures) without there being a dependency within the model itself upon any
such structure. In particular, the relational file structure proposed by Intermetrics for the Ada

133

Integrated Environment (AIE) in 14] and [5] would be possible within this model. This file structure
allows any file to be marked as existing in a multi-dimensional space by assigning a property to the
file for each dimension in which the file would be visible. Dimensions were intended to be attribt, es
of the file, such as type of file (source, object, executable), version number of system into which lile
belongs, or author of the file. As mentioned above, these properties could be made secure to
whatever level necessary, hiding entire dimensions of the file structure from uncleared users. Other
models specifying dissimilar file structures would have no other way to handle the Intermetrics
scheme, much less allow the user to add properties as necessary, whereas the property mechanism
allows the file structure to be implementation specific and protected by the model.

The extension of the security perimeter to include human responsibility for physical devices
provides a mechanism for handling hardcopy output from common devices and removable storagi
media in an auditable manner. Objects placed on devices are always under the responsibility of a
known operator, providing positive control of removable media (both hardcopy and secondary
storage). This linkage is modeled after manual data handling practices so that it will not present an
unreasonable encumbrance, but will support the positive connection of system security to physical
security.

The use of special file markings and explicit representation of the execution of images
provides both a mechanism for reducing the entry window for viruses and limited damage control for
Trojan horses. The entry window for viruses is reduced to a subset of executable files that is enabled
(by the SWO) for writing to executable files. This subset may be subject to special physical
protections to ensure that the conect file is entered onto the system and in some systems it may be
empty, completely protecting the system from viral infection of executable files. While it is not
possible to provide the same level of protection from Trojan horses, damage control is possible in a
limited sense by only allowing trusted executable files to operate at multiple security levels
simultaneously.

The Argus model demonstrates the construction of a hybrid model based on information flow
concepts. This basic architecture supports flexibility on the part of the system and application
developers. Ultinately, it is possible to provide the user with a more productive system.

"The exLensions to the Argus model attempt to address areas that are currently outside of the
scope of the security model for a system. By bringing these issues into the security model, more
assurance may be provided. Variations of these mechanisms may be useful in other models,

References

[1] Adkins, M. et al., S Defense Initiative Battle Management C3 Technology
Proamn: Hybrid Model Description, A014, Interim Technical Report, Planning
Research Corporation, McLean, Virginia, 4 June 1988.

[2] Heaney, J. E. et al., Strategic Defense Initiative Battle Manaenment Q Technology
Program: Uograded Common Notation. A007, Interim Report, Planning Research
Corporation, McLean, Virginia, 3 March 1988.

[3] Page, J. et al., Strategic Defense Initiative Battle Management C3 Technology
Pro•ram: Security Model Evaluation Via KU TCB Prototype Tools, A011, Interim
Technical Report, Planning Research Corporation, McLean, Virginia, 30 June 1988.

[4] Ada Integrtd Environment (ALE) Design Rationale., Interim Technical Report,
Intermetrics, Inc., Cambridge, Massachusetts, 13 March 1981

[5] Martin, Fred H., "Ada Integrated Environment, Executive Summary," AdaUpda,
Intermetrics, Inc., Cambridge, Massachusetts, December 1981

134

THE DESIGN OF THE TRUSTED WORKSTATION:
A TRUE "INFOSEC" PRODUCT

Frank L. Mayer
J. Noelle McAuliffe

Trusted Information Systems, Inc.
3060 Washington Road (Route 97)

Glenwood, MD 21738

ABSTRACT

In recent years it has been recognized that the protection of classified and sensitive information
in an distributed automated processing environment requires a total "information security"
(INr•OSEC) solution, combining both communications and computer security technologies into
an integrated security solution. While the need for INFOSEC solutions is clearly recognized,
the commercial availability of true INFOSEC products is extremely limited, or non-existent.
This paper discusses the results of an effort to take commercially available COMSEC technology
and commercially available trusted system technology, and integrate them into a readily available
and evaluated INFOSEC product.

1. INTRODUCTION

The proliferation of commercially available products for the protection of sensitive and classified information is
becoming a reality with the successes of the National Security Agency (NSA) Commercial COMSEC Endorsement
Programn (CCEP) and the National Computer Security Center (NCSC) program to evaluate commercially available
trusted systems. In recent years, these security communities have come to realize that both arms of the
itformation security (INFOSEC) problem, i.e., communication security (COMSEC) and computer security
(COMPUSEC), an necessary to ensure the complete protection of sensitive information. However, the
commercial availability of true INFOSEC products is nearly non-existent, despite the successes of the COMSEC
and COMPUSEC halves of the problem. This paper discusses a product under development at Trusted
Information Systems, Inc. (TIS), the Trusted Workstation (TWS), that is based upon commercially available
COMSEC and trusted system products.

2. BACKGROUND

The major component of the COMSEC product, a personal computer encryption device (PCED), is an add-on
board for an IBM PC compatible computer architecture. The PCED system also includes a plain/cipher switch,
an interface for a key loader device, and an RS-232 asynchronous communications port (see Figure 1). The
plain/cipher switch provides a user with the ability to determine %hether data leaving the computer is encrypted.
The PCED must be keyed with paper tape keying material via the key loader before being used for
communication. The communication software approved for the PCED is written for the DOS operating system.
The PCED is designed to allow users, utilizing orlinary personal computers, to communicate classified
information over non-secure communication channels.

0 1989 Trusted Information Systems, Inc.

135

FTLS-BASED SECURITY TESTING FOR LOCK

Tad Taylor

Computational Logic, Inc.

3500 Westgate Drive - Suite #204
Durham, NC 27707

This work was performed by Computational Logic, Jnc. for Honeywell Secure Computing Technology Centcr in
support of National Computer Security Center contract MDA904-86-R-6544. The views and conclusions contained in
this document are those of the author and should not be interpieted as representing the official policies, either expressed
or implied, of Computation Logic, Inc., the Honeywell Secure Computing Technology Center, or the U.S. Governmn.

1. Introduction

The development of a thorough and convincing security test plan for an Al system is a formidable task. It is
made more difficult by the fact that there is little guidance available as to how to develop a set of test casey that
result in increased assurance that a system is operating securely. A security testing approach based upon the Fri-S• .,M ..z l 'r,, , T -. . I -p, • , o ; -) , -, .. . 4" " - - t- I T - - e " T" '" (. .i3 p x si n K e i(i vt.l T • • *v lv'-""" lLu ical %, l'I, +~l L•J]•oroces4sing Keraeih• proiect

as a possible method of addressing this issue. The approach is referred to as FTLS-based testing. This paper
presents a high-level inroduction to the concept ot FTLS-based testing and how its use is being considemd for the.
LOCK projectt.

IFTLS-based testiag is an innovative approach which pushes trusted system assurance beyond the Al level of
the Trusted Computer System Evaluation Criteria (TCSEC). The Al level requires only an informal mapping of the
FTLS to the source code. This results in a weak link between the FTLS and the implementation and is a fIquentl
discussed deficiency of Al assurance. A complete formal proof that the implementation (or at least the soure.a code)
is consistent with the FTLS would be much more convincing, but such a proof is still intractable for large secure
system applications. FTLS-based testing is a compromise: it provides greater assurance of consistency than an
informal mapping, but is substantially easier (i.e., more tractable) than an implementation proof.

We wish to point out that this approach has not been applied to any significant examples. It is only theory.
Honeywell SCTC is studying the feasibility of using this approach. The objective of the study is to determine if this
is indeed a viable option for LOCK, given constraints on such items as schedule, time, and money. However, it is
hoped that the effort call be. undertaken to serve as a validation of these ideas.

2. About LOCK

It is not necessary to understand how the LOCK system operates to understand the ideas put forth in this paper
and it is beyond the scope of this paper to describe the LOCK system in any detail. The interested reader is referred
to [Saydjari 87]. Briefly, LOCK is an approach to developing secure systems in which the vast majority of the
security related processiig capabilities of the system are physically isolated in a separate computer, known as the
SIDEARM (System-IndependenL Domain-Enforcing, Assured, Reference Monitor). LOCK technology is
envisioned as being suitable for a wide variety of security applicatiens. The current prototype effort calls for

tWhile the focus of this paper is on LOCK and the use of F-.S-based testing as it prt of security testing, the approach should be equally
applicable to helping eutablish safety criteria (other than security) about a system.

136

imiplemntciing a' goncral puqPosC opciating system or. top ol'a LOCK base.

3. Forinal Specification and Verification in thec Di~v;.loprent Process

loi order to unders-tand the roln of rVELS-based testing for LOCK, it is necessary to understand the role of
for-inal analysis in LOCIK's developmenit. Figurv i represent~s a 'traditional" software development waterfail chart,
atwgnentcd by Ihie inclusion of tonnal assu11anICe techniques. At the top of the diagram, arc a common set of
requiremients from wýhich both the traditiono.1 and formal devclopiaient efforu; stcmi. For an AlI deve-lopmcnt effort,
this would include the Trusted Computer Syytem Evaluation Criteria (TCSEC) and a security policy.

Tiie right side of Figure I (d-ie traditional approac~h) consists of B-Specs, C-Specs, andi finally, the
impILknientation. The ob -jective i ý to produce a ninining system that satisfics ali requiicmnents (perfoinance,
functionality, as well as security.) The LOCK 13-Specs are a high level, piwocutral description of the systern and are
organized by funceioriality. Thcwy do not explicitly addiess overall (operational constraints, such as security, but
instea'J capture tlie functionality the systemv is intended to exhibii. Thiis docs not mean that security concerns- are
absent from the R-Specs; far from it. T1,ey include the functionality to be a secure system (e.g., checking access
pe'mnis,ýions), Out they do -,ot show that ihc. specified functionality satisfies any giver' definition of security (e.g.,
does not dcfine under whait conditioiS access should be granted or denied). That is the role of other tasks. The
C-Specs are a refinement of the B-Specs into a lowetx level system description. The implementation is produced by
coding from~ the C-Specs.

FT
TCSE

Security
Poolicy

Model b-Spec

Di)agrams

1 C-Spec
System
ModeJ

Implemnttion

Figure 1: Waterfall Diagram of Software Development

The primary objective of the formal work (represented by the left side of Figure 1) is to provide increased
assurance that the design of the system is secure. This objective is accomplished by formializing the security policy,
specifying the functionality of the system, and proving the functionality specified conforms to the security properties
represented. The statenient of the Don-interference policy and tile secure state invafiants in the "Security Policy
Model" capture what it means for LOCK to operate securely. The functionality of the system is captured by the
System Model2. The System Model is intended to completely captux. the user visible functionality of the TCB at

21lhc "conventional" view says that an FI`LS is a formal non-procedural description or system behavior at an abstract level. In LOCK, the
System Model portion or the VFTLS servcs this rule.

137

an abstract level.

The arrow labeled "Proofs" represents the proccss of proving that the specified functionality is consistent with
the constraints of the Security Policy Model, namely that all system effects arc securc. The proof process is
complex and involves utilizing "layers" of proof. Properties arc proved for TCB requests. These "unit properties"
are used to support proofs of system-wide properties, such as non-interfecrncc. Tlhis is explained more fully in
section 4.

Finally, the two paradigms, formal and traditional, arc cxplicitiy tied together by showing a correspondence
between the System Model and the implemented system. Correspondence, in this sense, means showing the
implementation is consistent with the FTLS. This correspooidence will be partially accomplished by mapping both
the System Model and the implcmcntation to the NS diagrams, as represented in Figure 1. NS (or Nassi-
Shneiderman) diagrams are a flowcharting technique and are used as a common grounds of communication between
the formal assurance group and the system developers.

While the traditional development paradigm views the system as a collection of interoperating components, the
FTLS views system operation in a non-procedural, functional manner. The bulk of the B-Spec deals with describing
the operation of the entities in the software architecture (i.e., how a particular task is accomplished.) lHowcver, tie
FTLS captures what is supposed to happen in response to a TCB request, but not how the actual implementation
accomplishes that goal. Thus, entities strictly internal to the TCB may not be explicitly mentioned in the FTLS,
only their effects that can be viewed from "outside" the TCB interface.

The difference between these two system views is presented in Figure 2. The "B-Spec View" describes the
flow through the various system components, from client request to client response. The FTLS considers the
relationship between client request and response (i.e., an input/output pairing) without dealing with the inteniediate
p•Luces~ing stups required •to produce the resmilt, Ie B-spec view shows how a TCB request traps to the exception
subject 3 which passes the request on to the host computer for processing and so on. Finally, a response is returned
to the client and the system is in the resulting state. In the FTLS view, the resultant state and response are expressed
strictly in terms of the input state. The intermediate stages are not considered. The end points of both views are
intended to be equivalent. Establishing this equivalence is one of the purposes of FTLS-bascd testing.

4. Organization of the LOCK FTLS

Another important facet to understand concerning the LOCK project is the overall structure and style of the
FTLS. It is an abstract, formal specification of the functionality evident at the TCB interface. It is a non-procedural
specification, meaning that it describes what is the result of invoking a TCB request, but not how tiiat effect is
achieved. There is very little in the FILS that specifies the mechanics of the LOCK system or any of the internal
TCB structure. For example, the fact that the SIDEARM is physically separated from the host is not represented.

"The FTLS is written in a state-machine style. The functionality of an individual TCB request is represented by
a state Lransition function. For a given input state and set of applicable parameters, the function returns a new state
reflecting any changes, These specifications are definitional in nature. That is, they exactly and completely
describe the allowable effects on the system state of invoking a TCB request.

The FTLS consists of several parts, as represented by Figure 3. These are:

3 The host entity to which clients issue TCB requests.

138

SB-spec

Client _ Exception _4. RMI SIDEARM 0 RMI L__

tatE Subject Subject S Mubiet&!
State

Paranm erl * Storage .Subject - . ES bept Client
Manager Manager Subject . Lient

&RaUlt State

__ i FrLS

Request Response View

Client Client
s ub:ject ISubject

IsTAT RESULT
sTATE 1 STATE

I Pj.em ,

Figure 2: The Procedural B-Spec view of a TCB request compared to the
FTLS non-procedural view.

Proofs about CBRequests ,

Basic Data Type

Figure 3: Structure of the Formal Top Level Specification

139

1. A statement of the LOCK security policy, labeled "security policy model."

2. An abstract description of the functionality of the TCB. Labeted "system model" in the diagram.

3. A set of proofs designed to show that the functionality specified satisfies the security policy. These
proofs can, in turn be broken down into two groups:

a. Proofs about individual TCB requests

b. Proofs about the security of the whole system.

Proofs about individual TCB requests are those that show adherence te certain properties, such as maintaining
state invariants. They are proved directly from the formal specification of the TCB request's functionality. Proofs
about the system as a whole draw upon these proofs. By showing that all TCB requests have certain properties, it
follows that the system as a whole has certain properties as well. It is this factoring of the t3tal proof effort of which
FTLS-based testing takes advantage.

5. The Concept of FTLS-Based Security Testing

The goal of FILS-based security testing is to show that the operational semantics of the implemented system
are secure, as defined by the Security Policy Model. This is achieved based on the fact that the essential result of the
FI'LS can be summarized as: "If the TCB functions as specified, then its operation is secure, as defined by the
security policy model." It represents a rigorous and convincing argument that the design of the systerm is secure.
By showing that the implementation is a valid instantiation of this specification, the arguments for security hold for
it as well, at least to some extent. In many respects, this process could be considered a continuation of the formal

_ _.eve..prnn nt pr.c... ,c .. . of function.al I-.. ts ar, us,-.-n pl... of a s, of upofS.

To develop effective security tests without using the LOCK FTLS, would require analyzing the security policy,
factoring it into more primitive terms, and determining exactly what functionality could be exhibited by an
individual TCB request and still maintain security. However, the LOCK FTLS has proved that the functionality
specified for the TCB requests operates within the parameters defined by the security policy. Therefore, we have a
description of allowable functionality to which we can test. By developing a set of functional tests to provide
evidence that the implementation is operating according to the functionality specified in the FTLS, we gain
additional confidence that the implemented system is sccure.

f

Formal Specification x 0 IN, fx) ! NW f

X X

:-- Implementation xc 0 - O~fr (x c)
S~Figure 4: Correspondence Between Specified Functionality and the Implementation

Figure A represents what must be shown in order to achieve this goal. A formal specification of an individual
TCB request is represented byf. The specification represents a mapping from an input state , x, to a resulting state

4and any asso~ciated pararneters

140

I I I I II I II I

fix). The concrete realizations or implementation of x andf are represented by x. andfc, respectively.

The FTLS-based security tests are to establish the correspondence between the two views of system
functionality, that of the FTLS and that of the implementation. More precisely, we want to show:

map f & xmap

A =fc(x

The symbol map represents the mapping from an implementation state to an FTLS state. This expression
means that if we are comparing the specification of a TCB request to its implementation and invoke both
"machines" in equivalent states, then they should produce equivalent states.

The motivation for this approach is based upon the proofs associated with the FILS. Several properties are
proved about each f, based upon the specified functionality. The statement of these properties tends to be in the
form P(x) -- P(f(x)), meaning that if some property, P, holds in a starting state, then P will hold in the state.
resulting from invokingf. From the results of a successful FTLS-based security testing effort, we would claim:

mrap f &mapVC = ,• c

-4
map

fAx) P fc(xc)l
&

[P(Xc) -4 P(fC(xC))]

By this we mean, if the formal specification of a TCB request, f, has been shown to correspond with its
implementation counterpart, fc. AND it has been proved that f preserves property P. then we infer that the
implementation preserves P as well.

6. Carrying Out the Approach in Practice

While the execution of this testing approach entails overcoming a certain amount of "gore", at a conceptual
level, the process is straightforward. At this point, we wish to emphasize that this process has not, as yet, been
carried out on examples of significant size. However, the process, as we envision it, is as follows:

1. A mapping between the state definition in the formal specification and the implementation, analogous

to map above, would be produced.

2. Th.e formal specification would be partitioned into a set of separate conditions depending on the guard
statements evident. This results in a set of "test schemas" 5 . These schemas are translated from the
abstract representation of the Gypsy specification into the concrete terms of the implementation.

3. The test schernas are instantiated into a sufficient set of test cases and run on the implemented system.
For each test case, the modifications to the implementation state are determined.

4. The Gypsy specification is used as an oracle for the testing process. Ibis entails mapping the initial
state information from the implementation (including any input data) to the abstract level of the formal
specification, "executing" the specification and comparing the abstract and concrete final states.

5 For want of a better word.

141

The following sections describe these steps in more detail.

6.1 State Mapping

For each state component in the FTLS, thete is a well defined entity in the implementation that corresponds to
it. Furthermore, every implementation state entity that influences the response to a TCB request should be
represe-ited by some aspect of the FTLS's security state, albeit at an abstract level. This correspondence is to be
established by other methods, e.g., code inspection.

6.2 Partitioning the Testing State Space

Test schemas are defined for each TCB request based on the functionality described in the FTLS. In LOCK,
the general form of a TCB formal specification is:

if <requirements fir successful completion>
then <modify state for successful effects>
else if <condition defining particular irregularity>
then <appropriate action>

else <generalfailure>

Each logical condidion defined in the request will lead to various test schemas. This partitioning ensures that the
state space, as defined by the FTLS, receives complete coverage during the testing process. This is similar in
concept to testing all control paths in an implementation, but, in general, decidably more tractable.

These test schemas define a set of test cases. They state that under certain conditions, certain effects should
occur from invoking a TCB request. However, these statements use FILS terms and definitions. It is tie role of the
next task to turn these schema into usable test cases.

6.3 Develop Concrete Test Cases

Once a set of test schemas are extracted from the FILS, it is necessary to transform them into concrete
instances of the conditions they define. The set of test data is defined based on the data types of the state and the
conditions identified in the FTLS. The data types point out boundary conditions, minimum and maximum values,
etc. The definitions of relevant data types and intuition play a role in this step. Obviously, it is crucial to define a
sufficient set of concrete test cases to thoroughly exercise each of the FTLS's test schemas.

6.4 Running the Tests

Since, the FTLS specifies exactly what changes take place to the state as a result of invoking a TCB request, it
is not enough to ensure that the explicitly specified changes occur when they are supposed to and don't when they
aren't. It must be shown that nothing else changes. In the case of any TCB request, it is not sufficient to merely test
that data structures and status flags receive the proper values under the right circumstances. It must also be shown
that nothing else of "importance" changes in the implementation state. "Importance" is signified by
corresponding to the FILS state. It is this a priori determination of what's important and what's not that helps to
make this security testing approach feasible. It allows us to determine which functions to trace and which values to
check after a TCB request is invoked.

For every test case. those portions of the state that are not to be modified must remain inviolate. Therefore, in
order to determine whether this condition is being met, it is necessary to determine state "deltas" resulting from
running tests. In this sense, a state delta reflects all changes to the state, not just those that were anticipated.

142

6.5 Evaluating the Results

Evaluating the results of the various test cases is a matter of comparing them to the values predicted by the
FTLS. This requires evaluating the FTLS for a given set of data. Information should be extracted at the start of
each test execution to provide starting state iniormation for the FTLS.

7. Benefits

We believe there are several benefits in utilizing the LOCK FTILS for the security testing effor,. Some of these
are pointed out below.

" Utilizes Best Statement of SecurityPolicy. The FTLS contains a detailed statement of LOCK security.
Obviously, such a definition is required for security testing. Furthermore, the FTLS has made the
necessary transformations and interpretations between an abstract statement of security and the real
effects of invoking a TCB request.

" Builds upon Related Efforts. A great deal of effort and analysis has gone into the development and
verification of the LOCK FTLS. The overall LOCK security policy has been formalized and the
functionality of the TCB units has been shown to be consistent with it. If the FTLS was not used for
the security testing effort, exactly the same stages and interpretations would have to be made and it
would be done with less rigor.

*Focuses on One Definition of Security. Many previous efforts to develop secure systems have been
hindered by the fact that each "group" (i.e., the formal assurance group and the actual development
groul') tends to develop their own concept of security. Comparisons between these differing views of
what it means to be "secure" are often confusing and uncor, vincing. However, this approach focuses
on one definition of security, namely the one represented in the FILS (the one. given the utmost
scrutiny.)

*Definitive Testing Results. The functional statements of the LOCK F'TLS are clear and relatively
concise. It is anticipated to be straightforward to determine wht .aer or not a given test case has
succeeded.

* Bounded Testing. The process is bounded by the relatively narrow focus and well-definedness of what
is being established by the security testing piocess, i.e., functional equivalence, not abstract properties.
Compare this to more open-ended forms of testing, such as penetration testing, or resource-bounded
testing (i.e., testing until time andlor money iL exhausted.)

* Criteria Reqairements. There is a specific Criteria requirement to use security testing to establish a
correspondence between the FTLS and the implementation. This effort would satisfy that requirement.

8. The Fine Print

In spite of the glowing statements made above, no claim is being made that an FTLS-based testing approach
completely solves the problem of developing an effective security test plan for Al systems. There are both
limitations and risks associated with the approach, as well as assumptions that must be addressed.

8.1 Limitations

This approach does not completely address Security Testing. The successful completion of all the test sets
defined will not constitute a complete set of security testing evidence, only one part of a larger picture. Other items
that must be addressed include:

o Valid2tion of the FrLS's assumptions.

* Validation of the FILS's definition of the system state..

143

o Aspects of security not covered by the Security Policy Model represented in the FTLS.

* Covert Channel Analysis and related security testing.

* Penetration testing.

* Successful completion of other testing, such as unit testing.

Many of these other techniques are used to support the validity of the FTLS-based testing approach. For example,
penetration testing can be an effective meais of identifying additional functionality. Testing from any set of
specifications would have difficulty in catching such a situation.

8.2 Risks

While there is ItIL be gained by this approach to Security Testing, it is not without some risk. The main
risk seems to be the relh_,e being placed upon the FITLS. Any flaws in it will adversely affect the security testing
process. The effects could range from causing delays in the testing process to hiding flaws in the design of the
system. For example, if the Gypsy specification of a TCB request is wrong, the intended functionality would have
to be determined, respecified and reproved. On the other hand, if the proof of system security was flawed in a way
that allowed insecurities, then showing that the implementation exhibits the specified functionality would allow that
same insecurity.

While these could represent severe impacts to the project, in all likelihood, the FTL" is probably the safest way
to go. No other aspect of the development process receives such intense scrutiny from such a variety ef sources.
Therefore, serious mistakes seem least likely in the formal process. Not using the results of the formal analysis
would mean dividing resources and duplication of effort. While redundant efforts might uncover more mistakes, it
is a very expensive process.

8.3 Assumptions

There are several basic ossumptions underlying the premise of this testing approach that must be addressed
before the approach can be considered useful. These include the following points:

"* The security policy model is accepted as valid.

"* The proof strategy utilized by the FIT.S is valid and the proofs are sound.

"* The FTLS completely captures the security-relevant aspects of the implementation.

"* The underlying assumptions made by the FILS are valid. An example is that hardware mechanisms
ke.g., an MMU) operate as anticipated.

"* All potential interactions between subjects and the TCB interface are captured by the FTLS.

Some of these assumptions can be validated by other techniques, especially many of fth 17ILS assumptions.
For example, a set of primitive tests could be developed to gain assurance that the MMU functicns as believed and a
form of code inspection could be applied to show that the FTLS was complete.

9. Spec/Code Correspondence and FTLS-Based Security Testing

The need for a mapping from the FTLS to the implementation is called for in the Criteria in section 4.1.4.4
where it states:

The TCB implementation (i.e., in hardware, firmware, and software) shall be informally shown to be consistent with
the formal top-level spectflcation(fTLS). The elements of the FTLS shall be shown, using informal techniques, to
correspond to the elements of the TCB.

There exists a very close connection between the FTLS-based security testing approach defined above and the
mapping from the formal specification to the implementation required for A1I systems. To start, both share the same

144

goal, to show that the implementation is consistent or "corresponds" with the FFLS. In both cases, the underlying
motivation for this requirement is to show that the formal analysis applied to the FELS has some relevance with
respect to the implemented system.

LOCK's current plans for spec/code include mapping both the FTLS and the implementation to a common set
of Nassi-Shnciderman diagrams. While this goes further than most (if not all) previous such efforts, it still suffers
from a lack of convincing evidence that the semantics of the FTLS and implementation are equivalent. For
example, if the NS diagram said "Determine if access is allowed," it is unclear that this will be interpreted in the
same fashion in both the FI'LS and the implementation. Something more is needed. Thie FrLS-based testing
approach defined above could be exactly that "something more."

We believe that the results of an FTLS-based testing effort are sufficiently strong enough to support a
spec/code effort so that it meets both the requirements and spirit of the TCSEC. Since a convincing spec/code
requires a substantial amount of effort in its own right, this may lead to a cost savings of the total effort required.

10. Conclusions

This paper has presented an approach for developing test cases to support an Al security testing effort based
upon the FTLS. The approach could just as easily be applied to developing test cases for FTLSes that dealt with
issues other than security or were not specifically targeted for Al-evaluation, FLS-based security testing strives to
provide evidence that a system is actually implemented in a secure manner. This is a much stronger result than
conventional security testing methods could produce. We believe that it is one of the most promising techniques on
the horizon for strengthening the Al paradigm in a meaningful and cost-effective manner.

11. Acknowledgments

I would like to thank Honeywell SCTC for the opportunity to develop these ideas. In particular, Tom Haigh
has provided insightful comments and has been very supportive. The comments of Bret Hartman, of Computational
Logic, Inc., have been very valuable. Of course, any flaws or misstatements within this paper are the sole
responsibility of the author.

References

[Saydjari 873 O.Samni Saydjari, Joseph M. Beckman, Jeffrey R. Leaman.
Locking Computers Sccurely.
In Proceeding of Natioral Computer Security Conference, 1987.

145

FORMAL SPECIFICATION OF A
SECURE DISTRIBUTED MESSAGING

SYSTEM

Vijay Varadhiarajan Stewart Black

Hew-lett- Packard Laboratories, Fx] ton Road,
Stoke Gifford, Bristol BS12 6QZ, U.K.

June 22, 1989

Abstract

This paper describes the formal specification of security aspects of a messal'ine sys.temn
architecture. The messaging system being considered is the X.40u Message Handling System
(MHiS) and the security architecture includes a number of security features described in the
CCITT X.400 Recomnmend ations. In this paper, we use the internationally standardised
Formal Description Technique LOTWS (Language of Temporal Ordering Specification) for
specifying the security aspects. We first describe the security aspects of the messaging system
and then describe the modielling of these aspects in LOTOS. Finally we discuss how they relate
to the overall messaging model, and draw some co' iclusions.

146

1. Introduction

Information Security is becoming increasingly important because of the growing need for "open"
networked systems. It is being more and more recognised that security issues play an important.
part in the design of distributed systems and databases. In particular in applications such as elec-

tronic mail and electronic funds transfer, security is becoming an essential element of the services
being offered. An area of considerable interest is the development of an open standard electronic
mail service. In this paper, we consider the Message Handling System (MIIS) as described in the
CCITT X.400 Recommendations ([1]).

In this paper, we describe a suitable security architecture for the Message Handling System.
The first step in developing a security architecture is to identify the constituent parts of the
system and the likely security threats that can be mounted against them. Then the required
security services and mechanisms needed to provide security can be defined. For instance, the
OSI Security Architecture describes the type of security services and mechanisms that can be
employed within the OSI Reference Model ([2]).

The security architecture described in this paper has been developed as part of the LOCATOR
collaborative project, which is itself part of the Mobile Information Systems Project, a major
demonstrator within the UK Government sponsored Alvey Programme. The partners within
the LOCATOR Project are Hewlett-Packard Ltd., Racal-Milgo Ltd., Racal-Research Ltd., Racal
imaging Systems and Universii~y C..l.ge L ui. "1t: surity a---itture: ha.. S b__ d_.. ... ,
by the LOCATOR project team and they give a complete description of the security architecture
in ([3]). The developed security architecture conforms to the CCITT Draft Recommendations.

Here we briefly mention the relevant features of the security architecture which are required
for our formal specification work. Currently, the LOCATOR Project is nearing the end of its

implementation phase.

We formally specify these security services and mechanisms using the Formal Description
Technique LOTOS ([51). The formal specification of security aspects has proven to be very useful
in many respects. It has allowed us to isolate and model only the security issues involved in
the design of this system. It has enabled us to investigate the type of constructs and expres-
sive power needed for modelling security. This process has also helped to make explicit some
of the assumptions that have been made at the design level. Finally, the specification has pro-
vided the necessary abstraction allowing representation of architectural aspects and the hiding of

implementation details.

The paper is intended to be as self-contained as possible and it is divided into the following
parts. The first part gives a brief overview of the Message Handling System architecture (Section
2). In the second part we describe the security aspects of the messaging system and how it prevents

the potential threats to the system. The third part describes the modelling of the security aspects
of the system using the Formal Descriptive Technique LOTOS. We conclude by outlining some
further security related problems in such a distributed system and assessing the suitability and
usefulness of LOTOS for modelling security aspects. We also briefly discuss some tools to help
this modelling process and to simulate the specification.

147

2. Message Handling System Architecture

In this Section we give a brief description of the general Message Hlandiing System (NIIIS) used in
the CCITT X.400 Recorrunendations ([I]). The entire MHS application is considered as occupying
the Application layer of the OSI Reference Model. A Message Handling System is a set of
computer processes which cooperate to provide the users with a reliable means of store and
forward capability for their message transfer. To clarify the different needs du,'ing the Message
Transfer, the MHS system has been divided into the following parts : User Agent, Message
Transfer System, Message Transfer Agent and Message Store.

(a) User Agent (UA) - This is a process which interfaces with the "User" on one side, and
with the "Message Transfer System" on the other side. The User Agent allows the user to create
and submit messages to the Message Transfer System, and it collects messages from the Message
Transfer System and presents them to the user.

(h) Message Transfer System (MTS) :The Message Transfer System is used t.o physically move
the messages between computers and it consists of a number of cooperating Message Transfer
Agents (MTAs).

(c) Message Transfer Agent (MTA) : A Message Transfer Agent is a computer that. routes
and relays messages. An MTA cooperates with other MTAs to relay and deliver messages to the
appropriate User Agent.

(d) Message Store (MS) : The Message Store acts as an intermediary between the User Agents
and the Message 'ITansfer Agents and it provides reliable storage of delivered messages and thereby
gives more control over the receipt of messages.

Figure 1 shows the basic components of the Message Handling System model. A message
created by a user is submitted to the MTS via a UA. The MTA forwards this message towards
the final delivery point within the MTS, which is the MTA attached to the UA whose address is
given in the message.

A UA may either reside in the same computer as the MTA or it can be connected to an MTA
by some network. In the first case, the UA accesses the MTS elements of service by interacting
directly with the MTA. In the second case, the UA communicates with the MTA via the standard
protocols. Several UAs may be attached to a single MTA.

An MS can be co-located with the UA , co-located with the MTA, or stand alone. We will
briefly outline in Section 6 the effect of the inclusion of the Message Store on the security services
provided in our architectu:e.

The protocols between these components are also shown in Figure i. Protocol P1 is concerned
with the transfer of messages between the MTAs and is called the Message Transfer Protocol.
Protocol P3 is the MTS access protocol between the MTS and the MS. Protocol P7 is the MS
access protocol between the MTA and the UA. The P2 protocol is between the UAs in the system.

2.1 Security Threats in the Messaging System

The distributed nature of the messaging system makes it susceptible to a number of security
threats. Typical threats include eavesdropping and disclosure of information to unauthorized

148

L
J

l-Sj

Figure 1: Functional Model of the Message Handling System

149

users, one user masquerading as another user, modification of messages while being transferred,
and a user denying the sending or receiving of messages.

To overcome these threats several security services have been provided in the X.400 Recom-
niendations. These security services include confidentiality, integrity, authenticationl and non-
repudiation. We will be considering these security services and their formal specification in more
detail in the later sections of this paper. It. is important to mention that the application of these
services requires the use of cryptographic keys, which in turn requires some sort of Key Distri-
bution Centre to manage these keys. For this purpose, the Directory Service (as proposed in the
X.500 Recommendations ([4])) has been used.

2.2 Dieectory Services

The Directory Service is required to support the security services within the messaging system
and to provide a Name Server. Typically, the MtIS may access the Directory to determine the
credentials of a user for the authentication process, identify the intended receiver and to resolve
the expansion of distribution list names. The two basic entities of the Directory Service are the
Directory User Agent and the Directory Service Agent.

The Directory User Agent (DU A) : The DUA helps an entity to formulate and submit requests
to the Directory and it also receives and formats the results obtained from the Directory.

The Directory Service Agent (DSA) : The DSA provides the database element of the Directory
Service. The DSA receives the requests from the DUAs and if it has the access to the required
information, sends the information back to the DUA concerned. If it does not have access to the
information, it. may pass the request to an other DSA, or may send back to the DUA where to
find the required information.

3. Security in the Messaging System

The security architecture specified in this paper has been developed as part of the LOCATOR
collaborative project, which is itself part of the Mobile Information Systems project, a major
demonstrator within the UK Government-sponsored Alvey Programme. Here we only briefly out-
line the relevant features of the security architecture which are required in our formal specification
work. A detailed description of the security architecture developed by the LOCATOR Project
team is given in ([3]).

The architecture supports a number of security services, most of which are "end-to-end" in na-
ture. These services are probably the m., _,bificant ones to the end users of a mail system. These
end-to-end security services include : content confidentiality, message-origin authentication, con-
tent integrity, non-repudiation of origin, replay detection, and non-repudiation of delivery. There
are also other services which are not end-to-end, such as access control on the User Agent/Message
Store link. In our formal specification, we will only be concerned with the end-to-end security
services. In Section 6.1, we briefly describe the type of access control service between the Message
Store and the User Agent. Further we discuss the effect of the incorporation of Message Store on
some of the end-to-end security services.

Before considering the security services in the messaging system in more detail, it will be

150

useful to briefly describe some of the fundamental security mechanisms and concepts used in the
provision of several of the sccurity services.

3.1 Basic Security Mechanisms

Let us start by describing the structure of a message in this system. A message consists of two
parts, namely an Envelope and a Content. The Envelope contains the necessary information for
the message to be routed to the appropriate receivers and the Content is the actual information
which is to be transferred.

3.1.1 Encryption and Key Management

Encryption is a fundamental mechanism which is required in the provision of several of the services.
In our architecture, we use both symmetric and asymmetric (public key) cryptosystems. The
symmetric encryption technique is used by the User Agent to encrypt and decrypt the message
content. We have used the Data Encryption Standard (DES) for this purpose ([7]). The Cipher
Block Chaining (CBC) mode ([81) has been employed and the key and the initialization vector
required for this mode are generated locally within the User Agent.

We will see in our formal specification that it is not necessary to go into detail regarding
the implementation issues of the algorithm or the key generation process, as long as we can
formulate the necessary properties of the algorithm and the paramaters to be generated. This
issue of abstracting away from implementation details is a general one and it helps the designer
to concentrate on the required generic properties of the system.

The management of the cryptographic keys of DES is done by employing asymmetric cryp-
tosystems. In the LOCATOR system, the RSA public key cryptosystem ([9]) is used. Tne public
key of the receiving User Agent is used to encrypt the DES key employed in message encryption.
The sending User Agent transfers this encrypted DES key to the receiving User Agent.

For this technique to work, it is necessary to provide a guarantee to the sending user that the
public key of the receiver is the "correct" one. The X.509 Authentication Framework ([10]) has
been used in the authentication of public keys of the users. Each user's public key is stored in
the Directory and a user wishing to have a secure exchange of messages with another user obtains
the other user's public key using the Directory Service and then uses this key within the required
security service. However as the Directory is not a trusted service, the user needs to verify the
public keŽys obtained from the Directory. The X.509 Authentication Framework achieves this
using off-line trusted entities called Certification Authorities (CAs).

3.1.2 Certification Authorities and Certificates

Let us now briefly consider the role of the Certification Authorities (CAs).

Each user must have a CA which he or she can trust and each CA has a public-key/secret-key
pair. It is assumed that a user and his/her CA exchange their public keys in a secure and trusted
manner. The role of a CA is to generate a Certificate for the users. It produces the certificate
by signing a collection of information, including the user's name and the public key. The process
of signing involves first hashing the information, using the hash function suggested in the Annex
of X.509 ([10]), and then encrypting the hashed information using the RSA system under the

151

control of" tOh secret ke~y of the si gner. More specifically, t-ile certificate of a risr with the namec
A, produtced hNw thle Certification Authority CA, has; the following formi <CA's iiamie, user's,
name, iiser 's pub~lic key, validlity of users's public key>. The validity' of the uiser's public key is
specified rusing two dates, the first and tire last. dates on which the certificate is valid. This set of
data together with t Ire signlat-ure constitutes thec Certificate, which is stored in the user's- directory
entry. The Certificate of A is denoted as CA <c A »>.

Any user can chieck- the public key of a given user A, by obtaining a trusted copy of the public
key of A's Ccrtiiication Authority and then using this key to check tile signature on A's Certificate.

However, in a mote genera] case, a user B wishing to communicate with user A may not. know
the public key of the Certification Authority of the user A. To deal with such cases, the notion
of Certification Path has been introduced. The list of Certificates needed to allow a particular
user to check the public key of another, is called a Certification Path. Each item in the list is a
certificate of the next Certification Authiority in the path between the users concerned.

3.1.3 Tokui,

Another mechanism that is fundamental to the provision of security services in the messaging
architecture is the "token". Any message which involves enid-to)-end security services requires the
sender of the message to generate oire or more tokens- A token, in general, consists of a nuiuber
of parameters such as the encrypted data, the si gned data, the name of thre receiver, a timiestaxnip
and. theo identifiers of the signing and ecri.ypting algorithms.:. DeIpendling on the securitys.
required some of these parameters may not be used by the receiver of thre message.

The encrypted data and the signed data contain security-related information, dependent on
the security service provided. For instance, the encrypted data contains the RSA encrypted
version of thre DES key used in the confidentiality service. T[le inf'ormnation making up the signed
data is not encrypted. The tirnestanip identifies the date and the time the token was generated.
One token is generated for each recepient of the message and the token contains the namne of the
intended receiver.

A signature is also provided with every token. This is generated by hashing all thre data within
the token using a modular squaring hiash function and then encrypting the hashed value using
thc lISA secret key of the message sender. This is used to prove to the receiver that the contents
of the token are not altered and that it, comes from the claimed sender.

Whether all these paramneters; of the token are required is dependent ott the type of security
service required- For instance, if only the confidentiality service is required, it is not necessary for
the receiver to check the token signature.

3.2 Secuirity Services in the Messaging System

Let us now consider each of the security services in the messaging system in mnote detail.

3.2.1 Contctrt-Goxrfidentiahity

'[le cotiteiu-confilentriality service is provided by encrypting the contents of the message usintg
the(D)ES algorithm. The key and the initialisation vector required for tlte DES algorithm arc

152

generated loc'ilvl by t11 lie d.e1er of thle Iiiwssagc Ilii partteicular, a new key is grniieti~il t~r e;ldi
iiessage whilch needs 10, be prot ccii.

Ileutic, if this securtitty secrvice is rvquircl, then time send~ing llser Ag-eut enkilicislmi> the cowijil
of t'll-c miessage anid t~heii en~crypts t hc DES kcy useýd wiht ilte public key (if thek inteýnded recipwi'it
This encrypted key form>ý a part of thle iu'ssýage tokent senti to thie receiving, U1ser A gen, via the
Mesisage 'fiiansler Svyst ein To inform the receiver that mnessage encryptionl has bec-Il usewd, all
identifier is inicluded whIiich lildicates the eincry ption algowim Ivi ued. III our e azv this %vill inidic"ate
that (lhe DES has been used. Furt herimore, if thle same inessago is ito be sent to mnore thn one
user, tile oeniding UA needs to prodn tie wmore thl~an one tokeni using tli(e approhpritmt public keys- of
tile recipicents.

The User Agcnit also needs to senid thme Certificate of thie send~ing miser which is Obt ained from
tile Certification Authority associated with that user. Ili our specificationi we assuime thatt time
certificate is actually stored ~in thle User Agenit. The sending; UA also sends the Cert 'fication Plath
to the receiving UA. As explained earlier, this is necessary iii order for the, receiving 1.it to obtain
the public key of the trusted Certification AuthoritN which is then usA to validlate tlbe public 1,ey
of thle ts'nder of thle message.

T1he system requires that this security service be provided to vit her all the receivers of thle
message, or to none. of theim.

Thle recipient. of the miessage first checks to see if the mnessage token argument is pre-sent1 Ill
S the miessage enivelope. If so, this inidicates that the eili to-ctmd security services have beeni umse

and hence the recipient checks for the presence of t lie algorim hllm idetit itier t~o see whot her iiessage
encryption has been used. If so, the recipient recovers the DES key amid the iinitialization vctior

by decrypting the encrypted-data part wim Ih his s-ecret RSA key. Now the rucipienit carn recover
thle message content using thme DES key atid the initialisation vect~or.

3.'.:.2 Authentication

Ini this Section, we consider tile provision of thle follciwing thiree services: Message-origin atithienl-
tication, Content- integrityN and Non-repudiation of origin. All these three services are providled
using essentially the samie mechanisms. In fact., in our architecture, these services are "grouiped"
together as a single service and the,, user catnnot request one of these services onl its own. It has
been designed in this way because it. is very unlikely that thle users of a mail systetm would want
to have one of them without the othiers.

The message-origin,-authenit~ication service is provided by the existence of the miessage tok-en.
Recall that tihe mnessage token contains a signiarure whiichi uniquely idlentifies the origin of thc
message. However, this does not guarantee that. twcre has been no modification of tile miessage.
In order to achieve this, an iategrity check called the "content-integr ity-chieck' is included in the
signed-data part of the token.

The cont~ent-initegrity-check (C'IC) is generated by the sender atid is sent to all the recipients of
tile message for whom tile service is itntended to be provided. Thle CIC contains two fieldis, namnely
the corntent-initegt'ity-algo.-itlimi--identitirer and the coirtent-int.egrity-check itself. The algorithmi
used to compute tile content- integr ity-chieck is the samec as the modular squaring hash functionl
that has been used in thie calculation of signatures in the. tokens and tile certificat.e%

The receiver of the message first cheeks the. enelope to see if a nimmesage token argmuncent is
present which indicates thle use of end to-end securirty services. If the content .integri-y-clieck

153

argumient is present, thou this indicates that these three authentication services are provided.

The receiver obtains thle trusted copy of the public key of tihe Certification Authority of the
sender. In the ca-se whh.re the rece-ivei does not know thI, Certification Authority of the sender,
he uses tile certification path that has been supplied as part of t(ie originator's certificate, to
determine the trusted copy of the receiver Certification Authority's public key. Using this, the
receiver validates the signature on the originator certificate.

The validation of the token is quite similar to the one carried out for the originator certificate,
except that the key used to check the token is the originator's public key rather than the CA's
public key. A valid token ii.dicates that the content-integrity-check has not been modified.

To check the content. integrity, the receiver recalculates the content integrity value and com-
pares it with the one rcceived.

If these checks are valid, then these confirm the authenticity and th,- integrity of the message
content as well as non-'epudiation of message origin, since only the user having the RSA secret
key of the sende' (i.e. the sender himself) could have generated the token.

In contrast to the content-confidentia.,ty service, these three services can be provided to any
subset of the recipients of a message.

3.2.3 •,,.•, Detection.-

This service is provided to a receiver, by including a message sequence number within the signed-
data part of the message token for that recipient. This sequence number is unique only with
respect to the two users concerned, namely the sender and the receiver. That is, each user
maintains a list of other users with whom he/she has exchanged messages in the past. The entries
in the lists contain information regarding the transmitted and the received messages to/from obher
users. The inclusion of the sequence number detects replays.

However, in practice, if a user wishes to have conversations with thousands of other users,
there may be problems of storage. An alternative technique may be to use the timestamps in the
message tokens to prevent replay.

3.2.4 Non-Repudiation of Delivery

Non-repudiation of delivery service is somewhat diflerent from the other security services above
in that the service is actually provided by the receiver. The sender of the message requests the
receiver for this service, by including a proof-of-delivery-request flag as part of the signed-data
in the message token to the receiver. The proof-of-delivery is computed as the signature (using
the receiver's secret RSA key) on the unencrypted message-content and varioub delivery related
parameters. The receiver then returns the proof-of-delivery together with his/her certificate to
the sender of the message via the Report Delivery Service.

The sender obtains a trusted copy of tihe public key of the receiver and then validates the
certificate and the proof-of-delivery. Since the proof-of-delivery could have only been calculated
using the secret RSA key of the recepient, this method provides the non-repudiation of delivery
service.

Note that the system allows the proof of delivery to be requested froin only some of tile
recipients of the message. This is possible because a distinct Itoken is being generated for each

154

message recipient.

4. The Formal Description Technique LOTOS

Formal, or mathematical, approaches to describing computer systems are gaining in popularity.
This is not merely a fashion, but rather has arisen out of the increasing complexity of such
systems. It is no longer adequate to take a natural language specification of a system, and start
implementing in some progranmming language. Firstly, due to the scale of the specifications, it
is difficult tc- decide on its consistency and non-ambiguity. Secondly, there is no method for
reasoning about the specification to check whether the required properties have been captured

correctly.

In the world of international communications standards it is obviously important that specifi-
cations axe unambiguous, consistent, and represent the intended system. There has been a growing
interest from this community in using formal approaches for describing complex communications
standards.

LOTOS (Lcnguage Of Temporal Ordering Specification) has been developed within ISO as a
Formal Description Technique (FDT) for the specification of OSI protocols and services. Work
began in M1QR, and LOTOS reached International Standard status (ISO 8807) in late 1988.

The development of the language was done under the Esprit/SEDOS programme, as a Eu-
ropean collaboration project, with major contributions from the University of Twente in the
Netherlands.

4.1 Basic Concepts

The basic underlying concept in LO'I OS is that of an event. As a specification language, LOTOS
is useful for describing systems in terms of the events, or interactions, of the system. Reactive
communications systems can intuitively be described in terms of the allowed sequences of events
of such systems.

"To get a fee. for describing systems in terms of events, consider the usual telephone system.
Before a user can talk with another user, a number of events must occur. Firstly the user must
lift the receiver, and then dial a number which is uniquely associated with a given subscriber.

The telephone system is a reactive system, in that it can be used at any time by a subscriber.
Communication can only occur between two subscribers if a well-defined series of events are
performed beforchand.

Not only se4quential order of events but also concu:rent or parailel behaviour can be modelled
in LOTOS. In describing certain systems, it is not. necessary, and often not desirable, to describe

an explicit ordering of independent activities. The explicit ordering is often an implementation
detail, and could be implemented in many different ways without affecting the overall system
behaviour.

LOTOS is a structured language, similar to structured programming langua.gts. A collection
of events in LOTOS can be combined to form a process. Also processes can be combined (with
events) to form other processes. The whole specification is really just one process, which is

constructed from a number of (sub) processes.

155

Communication between parallel processes is via synchronisation onl events. This synchroni-
sation is not the same as sending a message and waiting for an acknowledgement, but rather it
is synchronisation by two processes actually sharing the saniC event. "Ihus an event is aai atomic,
non-interruptable action. Two processes can only communicate if they participate in the same
event. In the above telephone example, we have a user and the system. The user can pick up the
phone, and the system can recognise that the phone is picked-up. The user (as a process), and
the system can only communicate if they both participate in the "picking-up-the-phone" event.

Events occur at interaction points (or gates). Each process has a defined set of interaction
points. Thus two processes can communicate via an event if they have a common interaction
point where the event can occur. In the above example, the interaction point is the telephone
itself.

LOTOS is based on two language concepts, namely that of describing a system in terms of
events, and that of describing the data types and values in terms of sets. operations, and equations.

The former part is called the process part, the latter the (abstract) data type part. These will be
discussed in more detail in the following sections.

4.2 The Process Part

In LOTOS there are a number of operators for combining expressions. These operators allow for
a powerful rnechanisma for describing communicating concurrent systcmn. ,'C shall not define all
the operators in full detail, as this can be found in ([6]), but shall describe some of the operators

and their expressive power.

The most primitive combinator is the action prefix. Thus if we have a LOTOS expression B,
we can prefix it with an event 'a', written 'a;B'. The resulting expression can then participate in
event 'a', and then will behave as the expression 'B'.

The choice operator '0' is a fundamental part of the language. The expression 'a;b;stop D
c;d;stop' models a system that can perform an event 'a' and then an event 'b' and then stop, or
alternatively perform an event 'c and then an event 'd' and then stop. This representation of
alternative behaviours is often necessary as it is generally impossible to determine the next input
in a reactive system (as this involves determining the behaviour of independent systems).

LOTOS has three different operators for combining expressions in paxallel. The interleav-

ing parallel operator is used to model independent processes or expressions. This is useful for
modelling independent aspects of a syst. n, such as independent functions of a given entity, or
independent entities in a networked system. The notation III is used to represent this operator;
for instance, B1 III B 2 implies thai expression B1 is independent of expression B2.

The second parallel operator is the synchronous parallel operator, with notation B1 11 B2. B3
and B2 are fully dependent on each other: any action that B, participates in must also be shared
by B 2 , and vice versa. If B, can only participate in an event that B 2 canrnot participate in (or vice
versa), then the whole expression cannot participate in any event, and the expression represents
deadlock. This operator is useful for defining composite restrictions on the possible events of a
system.

The third parallel operator is a combination of the other two. Its intention is that two processes

must synchronise on sore, events, but must be independent on all others.

Other operators include enabling (for sequential composition of processes), disabling (for the

156

interruption of processes), and hiding (for masking some events of the system from the environment
of the system). Hiding iý useful for defining internal behaviour which cannot be observed through
the system interface.

4.3 The Data Type Part

So far we have only considered the notion of event. We have not yet described what is communi-
cated on an event - i.e. the data values.

Orthogonal to the language of events in LOTOS, is the language for describing data types
and values. The particular abstract data type language (or equational algebra) used in LOTOS
is ACT ONE. A type in the language can be considered as a moddle for defining a number of sets,
or sorts, and operations on these sorts.

To defire a sort, one gives the sort name, and any number of operations on the sorts. The
operations (or functions) are defined by giving the operation name, a list of names of the domain
sorts, and the range sort. Furthermore, equations can be given which define constraints on the
operations (hence the name equational e.lgebras).

For an example, let us consider the ACT" ONE data type Boolean. (LOTOS keywords are in
bold type.)

type Boolean is
sorts Bool
opns true -> Bool

false -> Bool
not lBool -> Bool

eqns ofsort Bool
not(true) =- false;
not(false) = true;

endtype

Here we have a whole data type module called 'Boolean'. It consists of one sort, with the
name 'Bool'. Three operations are defined, 'true', 'false', and 'not'. The operations 'true' and
'false' are essentially constants of the sort 'Bool'.

The operation 'not' is defined to be an operation, or function, mapping elements of sort 'Bool',
or,to elements of sort 'Bool'. Tile equations are defined to be equations with values of sort 'Bool'.
It is necessary to define the sort of the eqi2 xtions, as overloading of operators is allowed in the
language. The equations define the value of lhe function 'not' applied to the constants 'true' and
'false'. Without these equations 'not(true)' would not have the same value as 'false'.

4.4 Events, Values and Gates

In Section 4.1 we briefly mentioned gates, or interaction prints. When defining a process, we
must define the interaction points of that process. 'File events of a process a•re defined in terms
of these interaction points. Thus, a simple event which does not represent the transmission of
values, but just the communication between processes, is writ ten by giving the interaction point

of that event. Hence the name of a simple event is synonymous withi its interaction point.

3.57

However, to describe the corntnuiication of values between processes by events, tile events
must be described in a more complicated fashion. An event, therefore, is described by giving the
interaction point, and a list of event offers.

An event offer consists of either a particular value (such as 'not(true)'), or a parameterised
value of a given sort (such as 'x:Bool'). Event offers are prefixed with either T' or '?' to represent
the offering or accepting of values, respectively. For example, 'g ! not(false)' describes an event
at interaction point 'g', which offers a value 'not(false)'.

Going back to the synchronization operator, the expression

'g ! true ; stop 11 g ? x:Bool; stop'

represents a system that can offer the value 'true' at gate 'g' and then stop, which nmust
synchronise with a system that will accept any value of sort 'Bool' at gate 'g' and then stop.
Synchronisation can occur, as they both offer an event at the same interaction point, and the
event offers have a valid correspondence. After the event, the parameter 'x' is assigned the value
'true'.

However, the expression

(g ! true ; stop g I false ; stop'

behaves as deadlock, as the two subexpressions cannot communicate. Although they offer
values at the same interaction point, they are not the same value, and therefore cannot be seen
as a single event. Similarly for

ig ! true ; stop 11 g ? x:Nat ; stop'

The expression must deadlock as the value 'true' is not of the sort 'Nat', and therefore the
events offered by the subexpressions are not the same.

5. LOTOS Specification of Security Services

In this paper, we only describe the specification of those services which involve the provisi, n of
security in the messaging system.

The LOTOS specification consists of two parts, namely the service specification and the pro-
tocol specification. Note that the use of the word "service" here is somewhat different from the

one used in "security services" above. Let us first briefly describe the essential difference between
the service and protocol specification.

A system provides a set of "servics" which allow various interactions between the users in the
system. The "protocols" are mechanisms which provide the services. Hence the user is concerned
with the nature of the services but not with how the protocoi manages to provide them.

A service specification is really a specification of the requirements of the system. It can be
considered as a very high-level, or "abstract" description of the system. There should be no detail
as to how the system may intend to implement these services. Thus it can be seen as an interface
description of the system, with tile only detail being that which the user sees.

On the other hand, a protocol :pecification is a description of the mechanisms which should be

158

used by the system to provide the service. However, a protocol specification can still be considered
abstract in some sense. For international standards, it is important that protocol specifications
should not give unnecessary detaii, as this may favour some companies' hardware/processor offer-
ings over others. A protocol specification may say, for example, "receive value x from user, make
a copy, increment counter, and pass x to another user". This does not say how to copy thc value,
or increment the counter.

Security aspects are modelled as part of both service and protocol specifications. That is, each
specification is a combination of process definitions, and also data type definitions. Note that the
term "model" is used in a generic sense and it should not be confused with the security models
as given in the Trusted Computer System Evaluation Criteria ([11]). The complete specification
consists of some thirty process and some forty data type definitions ([12]).

5.A Service Specification

As mentioned previously, a service description must not contain internal details of the system, but
must only specify the behaviout of the system in terms of the behaviour at the system interface.
All events in the service specification must therefore take place at the interaction points visible
to the user.

In our description we have only used one interaction point, which is called "user". There are
a number of constraints needed on all events of the system, called global constraints. It is for this
reason that. oniy one event. format is used (bu that fhe global constraints have the correct event
format for every event of the system). The event format is

'user ? user-id:Name ? user-op:UserlnteractioD'

Thus every event occurs at gate "user", has a user-identifier of sort "Name", and a user
operation of sort "UserInteraction". The user-identifier identifies which user of the system the
particular event is related to, and the user operation is the service primitive and associated
parameters of the particular event.

Strictly speaking, our system can only have one user interaction at any instant. However,
this is very reasonablh. as a model, since all events, or interactions are atomic. So, if any two
ir.dependent users want to use the system at the same time, it is reasonable to ass-ume that one
of them uses the system just before the other (but without necessarily saying which). Such an
interleaving model of concurrency forms an important element of LOTOS semantics.

5.1.1 Modelling Security Services

From the viewpoint of the service, the security services are primarily of the following form : a
request is made for a specific transformation of message, and such an appropriate transformation
of the message is then delivered. There is no need to define details of the algorithms and the
functions used in the security services. However, we must define the properties of the security
services.

Firstly, the security services are requested as part of the service primitives of the system.
Thus it is necessary to model the security services as data types and values. When a certain
service primitive is requested, the associated security services can also be requested in the form
of parameters of the service primitive.

159

The security services are provided by sonic forms of mianipulation of given data, and also by
the addition of extra ucecurity parameters. For example, a request may be to send son- data D.
encrypted using somec givcii key 1K, Lo somec user U. The value received by U could be r(. resented
by "cncrr,jpt(D,K)V, representing encrypted data D under kcey 1K. Note that no miechanismn is giveii
for performingi the encryption process.

User UJ cannot access the data D without deciypting the encrypted message. To be able to do
this, an appropriate decrypting function must be defined, and also some rule& (equations) must
be given for defining how the decryption and encryption functions are related. So the equation

decrypt(encrypt(D,K),K) ý-D

constrains the decryption function to return the initial value of an encrypted data message D,
provided the same key K has been used. This is a generic property of a symmetric encryption
function.

5.1.2 Examples from the Service Specification

In. this section we give two examples of LOTOS data types defined in the service specification, to
model security aspects of the service. These examples should be sufficient to gain an understanding
of the modelling power of the language, and also of the application of the language to specific
problems.

type SM-options- is Boolean, SetOfUser, Message
sorts SM-opticon
opns MakeSM10ption Bool, SetOfUser, SetOfUser

Message, SetOfUser
-> SM-option

Cont~onf :SM-option ->lBool
PoD :SM-option ->SetOfUser
DataAuth :SM-option ->SetOfy~ser
Message :SM-option ->Message
Recipients :SM-option ->SetOfUser
-eq-,2ie- :SM-option,SM--option

->Bool

eqns forall cc,cl:f300l, pd,da,rc,pl,d in :SetOfUser,
mg,ml:Message, smi ,sm2:SM-option

ofsort Bool
MakeSMOption(cc,pd ,da,mg,rc) eq MakeSMOption(c 1,p1,d I,ml ,r1)

(cc eq ci) and (pd eq p1) and (da eq d~l) and (mg eq ml) and (rc eq rI);
smil ne srn2 = not(sml eq sn12);

ContConf(MakeSMOptioni(cc,pd ,da,mg,rc)) = cc-,

ofsort SetOfUser
PoD(MakeSMOption(cc,pd,da,mg,rc)) =pd;
DataAujth(MakeSMIOptioni(cc,pd,damig,rc)) = da;
Re~cipiei~ts(r-iakesmOp~tioni(cc,p~d,da,img,rc')) rc,

160

olsort Message
MessaIge(M-akeSMNOp~tionl(cc ,pd(,da~~img,rc)) = mng.

Cnd(type

Here we define the type 'SMN-options', whIicII inluC~des, or inherits. lhe types '13oolcan', 'Sc--tO-

fl~ser', and 'Message'. A new~ sort 'SM-option' is int roduced. A number of operations are (1Ichiied

from, elements of the sort 'SM-option'. The operation 'MlakeS\10ption' ma.-ps elemnents from othier

sorts onto the set 'SM-option'. The set "SM-option" is Constcuct~ed from elemienits of othier sets,

with the constructor being the 'MakeSMOption' operation.

T he operations '-eq-' and '-neq-' are infix operations, dcfining equafity oin elementis of the new

set 'SM-option'.

The operations 'ContConf', 'Po', 'DataAuthi', 'Recipients', and 'M'essage' are defined (by the

equations) to extract individual parameter values of the composite elements of thle set 'SMI-opti]on'.

Secondly, we give the type 'Keys' which defines the encryption and decryption kLys used by

the encryption and decryption functions and the hashing function.

type Keys is NattralNuniber, Boolean, Message, Naznw,

sorts secret-key, public.-key, symnmetric.-key
onnc~ SynjlMPt..TI(-Ie.V Nat. Nat svnic icky

secre t-key N at, Nat, Nat ->secret-key

public-key N at, Nat - > public:-keyq
-corresponds-to-- public-key, secret-key -> Bool

Modulus secret-key ->Nat.

Modulus public-key N Nat

equls forali. nl,n2,set,pe~mod:Nat.

ofsort IDool
ni ne 0 r-->

pubhic-key(pe ,miod) corresponds-to secret- key(se n 1, n2)

(mod eq nl*n2) and (,se*pe eq succ(0)-t
n*(nil..succ(O))*(ni2.succ(O)));,

ofsort N at
Mod ulus(seccet-key (se,ni I r.21))= n 1*112;

M~odulus(publhc-key~pe,miod)).- mod;

eficitype

We. have iemovied thme equality relations on eljenieris of "lhe new sorts, to make things simpler

to read- The reIiIinu;g Operations are essential to the miodelling of FccuritN in the service,

`.Cis operations 'symrnietric-key', ýs!crct.-key', am'd 'public- key' nmap lists, of natural nuimbers

ori-o 1.1e niewly defined sets. Tlie.!, aire construictor operations, for these setIs. Thie ojweraktioi

I'cotresponids- to' is a comrparison ope~raion or relation between public alnd seclet. key,;. The two

'Moduluw' ope-ratiotis "eAtrct" the modulu.aý rnsuber asbociated t~o thc elemnentsf of sort '.seccret-ksyv'

and 'public--ke\,'. As menrtioned in Section 2, the, DES symmentric keý cryptosysteil and (lie RSA

pubkc key crypt~osysteni have been used.

user user

User * ,User
Ag~nt Agent Local LS-.n, K!

KStrUser I ey
interface Store

Globl SLOC .m1

MTS dir MTS dir

Figure 2: Structure of the specification Figure 3: Structure of the process "UserAgent"

5.2 Protocol Specification

The protocol specification describes the mechanisms used by an entity to provide the services
described in the service specification (Section 5.1). We first give a brief description of the overall
structure of the protocol specification and then consider some examples to illustrate how some of
the security aspects are modelled within the protocol.

5.2.1 Structure

As in the case of the service specification, the interactions between the User Agents are modelled
via a single gate "user". In addition, to describe the protocol, we need to model the interactions
between the User Agents and the Message T'ransfer System and the Directory. The interactions
between a User Agent and the MTS occur via the gate "MTS" and the interactions between the
User Agent and the Directory occur via the gate "dir". A diagram representing the structure of
the protocol specification is given in Figure 2.

Each user has a corresponding User Agent process and each User Agent process is described
as an interleaved composition of the following four processes (see Figure 3)

"* Userlnterface Process which specifies the complete protocol;

"* KeyStore Process which is used to store the user's secret key of the public key cryptosystem;

"* LocalStorel Process is connected to the UserInterface process through the gate "LS-rm"
and it stores the messages received by the UserInterface;

"* LocalStore2 Process is connected to the process UserInterface through the gate "LS-smn"
and it stores the messages sent by the UserInterface process when the proof of delivery is

162

required.

Two instantiations of the process LocalStore help to avoid problems in synchronising the
"sending part" and the "receiving part" before every update.

The process UserInterface is a sequential composition of two processes : ConnectToMTS and
Operation. As the name implies the process ConnectToMTS connects a user with the MTS and
checks whether the connection is well-established. The process Operation performs the services
requested by a user and also receives messages and proof-of-delivery from the MTS.

System failure or transmission error is modelled by the prceess DisconnectFromMTS which

may happen at any time and in this case, a new attempt is made to connect to the MTS.

The process Operation has three interleaved processes :

"* the StoreOperation process stores the secret key in the KeyStore (cf service Store Secret
Key);

"• the process OutputOperation controls the message sending part between the User Agent
and the MTS; and

"* the process InputOperation controls the receiving part between the User Agent and the
MTS.

We can now proceed to consider some examples of process specifications to illustrate the modelling
of security aspects within the protocol sp-cification.

5.2.2 Modelling Security in Protocol Specification

In general, when modelling security in a protocol specification, the designer has some amount
of freedom in deciding as to how much of the security aspects are incorporated in the process
specifications and how much are defined as part of the data types. This occurs for instance when
an operation can be either specified as part of the opns of the data type definition or can be
included within a process as a computation.

As an example, let us consider a process which receives some data, and then outputs a hashed
and encrypted copy of this data. This could be modelled by the following process.

process Hash-Encrypt [gate]: exit
gate ? x:Data ;
gate ! hash(encrypt(x));
exit

endproc

The process 'Hash-Encrypt' gets an element of sort 'Data', assignes it to the parameter 'x',
and then outputs a hashed and encrypted copy of 'x'. This hashing and encrpyting is done in one
single action. An alternative representation could be the following:

hide mid in
Encrypt[gate,mid] I[mid]l Ilash[mid,gate]

where

163

process Ericrypt[gatc,rnid]: exit
gate ? x:Data;,
mid ! encryptWx;
exit

endproc

process Hash[niid,gate]: exit
mid ? x:Data;
gate ! hash(x);
exit

endproc

lit the above, twro separate processes are identified as performing the encryption and hashing
ffunctions. The process 'Encrypt' gets some data, and then outputs to the process 'Hash' an
encrypted version of the data. 'Hash' receives some data (which happens to be encrypted), and
outputs a hashed version of what it received.

The event on interaction point 'mid' is hidden from the user of these processes. As far as
the user is concerned these two representations look exactly the saine. The second version has
two processes performing separate tasks of hashing and encryption whereas the former version
identifies only one process with both thf hashing and encryption operations.

Lct .. -o co,'sicr SOMc6 examIplES Of ulT3a dt~ ypeb amid processes usei in the prot-ocol
specification in modelling security properties.

First we outline the definitions of two data types: Certificate and Token. Recall tl-.at we
described these two concepts in Sections 3.1.2 and 3.1.3 respectively. So it is useful to look at.
their data type diefinitions and compare themn with the descriptions giv'en in Sections 3.1.2 and
3.1.3. Not ail the equations are included, but the illustration should still be valid.

type Certifi'ate is Time, Name, AlgorithmType, Keys, Boolean,
Message, Encrypt-Hash

sorts Certificate, NonSigued~ert

opns construct-non- s-cert: AlgType, Narne, Time, Time, public-key
->NonSignedCert

compute-cert: secret-key, Warne, Tlime, Time, public-key
->Certificate

construct-cert: NoamSignedCert, Message ->Certificate
signature :Certific.;te -> Message
non-s-cert :Certificate -> NonSigned~ert
subject-name :Certificate -> Name
start-validity :Certificate -> Time
expiry-time :Certificate -> Time
public-k~ey :Certificate -> public-key
certificate-valid :Certificate, Time -> Bool
chieck-certificate: Cetrtificate, Time, public-kcy -> Bool
corivert-nscert-rnessage :NonSignedCert -> Message
convert- mess age- nsce rt :Message -> NonSigned~ert

eqns forall nsc: NonSigned~ert, img: Message..

164

ofsort NoniSignedCert
convert-iiessage-nscert (convert-nsccrt-message(nsc)) = nsc:
non-s-cert(constrruct-cert(iisc,mg)) = nsc;

eidtype (* Certificate *)

First recall that the construction of a certificate for a user is performed by the Directory. We
construct the Certificate using two parts, namely a non-signed contents part and a signature part.

The operation "construct-cert" performs this function. The Directory uses its secret key to sign
the hashed form of the contents part. This is done as part of the "corupute-cert" operation. The
contents part is built from its various components as described in Section 3.1.2 using the operation
"constru ct-non-s-cert" operation.

The other operations given in the definition of the type are self-explanatory. It can be easily
seen from the example that the equations describe the required properties of the functions specified
in the opns part.

A sinjilar approach has been used in the specification of the data type Token given below.

That is, a token is assumed to be composed of two parts: a non-signed part. and a signature. The
operation "construct-token" constructs a token from these two parts. The signing of the contents
part of the token is done as part of the "compute-token" opetation. The non-signed contents part
is built from its various components as described.in Section 3.1.3 using the 'construct-non-s-token"

operation.

The other operations and the equations given in the specification are again self-explanatory.

type Token is Time, Name, AlgorithmType, Keys,

Boolean, Message, Encrypt-Hash

sorts Token, NonSignedToken
opns construct-non-s-token: AlgType, Name, Time, AlgType, Message,

Bool, AlgType, Message -> NonSignedToken
compute-token: secret-key, Name, Time, AlgType, Message,

Bool, AlgType, Message -> Token
construct-token: NonSignedToken, Message -> Token

signature Token -> Message
non-s-token Token -> NonSignedToken
recipient-name Token -> Name

CIC-alg-type Token -> AigType
cont-int-ciheck Token -> Message
proof-of-delivery. Token -> Bool
enc-alg-type : Token -> AIgType

encrypted-token: Token -> Message
check-token : Token, public-key -> Bool
convert-message-nstoken Message -> NonSignedToken
convert-nstoken-message NonSignedToken -> Message

eqns forall nst: NonSignedToken, ing: Message ...
ofsort NonSignedToken
convert-message-nstoken(convert-nstoken-message(nist)) = nst;
non-s-i.oken(construct-t~oken(nst,mg)) = nst;

165

endtype (* Token *)

Let us now consider some examples of modelling security aspects within process specifications.
We will describe two processes, one from the set of Input Operations and the other from the set
of Output Operations.

Example I : Process - Receive Message from the MTS

The process Receive Message from the MTS is one of the subprocesses associated with the
process InputOperation. More precisely, the process InputOperatiou is specified as a choice be-
tween the three user services - List Message, Read Message and Delete Message - and the MTS
service Receive Message.

The overall function of this process is to receive an "envelope" from the MTS and to check its
various components and perform the appropriate actions. Let us go through the specification of
the Receive-Message process step by step and see how the security-relevant operations defined in
the abstract data types are being used.

The process first checks whether the envelope is valid. An envelope is defined to be valid if
the certificates and the token in the envelope are valid. This is done using the function

"check-envelope((env),ct.ime~dir-key)"

Note that the definition of "check-envelope" is not given in the process specification but is
defined as part of a data type definition elsewhere as being equal to

"check-certificate(origin-cert(env), t, p-key) and
check-certificate(recep-cert(env), t, p-key) and
check-token(token(env), p-key)".

The process then checks whether a proof-of-delivery has been requested, using the function
"proof-of-delivery(token(env))".

If the envelope is valid and if the confidentiality service has been used, then the process recovers
the symmetric key from the token and decrypts the message and stores it in the received message
local store LS-rm. If the proof-of-delivery has also been requested then it is -,rniputed using the
function "compute-ProofOfDelivery(s-key,env))" and sent to the MTS.

The complete specification of the process Receive-Message is given below:

process Receive-Message[user,MTS,LS-rmn,KS]
(user-id:Name, dir-key:public-key, s-key:secret-key) : noexit

choice env:Envelope]
MTS ! user-id ! ruessage-delivery(env);
choice ctime:Time a

[iscurrenttime(ctime)] -> i;
let envelope-correct:Bool = check-envelope(env,ctime,dir-key),

proof-required:Bool = proof-of-delivery(message-token(env)) in
(

[not(envelope-correct)] ->

166

MI'TS ! user-id ! iessage-delivery-resailt (ciii d.y-res);
luaputOpcrationi[r..cr,MrS,1,S-ranKS] (uscr-id,dir key)

U
[cavelope-correct] ->

let sd:Na ine - suhjec i-nanle(originator-cert(ciiv)) iin
L-S-rn ! user-id !LS-update

MessaýgeEl(sd,niessage-decrypt(s-key,env) ,false);

[not(proof-requ ired)] ->

MTS ! user-id
! message-del hvery-result(enmpty-result)

Ihpu tOperationluser,lTl'S,LS-r re,KS] (user-id,dir-key)U
[proof-required] ->

MTS ! user-id
!hessage-delivery-result(computc-I'roof0f)clivery(s-key,env),

IntputOperation[user,MTS,LS-rm,fSI (user-iddir-key)
)

)
endproc (*Reccive-Message*)

Exanmle 2 : Process Submit Message.

The process Submit Message is one of the subprocesses associated with the procets Output-
Operation. More precisely, the process OutputOperation provides a choice between the two user
services - "Submit Message" and "Confirm Proof Of Delivery"- and the MTS service Receive
Proof and a Timeout process.

The process Submit Message desciibes the protocol associated with the "Suhnut-Message
service described in Section 5.1. This process checks whether the (ontent-colfidentiailty servlce
is required. If iL is the case, then a symnietric key (the DES key together with the initiahsation
vector) is generated. The following IOTOS construct specifies the selection of a syinunettic ke%

"c., hoice key : symmetric-key 0 i".

For each message recipient requiring security sea vices, a trusted copy of the certificate is ot-
tained from the Directory, Envelope is computed using the following parameters : thr secret RSA
key of the user constructing the envelope, enicrypttd or plaiii message, the argumients of the token

and the originator's and recipient's certificate. Note that within the process tpecification, thLs
is achieved using the "compute-envelope" function. If the proof-of-delivery has been requested
then the message submitted is stored in the local store LS-sni, which wail be used in validating
the receipt of the proof-of-delivery.

process SM-operation [user,MTS,dir,l.S-rni,KS]
(user-id:Name, dir-key-public-key, s-key-secret-key) : noexit

choice op:SM-option 0
user ! user-id I SM-request(op);
dir ! user-id ? orig-cert:Certificate;

let mod Nat = NModulus(pu|hlic-key(orig-ccrt)),
nag :Message = Message(op), rc : Sett)lisr 7_ Hecilýi'nl'tol,) ini

167

[not(ConrConf(op))] ->
SM-op-1 [user,NITS,dir,LS-sm,KS]

(user-id,dir-key,rc,hash(mod,img),op,no-alg-type,
no-alg-type,e iipty-imessage ,rng.orig-cert,s-key)

[ContConf(op)l ->

choice key : synrinetci-key 0 il
SM-op-I [user, MTS,dir,ILS-smnI. Sl

(user-id,dir-key,,rchash (mod,rng),opasymmetric-alg-type
asymrn et ric-alg-type,asynwmetric-en crypt (pu blic- key(rec- cert),

convert-symmkey-message(key)), symmetric-encrypt(key,img),
orig-cert,s--ey)

)
)

endproc (*SM-operation*)

6. Discussion

6.1 Further Security Issucs ýn the Mess5a ystem

In our specification we have not jililetd' the Me;sag-e Store component of the Messaging System.

The finctions of the Message Store are quite importapt.: parti,:ulariy itn the c:.a.se of a Mobilec

System. The next step is to inclu(ie the irnteractions between the Message Store, Message T'ransfer S

Agent azn the User Agent.. Fron a security point of iew this results in severs! additional
interesting issues some of which we vow jes;:ribe.

Recail that in Section 3, we mnntioned ,.at, there are aiso other servizes which are not end-to-
end in nature ([3]). One such service is the "access control" service between the Uset Agent and the
Message Stoie. Essentially this is achieved by using anctlier t) pe of token calld a "bin i-toke'"'
which is exchanged between ihe Uscr Agent and t0e Message Store at the tin-.e of (of aection

initiation. Again the token includes such infornoit.n as signed-data end time which, -r,' then

checked by the .h:.czage Store to determ.ine if the request is valid. The MS theou returns a toi'en
to the !JA 'hich makes further checks and if all these checks are satisfied, theii the ronuect~o'
can be established. We can easily include this service in our specification without any difficulty.

However, the inclusion of the Message Store do-es pose a problem with non-repudiation kf
delivery service. This is because the end point of the message delivery system now becomes the
Message Store rather than the User Agen(t. This in turn implies that the required proof-of-delivery
needs to be computed by the Message Store and hence the Measage Store imust know or have access
tc the RSA keys. Difflerent methods ha.'e been devised ([3j) to provide partial solutions to this

problem. We will not describe these methods here and ihe intercsted readers should refer to ([3]).
It is sufficient to say that although there may At he an idea! solution, one can sil'. provide secure
messaging.

It is also worth mentioning that there may be problems wit(, thme -orin of tokens as defined
in the X.400 and X.503 Recominendations. Without going into d-;tadl, the" prohhl'ni arises duo" t

168

the fact that the token involves signing of encrypted information. This method only guarantees
the authenticit) of the encrypted information rather than the corresponding plain data. There
are situations where this does pose a problem and again some modifications can be made which
will overcome tins deficiency. liese issues have been explored in ([3]). It is worth poiniing out
tha,. such problens do not arise in the LOCATOR architecture because of the way the content-
inte~grity-check (CIC) ha-s been calculated and used ([3]).

6.2 Suitability of LOTOS for modellhig security

LOTOS was designed as a specification language, not an implementation language. Thus the
specification is at a very high level, and is more concerned with the properties of the security
functions, rather than of the algorithms used to implement such functions.

In discussing the LOCATOR Project, we mentioned the use of tLSA and DES algorithms.
As it can be seen from our specifications, the particular algorithms are not defined. However,
the really important aspects of these algorithms are defined in terms of equations constraining
operations.

As mentioned previously, the underlying description mechanism of LOTOS is that of events.
It is interesting to note that much of the security modelling is done using the data type part of
the language.

In the service specificiation we saw that all of the security services were defined using abstract
data types. This does not mean that LOTOS is not suited to modelling security services, but

rather that security services are very strongly connec ted with data values.

It is very difficult to reason "rigorously" about general properties of the system. For this kind
of formal reasoning, a logic based language is best suited. However, our approach is useful for
animating the design, well before implementation takes place. This is particularly useful from
the designer's point of vie,.' as system errors can be detected and rectified at the design stage
prior to implementation. Thus with a LOTOS specification it is possible to symbolically execute
(simulate) the specification. Many of the design errors could be detected at this stage.

6.2.1 Tools

""The development, of tools suppoiting the specification and analysis process is an essential part of
the propagation ci formal methods. To gain wide accepta.ce, it is necessAry to present formal
languags in a wp.y which i!ý amenable to the software eug; "4uch of the complex mathematical
detail needs to be hidden, a user-friendly approach to i .ge .nust be taken, and as much
automated support needs to be given.

The language LOTOS is a stiucturcd language, using the conventional (ASCII) character
set. However, the operators are not obvious, and large specifications are usually difficult to read.
There is currently development in ISO to create a graphical repiesentation for LOTOS, G-LOTOS
([13)), which shcul.l make it easier to read and appreciate the structural relations.

LOTOS is being used mote and more and consequently, there is a growing knowledge of how
to use the languakc, with a number of styles appearing. However, there is as yet no methodolegy.

As people are becoming interested in LOTOS, so there is a growing interest in the development
of supporting tools. One of the first tool, called HtIPPO. was developed under a Furopean
ESPRIT Project, sponsored by the EC, and is commercially available.

1.69

At Hecwlett-Packard, we have%((evelopod our own tLool 'SPIDiIE1 ([14]) Tilis I-$ all extenlc~b'
tool, which currently consists of a syntas checke-r, st atic. senmant ics checker, and a graphical simni-
lator. Work is also progressing on t lie developii ent of a t'icnonstrator tool for editing G-LOTOS
specifications. Tlier'ý arc furtlher plan5 to exfcud this tool b% adding auo--, generat ion of i%,st
suites, and compilation of LOTOS specifications.

7. Conclusions

In this paper, we have described a formal specification of a security architecture for a distributed
message handling system.

The niessaging system considered is thr CCITT's Mfessage Handling Systemn. The security
architecture has been developed as part of the LOCATOR collaborative project within the UK
Governiment Alvey Program-me. The security services provided include content confidentialiltv,
integrity, authentication and n..,i-repudiation. Theme security services and the associated mech-
anisms in the architectui-e have been formally specified using the Formal Description Technique
LOTOS.

The formal srecificat:_or has p.-oven to be useful in ir~anN respects. It has allowed us to
i,(uaLe and tiiaodc only tic security issues involved in ith designi of the messaging systen 'We j
hav~e illustrated such. modelling of sccurity aspects using somne small examples taken from the full

seification. The specification hacs provided the necessarY abstr~action ailloivin. represent attion
of architectural aspects and thic liding of imnplementation details. This investigation hzas fur~bor
enabled us Lo assess the use of LOTOS in the specification of a practical yet reasonably large
system. We hope to continue this woik in the future by carrying out the simuiation of tL!w
specifice~tion using~ trie LOTOS toDolset SPID)ER which is currently being developed.

S. References

[1] C.C.I.T.T. Draft iRecorn-liedaisons X.400 : Ycsgage harildlng Systemns - Syst'rn and Serviee
Oteruzew, Version 5.5, April 1988.

[2] I.S.O. Thferrnintion Processing~ Sys~erns . Open Systems Interconnection - Basic Reference
Model. Part 2 :Security Arclaiieciure 7498 -2, Intern ational Standards, Or7'anization 1988.

[31 C.3.Mit.chell, P.D'.C.Rush aad M.Walker, A secure vnessag via architecture impleerneting the
X.400-1988 securiq fraitures, Tech. Memo No. 11PL-ISC-TNI-88--0716, HP Lubs., Bristoll, UK,
Nov.1988.

(4] C.C.-I.T.T. The Dgrectory X.500, Final Draft Recommendations, March 1988.

[51 I.S.O. Information Processing Systemns -Open Systems Infercon arctoic - LOTOS - A For-
mial Descr-iption technique based on i4e icrnporul Ordenny of Otser-.iatvioal Bc Jauiolur 8807,
hIn'ternational Standai ds Organization 1988.

170

[6] T.Bolognesi and E.Brinksma, Introduction to the ISO Specificet.on Language OT1OS
(Invited Paper), Proc. of First International Co',ference on Formal Description Techniques,
Sept.1988.

[7] Data Encr-yption Standard (DES), FIPS Publication 46, National Bureau of Standards, U.S.
Dept. of Commerce, Washington DC, 1977.

[8] DES M•,des of Optrutior., FIPS Publication 81, National Bureau of Standards, U.S. Dept. of
Commerce, Washington DC, 1980

[9] R.L.Rivest, A.Shamir and L.Adleman, A Metbod for obtaining, Digital Signatures and Public-
Key Cryptosystems, Communications of theAQM, Vol.21, 19L8, pp12O..126.

[10] C.C.I.T.T. Draft Recommendations X.509 : T.he Director-, - Authenticatio,) Framework, Ver-

sion 7, November 1987.

[11] US DeD, Do) 7u.-sed Co nimputer System Ivaiuation Criteria, DoD 5200.28-S'I'D, Dec.1985.

[12] C.Calvelli, LOFOS Spei'.ic:atia ofLOCATOR Security Aspects HP Intervaa Report, 1988.

[13] I.S.O. G-LOTOS : A Gruphical syntax for LOTOS, ISO/.EC JTCI/SC2] N3253, JIanuary
1989.

[14] S-3ohnston, S.PIDER - S.rvice and Protocol Interactive Development Environmeat,
trr.,c. oi F ir; internwationu.i Confe-ence on Fjriai JDescrpi iou T,:&zifqu,!., "ept.i988.

9. Acknowledgein.ents

The authcrs would LI.' to thank Claudio Cilvelli, student fn-'rn University of Pisa, Italy and
members of the LOCATOR Project. The authors are aIso 1ýrateful to the arionynmwus Rete.ees for
their cominentt;.

171

The SDOS System: A Secure Distributed Operating System
Prototype *

Raymond Wong, Matbew Chacko, Eugene Ding,
Brian Kahn, Norman Proctor, John Sebes, Ram Varadarajan

Odyssey Research Associates
525 Middlefield Road, Suite 250

Menlo Park, CA 94025

Abstract

We describe the design requirements and the system architecture for the SDOS system
which is an experimental prototype for a secure distributed operating system designed to
meet TCSEC B3 requirements. Key design requirements include tlt.: ability to connect
machines of heterogeneous hardware and software architectures, and the preservaticn of
existing investments in machines and software applications. The object model is used as
the basic structuring paradigm for the system design. Object managers implement abstract
operations or, object i Osta f a type. Cii:v acce.sb uojeci.s Dy inVOKing operations on

objects. A simple message-passing Switch provides efficient communications between clients
and managers. The design uses a layered implementation architecture with the SDOS Switch
and object managers built on top of an off-the-shelf secure constituent operating system.

Introducnion

The primary goal of the Secure Distributed Operating System (SDOS) development project
is to advance the state of the art in the area of secure distributed operating systems. The SDOS
system will be a prototype of a secure distributed operating system designed to meet DoD TC-

SEC B3 security and assurance requirements, [TCSEC 85]. The SDOS design borrows many of
its abstractions and concepts from the Cronus distributed operating system developed by Bolt
Beranek and Newman Inc., [Cronus 86]. For example, the basic object-oriented client/server

model has been retained. However, the system architecture has been redesigned in order to pro-
vide TCSEC design assurance, multi-level security, enhanced identification and authentication,
enhanced discretionary access control, configuration security, audit, and network protection.

In this paper we describe the design requirements axd system architecture for the SDOS
system. The paper is organized as follows. The next section discusses the design require-

ments. This includes a discussion of both functional and security requirements. The System
Overview section presents the basic SDOS architecture that satisfies the previously identified

requirements. The layered implementation architecture is presented. The Operation Invocation
Scenarios section illustrates how the system processes typical operation invocations. Finally,
the last section discusses the current ztatus of the project and describes future plans.

"Funded by the U.S. Air Force, RADC contract F3062-88-C-0146

172

System Design Requirements

AllOiCIi lg~N opllim prmo~idesý a set of powcrfiil absitract ionq Iw which u sers niav useC Share,
and~ controlt 1in I ie IeSIIiCCS. of' lie unelylI~Iing miachtine. A di~litritelc opeflal lug 5>Mtsemi prenelits

tile ilý,er %ith ai ,Ii of 1iuiiforii 1ii1 al.l('atiolis for the iesoullce.s atl nitiliple ifl('udepeiideiil1 plocesslilg

beat ionls. Ii' dl ilUtw (11,1u idoerl~iti" s. 5.stolil proidOie." locallo(11 ti'iliis11iii iciiv an ll iakes IlII"

(lis!It IIl d SV\st(lil appear' as iiVlt fvwlu utilt) rocessor". A sectile dist ribilted operatiing. "s seIcI

pen ms sor to acccess objects oiI , N if flicy are colisi';tenl Wkit it a set of well-d(efinied secuirit v
iol ici'.'S. I IIitd(ti aI"ii Iu I e sect rcde.- (Isi blibt ed operatilI Ig M,,vstelioln 11yN prlovide enihanlced(ailitdi~in

andR 11lewori protectcion. liit 11ik sectioli wo wcill outlinle t lie fi; icliolil~t anld securitY des"igni
ren Hi l-i'llit sl of lhe S1)MS sYst c1ii.

Coherence and Uniformnitty

'le SDOS S * e-ýIlul must provide a colierelit anld nillifoliin i ntegraitioni of i lie (listribuiited processinug
re0SOu i-COS. systeml service, mu st bie avaiilable to tile user 1lii rough; a 1ulliforlit1 set. of abst ract ionls.
Mhients sulcii as files, (iillectories, processes, services and~ 1/0 (lvvit-c wieini be aCcessedl 1sing a
"global alalliil facility ilnd a uniform set of coloniniiiicat ion lpritiiliti(s.

Ii etc r i-ety and Evolution

Man ii v (litributled systeluis have evolved thIirough the jiltercoltilnel loll of existinthg sta;ndl-alolne
iii a cliiies of poss'ibly d iffej-eit. hardwn e and software arcl iitectul yes. 'I'le.se in aC1LI CS mu at) hC
iu ii ectod(by at local -a iea liiework (LAIN) at a Specific localtioni 01 by a Wvide-a lea ne(twork
coiileCt iln Ig 1 AI at dlifferent locations. The SD OS SYs;te ll sould fierlil it tile i lit er-collilectd ion
of inacliilieý oif (Iif!8 uig arichitiectures over diflelelit coflulf lt IIICatiloll lIeI(li1 ill or' he to facilhtate

tlc he lia ilig of i nfol-lila t ion aliid comnlpo Itihi ICrS0it rc~es b etween orgahi -Iaa t~i5n, and1(to providhe

Reliability and Availability

A 'IIlie 51)05 S\ dclii should lie leliable ill I.1w senlse hatiz tile intleritv (if its (alla -Iliouldh~le
nia lit 1iii 10 even atiossst ('.10 I u faItores. The SDO 15systeml shicll d be a vaila ble or lie faul t -
toleiaiit so that. se-rvi(ces contiti he Lo be Pcces.;ible evenl if jiarts of the systeml should fail.

Scalability

Tile SI)MS lvte iinay be conifig ured with different pirocossilp ug eleiiviclis Io(accol()iiIntod ate a
lii Ii g(' of tiier-. a ii i sp ecifIic appliciat ionls. It. shouldl he po'ssible to incl-i(' lloii ltallx' expanid the
sy-stea; with addi it onll remnii lrcs over thilOC.

PresePrvlation of Existing A pplications

Thle 51)08 !!yvsela sdl~ollf periliit tile exeemltonl of exkist ni alulucati~lifol such aIS colilpilers,
0d1t01S, Wilil diw 5sys008. il ases etc. 'I lie des;igui of tlie SIO)05 svst em shouild niot r-equiii e
tile I-'-cOd~lig of r0. Ohlililoli lipfplicaiiliKs. Ill addit jon, it should be possible to pormiit Sl)0S
usci 5 'access to sjei'lu 1 zd cmtil~i p i ngi mesot rees that nsy be at~tached toe s , Iiesste ,uii ch as Iiigh -
:ýJii'e Ilarallecl froctvSol-, spi-cial piuiipose Symibolic picessors, ()r highi-speed graphlics devices.

17/3

TCSEC Requ~piriements

'1,1C S)OS s ,\)2) vs ~i11 wil)b (l(-ig'iecl tolH~ilie Ow (CSIC B.3 fuinctionlaiitv and 14111;.0 AH'1;ir-

lilelit3i. Tiherefore. the shlariug of information and~ li(sourucs onl 51)05 mvil] 1)0 e~ Že wit I
the en for-ceinent11 of a ninand at orvN securi ty potc ic 'Ciifor en ien t of a (j~l~ c rtiou 1rV i:FYco Ii l01tui

policy; rohi 3ble ident ificat ion and aulit benticIt ion of useý(rs and their proces'ses: and(alndiu ing of
1-ser. anld systelli act ivi ~. THiere will bc a si tigle SDO1)0 security ad ili nistrat or. A I ius,,!opat

will exist for security-critical operations.
11.3 assu rance requ iremnent s require that S 1)05 have, a form ial s'ecuritY nmodel. _Dot a lcd 1"op

Lovel Spocili cat iou lU' LS), covert clmai nel auialysis, \arniui s Cor;:CýJTondteii es witl II~ the1) L.S

a a (requnire t hatI the Systemii design minii mize the 1Tr1steod CompwUIn Ii- u1,se T(i() saild em~ploy
l1)10(Iila rI zat ioll an1d]east privll ego.

Trusted N etwork Int~e.-pietation Requiircments

The iietwvork intercomiiectling the consponcnts of tihe S1305 ,v:stemn must pnOvide yissalge III-
iegrity, protection from comipromise, and plrotection from denlial of serv~cc, [1 NI S}

System Config-iration

1,1e presenit DSI)0 design is aimed at provdin ,upr fo *t hecu tio of 111tiple ID
hosts oil ; silitle local area neotwork. Ini addi tioai, singleI)lovol lwlprusted 'hosts mlay be attached
to the nietwork- n1sirgan NilsiL SIM)S actingf as, a fi-ont-ond access 11.cin l au ' ')0 Tc access miachinen

wnih ts access to spmcal - plrpose inacl)i nes such as paralI ! p roces;sois wh ichliare n)ot Ii ho! \ to
have dirlect 51)8Sn ýpport.

TIe si systeml will evolv'e toý permit thle con nod ioll of imuhi pie S 1)0S in a clii aes over all openC
1)11 erlet . 'lie Si)OS syvst eml wil11 prov do the 1 ecoTSal i v nietworK prot OcIlic~ roqulled for tile
tra 11 -lssio5501 of 111111 tilevel (alita. liitrustcel Singie-level Cr.oa1. nIo~t s lin.av residae oil) th saiC ien
network. Comnmunica tionls betweell luitrIlsle0(Cron111u s hosts and Sl1() S i ostý, XNwill e a;cinC1-
pdishced by ulsinlg an S1)0S hocst as a gateway. 5

System Overview

Figure I illn 5'teits tim 1major y~st~ein comp Ionenlts, of tOe SD1)0 arciuitertu re anad thleir rela--
tionlships to each ot her. Thei 51)03 uier intkeracts wi th tile systemntro I 110)1 the U-ser Inteýrface
which peritshi to execlute a Si)OS Client, or a user-writte(1 appb cal ;oi che01w. A 'truste0(

pa thl 1is prov'ided by" the systeni for security-critical ope-rationi" erol-foinod l Iirougýh (10111.5. Clients
perform work for t be "user by issuilig (~lato~in voca tioli s to SDO) (.vstcjiiiiane~ or user.
writ toil app ticatioi1 ni an agers. Thle mesg-p:5 l .Wit (ii oil tile lbc al ho'T is repidb~for.
locating the applroprniate~ ianiwger. Tho Switch m.ay Ivcd to in teracot Nvi t i its% ;peer;s onl remlote
lI".st s ill order to set. i1) collilwc Iions, Icc alt flt, in ?ii ager, rol tt eIii c iii vocatilon aidý I 0COive tiht,
reillY1. 1The ,,o,;:iolls to foilo\% wvi!l describe tel~ic i object iodel al(mi4 lajor Sst 'ill conipoiiit.5

ill gicater dletailI.

The SDOS Object. Model

TIhie Ii asic stra c 1.11rinug l.'ara'1 gui for ti11, SD!OS system is the ob~jvCt mo1del. T n lic ohyt ll.

atteminpt s to provide a bstractioils li Wichi closely maN 1)141 thle way users expe'ct to solv;e t h(cii prob-
loins. T1he miodel consists of object s an~d operat lcli wht hiilla be per'formedol (i thec ol j 'Ct.

174

USE

truasted path

ISDOSl F PYPL.

/*/

M1S SWITCHst.1 Adioclc

FRM75MT

Objects are thought of as cntities which satisfy certaini inva ria~uits wvliicli cliaracterize theiri bv-
havior. Thbe Object~s iiiay onily be accessed by a well-d(efll tid set of ol)i-vat~ioii s gu araititeed to
preserve these ii~vaiiants.S

Many objects may eŽxhibit the saine general behiavior. It is t herefore Cullll Vi etit to deli tie
oplerations onl anl object itjpc which are valid for all objects of that type. A typ~e is a specification
of a set of objects. Thie pub1l)ic part of tile specifica-tion is thle opierat ion ut erface Whic ~ind1(1ides

lie operation niames and1 operation parameters. The private part, which is hlot accessible to the0
user, iiicludeS the1 eXeCChtalble that implements the operations and the internial represet~tation of
Itli objects.

Ini general, iiew types may be constructed from existing typles .All SI)OS types form anl
hil beritance biierarchy or Is- A hiierarchiy. Each typ)e with the exception of thle root type:, object,
has exactly one parent. A type inherits op)erations fromi its p-redecessors. /X type m1,AY also
deffi te neCw operations which ace not present in it~s p~arenit. SI)OS providles tlic facility to create
1!Sor-d(eftined types using objeicts of type 1 ypedlef. Thlese type's 11i1i6t be a chlild of somlle s5ysteml
tv p or a previously dlefined user type.

A new% typ)e na y also be dlefinied usinig existing types ill a Part-Of lelatlic'n. The represefl-
tationl of tile. iiew t.ype is coinposed~ of more p~rimitiviIe tX pe definiit ions whtitcl may in turn be

Coimposed of evenl iiiore basic typ~es, The operations onl the now tx-pe t r:imi'slat~e in1to operations
Onl thle more primnitive types.

Basic SDOS Syse -ypes - Thel(basic SL)OS system types include:

a ll,' , - .l 1 - :K a--s ca ,l -wit al .. 2DO1. - - C !C sC 1

* I lost. Data anii Se4rvice Data - con figu ration object., describing a hios t andl its cServices.

* 1Priminal lProcess, - objects, corresponin~ iig to user])ro(-sses an ii niia itagers -

* Sessioti - object.ý cor-respondling to a user sessioni.

a lU-i icihial aind C roiu, *- objects assoc-ia ted withI thle idenitity of a userv mnd used for a utlhieu-
I !,-ItIion.

oj D~irectory - objeci s used for tile symnbolic iiainii g of objects.;

qt ile - piii mal and fast file objects provide a dist rihuit ed file svst eilti

4P Aud~it - audit objects.

T -(]pedf - oh lcc s Ihat dceli ne anl ob ject type.

Daletaled inlformal~tion ablout 51)05 svs teiiu types mlay be obtainled froml [51)05 89au] anid
[SIMOS S91)hi.

Object. N amnig - SIMS~ provides aglobal aiid l bat ion t raiispa wiltlii -;mitig fa ihi iv to
Ilie user. A namne is globally t ratisparenit it' ibe name call Le issued fi oil al!y locat ion anid
UnliquelY idejlitiie.S an1 object imnme is locawimion ranspa remit if Ilie local ion uf, the obiject j
tlot (lilk-ctl v enicoded ill lie n1alinc it self. Thore ate(Iwo levels, of illilctin forl objl et I. ill SI)OS -

The Unique Identitiier (Ill)) is a muai-liiiie-geueieated ilittriall I'ame. andn the iii¶alo-g minute is a
u:,-s('lv'ctd sYlilbolic ,ianx.(. 11(1 i are globllahY and locatt Uii I ranl-pareiit -

SI)OS objects have a sinlgle UlID which i., stoi ed wit I IIlie ob~ject andi is Iloull to Ih eI livbj(
at object creation t tinei. Thle I'll) is inot Iteatit Ill ill miamiipulatc eul uiecc lY bly lsers of thev

176

t I hc 1(d5v *S I-vji. sertVlevel. anid ana liii iijliC itiittihr..
Isr tvypicailly w\;iiit to referen'ce objects nii sviiiihoil st ringsv which are 1iieaiiingfiil to

Itlciii 'HICi (' talog Maagrlovii)\iI' a (listribu)tid aind Iepia~ted serviIco whicihl 1iiaiitaiii

lie hiil; Ipiig betwceii ii-'er-defillcol syltihldlic liiainis and s ,vst elie-Iiaiiit aiiCl ic 1)5ý. The catalog
Wl~illie i a, bit 'a(li lialitlim' Si rilcI ar ofI ile foriiilal~ where' -a- and --h- ate llir-cltort0

ail .-(*,~ is a cat laliig ciii , y ill -1h . The ca o iiIVs bolit id to the object 11sing it specifih

('it (atuhle~ .oe operat ion invoked onl aI direct ory object. D)irectories ill hil. lievrarchiical
na~linit' l Hici ie a C HniOlt)onilcall v itivcrasi g Illseilt level. The eat aiidg i.4 distrihalt ed so
1ha,1 diffl-eteit host1- sla tiar iatage dilleretit partIs of Ill lie nae space. Tilt, up~per porttbon offthe

catalog is lejihi(ate to suipport elhiciet it ccess ito dilfetel-ilt paýrts of thle Iitaine space.
1t is niot req lined tli at eryS I)() object hlave a siii licialiii. AnI Obj ect 1a.y therefore

halve Ilolie, otie or ll(Itor syni1bolic ile.

SI)OS Obj ect~s - All SIMS0 objects arie sli igle-hevel ea t s.510 provides reli ahilit .,
ali~~l a~ Iaiiy beY supportitig trjihicaiiitiof l kojecls otil miult iple tiiachiiiies. Cent ailt objects art

pl-iiiil bJ11ects whichi Itealis that the~y canl not be replicated o~r minira' ed(. Pritial process, object~s
cotrespotiditig In S 1)05 1)processes are eXbitnliples of primual objects.

ObI ject s which cIt ttav he tnvdfromt ho~slto Itost are cal led inignamtoci object." As .A (pJl~icEd
object is onle wiiichi has been duplicated anid reitdesi Oil mIlle tliati Otie iost. Lacit repltca of thle
Obj~ect. has Ilie Sante VIl. Thle Object ItitaY be accessedl ojil ; Iv of t be hosts whlere it resides.

!In rulc'lnlle toI 'a !-e(1iin0 to ni'l-forli ;mi o~lw--lotA o110 't4)1) obit~l. tlie SI)MS svstellIilimst

first locate a copy of ilie. object . Si ace anl objeCtI IItaV be In igraIMOr-V. its)ocato jo'lt ayVary
froml ilieocatioit to iiivocatioin. Th~e S1)0S S.sleiti thai tit nils i lie coiisisteticv of tilie copies for
rejiplicat 011 oliject s.

I'lie dat;I assýociit ed with ati object htas a tvpe-depetidetit t epreselmitatioti. Ill additioni to t his
alata anl object hlas certaint atltrib n tes cailled imst cinec raiod wi cl inchitde its Access (Control

List and (cer1ai n sYst Cii) pitra itiet et.

Clientts and Maniagers

Clietits allti itialtagers-1 arte S1)0S processes. F-or each S1)0S p]irocsst lowre exisi tS 'l-ni iiah Process
object which1 is, Inati; ged by thle Process Malatiger.

M\amingers - TFile jitipleitetitat totis of types, object inlst aices. and(operations are pet-
fotod ttohji'ct Itiatiagels, An tob1)ject mnanager maitailains I lie represei tin o l h jec Is of

a giveti type andh imptjlemetlis the opierat iotns that are p~et f)Ii 1it'll oil Objects, of that tlvpi It is

responisiblde for' titatit ian itig thle iiitegnit *v of t lie obJect rejiresvllatimiiii A iniiiager ulSltii
alli object daitabase (0D1)) for each t ,ype t lint it admiit'i"istrs.

Ill ý;)0DS, uiuaiiagers only exists for I lie t 'ypes' correspotoiting to ii' leaves of thle týpe htievar-

(IIY. A ittatt~Ager niaY inatiage objects for otte Or DWItl (IOf t hiewe I.ypes. Ilit geiieal. if at italiagvr

hiiiiliiig(s IillotC tliaii onle tYpe. Ihyare leaves oif a coliitiioit libihtlce. T'l~ii iillows. tle' itanlager to

iiiiplelinent comititoit operat ios oiil).\ onice. However, a Ittaliager is pertiiltetdl to nltI~age Vls

from dlisjoinlt Suitt 'Ž5 inl tilie h1ierarcy.
Single-Le' " and NM liit-L-L-wl Managers - A ii itmageri ma, l cit siniglchwleel object

Iiiatiagl'i or ait MIPS objeJct mitthtigl'. A simgl4'-l('v(l tttjell miatiager only Ittaliages objects at its

seca nit v level and1(is impltemlenited as; a Sinlgle-level proc4'l's.

177

All MI ob8LilWct iii~~c iii , oP' %%111(\\l liii ;d it) 11' lii h ii (lie rfi('at lull Oil a1 tMpe for olije t" at a

or n111Ipif :ie sIIig.le-Iekvel I ý\IL~) I I)a IIiagerIS. I' it is~ iI Ip] ll I I Icitd a" at si I I'-IeII ilI lti l evcl plI 'css,

thenl the iliali;iger is part tif Ifi lleiiiiolatorY TUB'l :u1id is. I uste~d to pi Iiii iaiidat orv aIccess
c 11cC k.ý

If I lie ii miager 1 I In p~leilwiltl aS asi ('o~lk-tiiil of siigle"-level ilailiaeor, thein each siiigh'-level
manaiigr Iinwiaiges obtjects ait its" level. It I rulsts, that tlite s 'vsteili roultes liliessages to the correct
maitaiager; MISI, mianiageis pierformi no iiiaidat urv access chiecks. hIivocationis ('ii objects at1 tile
saniei levell as thle clfieii ;Ile kiiuldfed Iw silileI level tliiaiuigers ait thfat levl. liivucat tills 1iii

wk.ri tcs") onI o Ifc . It lI[;] I do~iiiiia C I Ilie leVel of a;hiit aI1 ie ;1'rOUtled to the0 silil leve'1(,l lliaiialger

at the oh ject'. *so lee Ivspoii s is gi veji to t li clivjilt Sin ce this would colisAt iteuI a wriit
(lown. Invocal ionls down (ricad) on1 olijoc s I1 fiat ale (101itiatedl by), I'lie Client are hlandled liv
tilhe mlanlager- at t lie cliejit s level. Siigle1-levcl Iiallalages (all read dlowin directly fijto aii object
(Iatalba.Se at a lower level.

III geiieral, thle finl icim~Iahit of any INI LS]iiaiiger niv lie imipleinceitied as.- a siiigle imulti-

lee poess or. as a c ollectIonl of singjle leVel inaiatagurs. This decision is iiiade onl a ilialiager-h 'y-
inatiager basis and iiiii~st t ike inito coiisider;ittion'IJii THinimiiiizal iOn, S)"it~l CITAreources co!LitiiiMIe
anld performianice eI~ iiil rellileilt of tilie service. Th'lis decision iiaY depend on lhardlware aind
software architect iires of' thle miachiines fliv manaager will runl onl.

System Mlanagers and Application~ Managers - Therec are two types of mnanagers
wvjthlji SI)MS, tlie SIMS ivystewm ianiagers allif user-xvilt tcll ipplicat loll Iliallalgers. Sv stein
Inllaiagers are, registered vith Iitli- SD108sys n to nman age one(or inore of the basic sYstem

types. All svS ('i v ii alge: are niiil1ti level object maui a-gers.
'fI'(hisiu systi' ii a iirsa

* 1 lrucess NI ;19VIiie - IlitiM lags SDO 1)08 hii'('c5- aiid sCsmoli objects.

* :\iilieiitiit iclo~i Maijuiaglei - mania~ges aiuthIenlticationi objects.

* C atalog Manager - muanlages directories and their ('it iles.

e File M~anager - miaulages filos.

* ('oiifigiliiatitiii Malaager - llialaiage ho(st alld service cOil tiguli ir n I ll ojecls.

* 1 lost MnIilager - mianiages a host.

* Audit Mnl~mager - mi[i;nages auidit objects.

a IT1ucdef Mlaliager - Inaliages type (lefnliollns,

A uiser-wi~ilwi i applicaition inaimagem iliiaiages oldvN usel ilefjuici I.% pes and is nlot jperiliitted

to Iinaliage SIMOS syste ciii tvpies. Thiese manllagers uIva be sinle"I-level Ilialilige-S or itiultt ilevel
linalilagers cciiit ruIlct Usd ls ig a collectioni of Si ligle, level Inamiagei~s. Bot 11 types of' mnaiiag''rs)Ire

plueuit teld because t is colist riictiomi (foes ilit extend thle 81)08 iiiaiidator *v 'I 1.3 Application
ilai Ir lukY be writ tenl using S1)MS prmio~ d I ouls to blilm~d Siiigl(-level Illiilligi'rs.

Generic Objects - E~achi 51)5 type hias a ~ep ri c obit ct which Is used fur it vailid of
lpuirposes. The geiirric objfect is assoiciat ed w%]it Iithle nun inger foir the ty pe. It is refereniced

hy a genieric I'll). A user miay imnvoke alli olivratil uOnl thle geuierir object lby sped fyiiig thev
gelicric 0bj''iis I'llU) ;11id tilie operatioli . Thiese operainiuls inclulde op(llatioliS oil thle I ivpc
(115 tinaly. referred to as, choss operations lin object -orientd el Ianpiages) suclh as object C reati on,

178

or operations which reference a collection of objects such as listing all the objects of that type.
The operation which locates the manager for an object is a generic operatioln.

DAC - All managers enforce discretionary access control on their objects. An Access
Control List (ACL) is maintained for each object which indicates which users may perform
which operations on tha.t object. The ACL also maintains a list of negative entries. The DAC
policy is necessarily object-dependent since operations and their semantics vary with the type.
Therefore, each manager is part of the discretionary access control TCI'.

Replicated Managers - The SDOS system may have one or more managers which manage
the same type at the same security level. These managers must, however, reside on differeit
hosts. These managers may be configured to manage different objects of the same type or
maintain the consistency of replicated objects.

Clients - A client process is any process which acts on behalf of a user and performs work
by invoking operations on objects. There are two types of clients, SliOS-provided clients and
user-written application clients. SDOS clients may include trusted software which has been
demonstrated to be free from Trojan Horses and can be trusted to reflect the user's intentions.
These clients may be invoked through the Trusted Path. User-written application clients have
no such assurances. All clients are single-level processes.

Principals and Groups

Every SDOS user or manager has a principal name which is stored in a corresponding principal
1: ' -- ---- I - __uJet .Vl. A 1,arIagers 1&< •. . ILipals ,jaunCs whII,•ich---•--......' .. to thc niamc of the manager. The

lprilicipal object is managed by the Authentication Manager which miax" be replicated. Every
prilcipal object contains a list of groups to which the user belongs. When the user logs in, a
default group is enabled and becomes active. There may be groups to which the user belongs
,hat are not enabled automatically. Ever)y group object contains a list of the Jprincipals that
belong to that particular group.

8OS principal and(group names are globally transparent. They are used by managers
to perform DAC checks to determine whether a user is permitted to perform tit ietquit'.ted

operation on the specific object.

The SDOS Switch

The S)OS message-passing Switch is an NILS process anl1 is part of the maidatory '1'CII. The
followiing sections will discuss the protocol used by clients antd! managers in coinumnnicatbing with
the Switch lind lhe major functional component"s of the S. itch.

Operation Protocol - T'he Operationi Protocol is used for comnitinicati•ns to the Switch
by clients and managers, The basic inter-pro'ess coinmmunications (11CT) prinmitives are:

* Invoke - invokes anl operation on an object.

* Send - senid a message directly to a proress.

* Receive - receive the next niessage.

Th,' liivoke is used to invoke an operation oii ani object. A iianager halidling an invocation
llmay xieed to hieiforii secondary i uvorcalions on oilier objects (Ipossibly of different type) to

179

complete tile primary in~vocation. The SDlOS Process Support Library (lPSb) provides a higher
level abstraction to the user. It. consists of a set of synchronious rell~ot(' procedure calls for the
common operations oil ;. type. The Send is used by inanagers to send a message directly to
the requestor ill response to an invocation. The Receive is. used by both manlagers (to get the
next, invocation or response from a secondary invocation) and clients (to receive tile reply to a

lprimary invocation).
The Switch supports these IP'C primitives using three basic mnessage types that define tile

Operation Protocol:

"* Request - used to support inivocation messages.

"* Rep~ly - lused to s!upport senld mlessages.

"* ForwardI - used by a manager to forward an operation to aniothier manager of its type
wvhen it determfines it is mnore appropriate for the inivocation to be performed by the
second manager. This may be determined based on resource allocation considerations.

Oper~ationl Switch aiid Locator - The SDOS Switchi is respoiisible for routing oper-
ationls from clients to the correct object manager based onl the object's 11,l). The Switch is
comp~osed of a Locator and an Opcrmfiin Switch. The Locaior dletermines thle]lost location of
the object. If the object is of primal type, then the invocation imust, be routedl to a maniager
onl the local hOSi.. if Ol [ob JLject ib nut.1 1ima i m 1't - -.I ! -l . - 4.~ I

J ~ ilid I II 1 IU UUV t is 1110 picsuuji 11Ivil, t hien the2
Locator mitst dletermuine the host location of the object. The object"; location mnax be present
in a local object cache if a. message was previously sent to this object.. Precaut'ions, must be
taken inl the design of the multi-level cache so that covert chailnel;. are not introduiced. If there
is a miss onl the cachec, the Locator performs a Locate operation on the gviiciic ob~ject of thle
type using the network's broadcast mechanism. All managers wkhichi have a copy of the object
will respond positively to the L~ocate.

Once the object is located, the Operation Swit th routes the operal ion to thle Switch onl thle
appropriate host. Ani Operation Swit clh mainutains 11 r~ on nect ions withI all local clients and
managers and network connections with remote Switches. It also listens for request for new
connections either locally or from remote hosts.

The Layered Implementation

SI)OS is imupleniented using a layered architectuiire. The SI)OS clients, mnanuagers. anud Switclh are
nlipleuilvilted Ol toh p of all existing secure (Xinstituieiit Operatinug Systemn (COS). A ii impor-tanlt

goal of thle dlesign is thuat Sl)OS be imnpleunent able witholioi tModifications to tilie C'OS and~
iunplemieuitable oui a sy*vstemn of hecterogenieous CUSs. The (COS miiust meet 'ICS C 113 securityv
and assumrance reqnii rement s. The following feat ures of th Cu (OS art uisedl:

"* mlandatory access controls

"* disc ret ionary, access conitrols

"* use; andi process identi fimcatilon and ant lien tica t io

qb tu-sted pat 1u

* local lIPC

180

a ITCP /IP and UDI) to a relitote host

* file systcel

0 (!C\ic, slipo jI01

ThluM djppltoi-l requires thu;1 SI)OS I bels, prwcesses atid Objects, be nIl pped onto0 (OS labels.
p) oce'sCSý aii i oh ('ckt.5. CoiilI lilt it ical ions i)C; bowcil SDI()S p-ocesss oil I h saille hlost muist uise thi-l

COS,.s IlC ni0chaliauisiii. SIMS5 peisistelt objects5, Ilke4 a ilalatiit,el 01) ject (atlbitabse, mullst be

staye*d inl COS files. 'I'1w (S'o s inaiudaloi access cowi rol Iliecliali.iisii is relied oil toI enforco I hat
('11i, proeesses alV ilie salc luevIevl 1ila.N VcomiO 1)1icat C ili a tw V.0way C comCis.attion. SIM0S clientls
max iiimake illvocat ions thlat resumlt ill a -writ > up to ohjectIs btht dloilliuate 1th0em. IHowever.
DO repl , is letuiirned whichl Ind (icaltesS Ilie sllccess or failurv of this Operation. 51)05 mla ses a

bost -eil ,ort altvem pt a! performin ilg Ilhe op eratijon, 51)05 processes mlay Alo lead dow(lO i (Ii mcii x
into (OS files thiat I heY dolininal e, subject to thle COS's disc retijonary access cont rols. Thlis

abili t ,N is usd bYI lie NI SI i iltiplenient at ion of managers. Thel(COS 's discret ion arv access conitrol
It) ~ ~ ;V cci;i is r sed to isolme what (N)S objects inu hv e a cressed b , diffierent S1)0S prinicipals..

YOY e'Xalllujde, Illh' file Whii ci i lupl1Mnet S a ma nager's tolijec(t dIat abase is p)rotect ed front direct
1 ivilt access usinig COS l)AC cowtrols. Thie COS) is iled ol01 to iderilif . and authlint icate thle

C'OS uiser associated wvithi every' C OS p~rocess. SI)MS will theln map t lie COS user ihit o anl
51)08 principal. 'his identification is uecessary for thle eliforcelinent. of SDO 1)DlAC policv by
iianagers anid for lie idenitificationl antd authbent icat ion of systemi proce~sss such as managers

- to the Switch.
Clieiiis allmi ianiagers ;lre COS~ pi'ocisses which coininitinirmte, with i tlie S witclh usin thgle

COS's PlC liieclialuiisins. Clients alit- 1 man1agers Communiliicate Witl Iilie Switch tusinig thle Opera.
I ionl Prototcol i ill plellielt ed oil top of thle basic I PC Iiiechi all 151il. If lie S wit cit In tist ('Gliill u iiiiate

lo a remvote host, it uses thle COS 's 'I'C anid 1 lD colil inn illicat ioli:ý facillitiesý. 'Ili S\wIt (lies
cuciiill i licat e li-i iig t lie Iliter-Il osI P roto(col i aipleinie uted onl top of T(P anid U 1)P. N Iaiagers
iise CO S files to ino lenuevtt liei r o1)ject datablases.

Operation Invocat ion Scenarios

Ill t his Sect ion we disctuss the0 possible operati~on invocat ion sceniarios. We denote t lie clientt's
seciniity level as .SL, awld the object's secturit' v level as S I,,. NI LS and MSI.l mtaliageis have a
seco city i-a ge for which t hey' may hiandle operatin requesŽ(l10t for, t Iiis is raligi' 'lenwied as
SI.,,1 1 1,,11a. whiere the nia xi iin 10 sec urity level donuin ates t lie o mini mun securi n*tv level. A part i -

Illar single-level iiia hager thiat is pai t of a ISL I. in al-ia h as a securi ty level denlot ed as, SL,,,
xlicl(Sl,,, C S.,, , A pim, re ingI- level illiianag(r onily manages objects at -)ile level anid

call iiot read (It ,w inuto obj'ctI dat abases (if lower le'vels.
Wie disc 1155, thle cases whenl a client iiVOK-OS Rlt opel~i~ Otilno all Object at its lovel, whlieiIlie-

object's level (1(11 at es thle client's level, and wlyici thle clieint's le2vel diloiiti ate., t 114' object'
level.

Objec't's Level Equals Clienit's Level

A client i iivo ke.ý ;li t lpiaii tlol Oin ali objec~t at its level, Sc =~ S l',. Thli clieti pet folils tIhlz

ilivo(at itol h 1vS usim thme InIvo~ke priinfit iv'. '1lie inuvocat ion iesu its it, a ReII tiest iiiemsagt' Ia tied
atI tlie level oif t lii clientl which- I., svnt to t lie local 'Ii cIt w[i Swit cli ensures that the niessage

181

is Libeled c'orrectly. Froml thle I'll) of t ie oi)l) ct, Ihle Switclh is able to (l''triiilieo its IvJpe anld
tilie i)bJect's sec urity. level, .5L1,

Each Swit ch has ani iwiteijil tabie of]Vgi~toie inaialageis, their tvlies and tile ranges of
securiity levels that they miianage. If thle opjerat ion is generir, the Switclh needs to locate ally
inanager of that typ~e whici jl is able to han1(Hv lenessages at S I,. if the operation indicates a
sJpecific object, the Swi tcli niiist locate ma nai ager which' has a (oly of t leobject. Ifitlie iilanlager
is hot onl the local host, thle local Switel looks ini its 01)ject cache. Thle localtion of the object
may be in this cache if a previous message was routed to it. Each entry in the cache containis a
(Object i;Ii), host ID)) lair anld is labeled at Oie level of lie originial iAivocation thai atcreat ed thle

cache entry. This prevents a lower-level Locate from Musig a cache Wiiry createdl by a previous
ligher-level Locate. Th'lis w.ould conistituite a covert chlannel. If a cache miss occurs, the local
Switch broadcasts a, L-ocate request fo the object. This reuest is labeled at thle level of the
object. A remote host will forwvard the Locate to a mianiager of that type witI a range that
iiicludes the secur~ity level SQ0 A manager will iespond to the Locate if it knows about the
object. As a result of the Locate, the mnessage is routed to, the appropriate hlost and anl entry is
made ini tile local object cache. More thiani one host may respond xvi thI a. piosi tivye confdirma tion
to the Locate request.

The remote Mwitch routes the message to the approprniate manager. The mnilager maly
he an M\LS mnalager where SL, E Sh1min,imax. If the manager is an. XSL miallager whlere
S L, C ~ ,my then the Switc routes it to the siiile-evel man~ager where SL,,i = SL,>.
Lastly. the manager may be a single level manager at SL0 The mlessagp received by the
maiiager indicates the client's process UID, object UID, oplerationl to be performed, operation

p)aramete(rs, priacinal and g~roup. The prilleipý! and group are added by, t~he local Swvitch and
are based on~ prior user authentication to the system.

The Iriilciial an~d group are used ini the manager to determ-ine if the operation is permitted
oil the sI)Ccfiedl obJect. The ob)ject's ACL is referenced to make this determination. After
puerforminiig the operatiol 0o1 the object, the manager uses- the Send primitive to send a Reply
wressage directly to tile client.

Ob-ject's Level Dominiiates Clienit's Level

A client invokes ii operationl oil all object whose level dlomuinates t hat, of the client, SL,) > SL,.
Tile Swvitchi recogiiizes that the op~erationlis1 Oil an Object whose security level dlominates the
client's Th'le Request mnessage whichl was labeled at. tile level of the client is upgraded by the
Swi tchi aiid is now labeled at thle level of thle object.

Thme same- p~rocedlure as described iii the prev'ious sccioll is used to locat~e a manager for the
object. Locatinlg thle manager for the object is (dile at thie security level of the object.. NUS
and] MS L nianagers with SL, E SLýý mlay resp~ondl to the Locate. Single-level managers
at S1, m~ay also respond.

Th~le olleration may or Illay not be purorlued Ily the lia nager (lelelli hg 0on tile operation
reqhuestedl. Only write-ll op~erationls will be performed. Iii any c~ase, Ito reply reaches the clieiit
sinice its security level is dlominiatedl by that of the nmanager. An MILS manager is tusted not to
repily at. any level to the cl ient. Aim NI SL mia nager or sinugle-levei miianager can ilot rep~ly since

ani mess age senlt to the client is lne~lated by the Switcii which recognlizes that. the manager's
level (dominuates the security level ill the cI emit' IND, an dii(oes not. deliver the reply.

182

Client's Level Dominates Object's Level

A client invokes an operation on an object whose ievel is dominated by the client, SL > SL.
The Request messag, is labeled at the level of the client. The same procedtire as in the previous
sections is used to locate the object. ThJj Switch may use all cache entris (lonlinated by tile
security lev,-l of the client. If no cache entry exists, a Locate operation at the level of the client is
performed. MLS and MSI, managers with Sb L SLnn,mar and SL, e SLn,n,,,ar "Vill respond
to tie Locale. Silngle-level managers at SL, do not respond sinc: they can not access an object
at a lower level. If the manager is MLS, it can look directly into its multi-level object database
to determine if the object exists. If the manager is MSL, the Locate is sent to the manager at
the client's level. The manager must read down into the object database maintained by the
single-level manager at the object's level to determine if the object exists. After receiving the
response to the Locate, a new cache entry is created in the local object cache at the level of the
client.

The operation may or may not be performed depen0ing on the operation. If the operation
involves a write down into the object, it is not performed. An MLS manager is trusted not to
perform any operalions which involve a write down into the object. If the manager is an MSL
llalager, a sinigle-level manager at the level of the client has received the invocation. Since the
object resides in an object database which is a COS file labeled at SL,, it is prevented from
pCerformingi a wriile operation by the COS's lhandatoly accesb Lojitrol. Operations whicL are
read downs are permitted, and a reply is returned to the client at its level.

Curre.nt Status and Future Plans

S1)05 is a thirty-month project ending in early 1991 with a demonstration of the prototype
'st iiem. The basic systeni requiiremenits, system architecture, and security policies have been

complleld. The development of the formal security model and detailed software design need to
Ie completed before implementatioxi of the system is begun. Forthcoming papers will discuss
the security policy for SDOS and detailed design issues regarding the major SI)OS system
col)ipOl it s

References

[('iomius 86] 1R. Schantlz, H. Thomas, aiid G. Bone, Thc Archit cl rtc of the Cromis 1),-
tributcd 0; 1ratiNg S.stcni. Proceedings of tire IEtE l9th International Confer-
ente on l)istiibuled Ccmopnting Systems, May 1986, pp. 230-259.

[5d)0S 869a)] P. Wong, et al., Syster,' Sgym(-it ,Specification for the l)05;. ORA Technical
Report, 'Il 25-1. Feb. 1989.

[S)OS 0591j] 1R. \Wong, et al., 5y0tcin .Sqgznrt l),csigri Documcet for the SI)0,5. ORA Tech-
iicld lReport, TII 2.5-2. June 1989.

I['S (' 85] IFoJ)-,3200.28-.'1),)oI) Trusted Computcr System Eva/lmtion C.'r-iteria. D1e-

ceiihber 1985.

[lI I,] Y(CS'- 7G-005, I)ID T7ustc-d M towork Intcrprctaltion.. uily 1987.

183

To9iward a High B Level Security Architecture
for the

IBM ES/3090 Processor Resource/Systems ManagerTM (PR/SMTM)

Thomas T. Russell Marvin Schaefer
IBM Corporation Trusted Information Systems, Inc,

Poughkeepsie, NY 12602 Gienwood, MD 21738

Background

For several years now, IBM has been evolving its MVS and VM System/370
Operating Systems to higher levels of security. First, in the mid- 1970s and early
1980s with the implementation of system integrity and then with the implementation
of the Resource Access Control Facility Product on those systems. In 1988, IBM
announced its intention to evolve the security of MVS and VM by providing
functions that are designed to meet the Class B1 Trust Requirements as defined in
the Trusted Computer System Evaluation Criteria (TCSEC).

As part of this evolutionary process IBM is exploring' the idea of using the
logici partitioning facility implemented in the Processor Resource Systems Manager
(PR/.SMTM) of the IBM ES/3090 Processor Complex to increase the risk-range of
data that can be processed concurrently within a single processor complex.

Basic Concept

IBM is investigating the possibility of performing security engineering on its
IBM ES/3090 PR/SM product line. It is believed the new security engineering could
produce an overall system structure that would enforce a mandatory security policy
with high B-level assurances and which, wher. coupled with appropriate evaluated

1Disclaimer: The information presented in this paper sald not be viewed as a commitment
by the IBM Corporation to implement changes to the Processor Resource/Systems Manager
(PR/SMTM) Feature of the IBM ES/3090 Processor Complex, nor is any implication intended that the
National Computer Security Center has agreed to evaluate a product having an architecture such as
that described in this paper.

Copyright © IBM Corporation 1989

184

B1/C2T commercial operating system products", could be evaluated to a high B level
of a suitable interpretation of the (TCSEC).

The PR/SM TCB3 would be based on the Rushby Separation Kernel concept.
PR/SM would enforce a mandatory security policy that partitions a single computer
mainframe into up to 7 completely isolated security domains, such that no user or
user process associated with any one partition element could communicate with any
user, process or object associated with any other partition element. Each partition
would be, configured with an independently-evaluated trusted operating system. It
is this operating system, evaluated at or beyond the C2 level, that enforces
discretionary access control (and other required controls) on its uniquely identified
users.

Separation Kernel Concept

The IBM ES/3090 Processor Resource/Systems Manager (PR/SM) provides a
hardware/microcode base sufficient to support the efficient implementation of a
"separation kernel." The separation kernel concept was introduced by John Rushby
in. 1 o to serve as a simple, but high-assurance. model for sharing a computing
resource between completely isolated subjects.

A separation kernel is similar to a virtual machine monitor. It masks sharing
of a single physical machine by simulating conceptually separate "machines". It
does this by providing each user with a private, isolated, "computer" environment,
complete with its own address space, set of dedicated devices, I/O channels, etc.

A separation kernel is very simple. Unlike some commercially-available
virtual machine monitor systems, the separation kernel builds an absolute partition
of the physical computer resources to which its users are assigned. Each partition
element is viewed as if it were a complete computer system unto itself. Unlike a
virtual machine monitor, a separation kernel does not provide services or resources
beyond those available on the selected computer: there is no simulation of exotic
devices, nor of memory beyond that available on the physical computer. No

2The B 1/C2÷ concept derives from Appendix A of the Trusted Network Interpretation of the
TCSEC (TNi).

'J.M. Rushby, "Proof of Separability -- A Verification Technique for a Class of Security
Kernels," 5th international Symposium on Programming, Turin 1982

Copyright © IBM Corporation 1989

185

resource is directly shared between the partition elements. Hence, 1/0 devices would
not be dynamically shared between users in different partitions.4

In Rushby's original exposition, each user was assigned to a unique
"machine". Each machine was identified by a unique color, e.g., REi. Rushby's
rules of separation were stated as foilovs:

Effects perceived of operations performed on behalf of user on the RF-

"machine", for example, must be capable of complete description in terms
of objects known to the RED "machine" (i.e., there must be no communicl-
tion from any other machine to the RED machine);

* Users on other machines must perceive no effects when operations are
executed on behalf of user on the REID "machine" (i.e., no sequence of
actions performed on the RED machiine should be perceivable from any
other machine);

* Only lED 1/0 devices may affect state perceived by the RtD user (i.e., no
. ,LtLI•.¢i Miani thoseC tol t .31 ui u he iu u RED rlnlachine, slli-I.Ii e atJ f dt•l

to affect the state of theI RED machine);

• 1/0 devices mus' not be able to cause dissimilar behavior for states
perceived by the RED user as identical;

* RED I/O devices must not perceive differences between states perceived as
identical by the RED user; and

* Selection of next operation to be executed on behalf of the RED user must
depend only on objects known to the RED user.

Physical isolation is sufficient to demonstrate the absence of direct storage
channels between the partitions. The technical formulation of restrictions above is
sufficient to demonstrate the absence of coven storage channels between the
partitions.

"However, depending on the objects supported by the separation kc.'nei abstraction, it may be
possible for a physical environment to be configured to share a common device IDetween two different
partitions. For example, if I/O channels are the objects supported by the separation kernel and
devices are only accessed via the controlled I/O channels, device-sharing could be achieved by
connecting a physical device to two separate I/O channels, one from each partition.

Copyright © IBM Corporation 1989

186

A refinement of the separation kernel concept was proposed within the
National Computer Security Center in 1984 as the foundation for Project VIKING by
Bret H-lartman5 . The VIKING separation kernel would support the attachment of
multiple users to each partition, but was otherwise identical to Rushby's concept.
In particular, while users within a partition could create piocesses that could share
resources and communicate with each other via an interprocess communication
mechanism, there would still be no sharing or other form of communication between
partition elements.

PR/SM Logical Partitioning

The Logical Partitioning Facility implemented by the PR/SM feature of the
IBM ES/3090 Processor Complex is a mode of operation selected by the system
operator at the time the processor complex is powered-on. Resources to be allocated
to each of up to seven partitions are defined by the system operator before activation
of a logical partition. After a logical partition is defined and activated, a supported
operating system can be loaded into that logical partition. Central storage and
e x p .a n tud e u sa ,,r .ta k -fi l t •|ACGI ~ a t n n F ~ n a r ,t i ,v a t i n n ,S t o r a g -

resources are allocated in one megabyte contiguous blocks (up to a maximum per
complex of 512 megabytes for central storage and 2 gigabytes for expanded storage.)
These allocations are static upon activation and sharing of storage resources among
muhiple logical partitions is not allowed. Central storage is cleared upon activation
and deactivation of a logical partition. Expanded storage, which is similar to central
storage, is cleared upon logical partition activation.

Individual channel paths may be allocated to each logical partition. A channel
path can be allocated only to one logical partition at a time. Channel paths which
have been specified as reconfigurable can be dynamically feconfigured between
logical partitions if the operating systems running in the partitions support such
reconfiguration. The ES/3090 Processor Complex allows for I/O sharing between
logical partitions through physical channel connections only.

Central Processors (CPs) zan b'- dedicated to a single logical partition or
shared among multiple logical partitions. The allocation of CPs to a logical partition
is made when the logical partition is activated. Reallocation of CP resources
dedicat xd to a logical partition requires deactivation of the logical partition. For Cl"

'B.A. Hartman, "A Gypsy-Based Kernel," Proc Symposium on Security and Privacy. Oakland
1984.

Copyright © IBM Corporation 1989

187

resources which are shared among logical partitions, the amount of CP resource
allocated to each partition may be dynamically determined or may be allocated as
a fixed amount of time. Unused CP time within fixed allocations is not made
available for use by other sharing partitions.

An optional vector facility that is installed on a CP is available for use by all
partitions that will perform on that CP. CPs that are dedicated to a logical partition
(including associated vector facilities) are available only to that logical partition.

The 3092 Processor Controller is a stand-alone support unit which initializes
the system, distributes microcode to writable control storage at initialization and
provides error recording, reco,,eiy ai:d diagnostic support for the processor complex.
It provides the control unit function for the attached display stations which serve as
the system and service consoles.

The part of the PR/SM Feature implemented in microcode executes in a
private domain that is not accessible for either read, write, or modification access by
software in logical partitions.

The system console for the processor complex is used to control the operation
of the ES/3090 hardware and is also used to control selection of I/O configurations,
loading of operating systems in partitions, and the allocation of resources to
partitions. As currently implemented, the system operator is in complete control of
the system console and these important secirity ielevant facilities. To meet the high
B levels of the TCSEC, it is assumed that the PR/SM TCB would have to support
separate operator and administrator functions and the r6le of a security administrator.
Discussions elsewhere in this paper assume the existence of the System Operator
(SOP), System Security Administrator (SSA) and System Security Officer (SSO)

0rles.

Perceived Security Benefits of PR/SM

The PR/SM rCB is capable of segregating the resources on the physical
3090E mainframe into a partition, such that no machine resource is concurrently in
two distinct partition elements. Each of the operating enviropments for using PR/SM
securely is built by integrating appropriate physical, procedu., I '-id auiomated
isolation controls. In this sense, the use of the trusted system is much like a
concuirent automation of periods processing.'

""Periods processing" is described in die Color Change section of this paper.

Copyright © IBM Corporation 1989

168

iPhyisical Isolation Controls: A physical processing environment
is established for each security level. With the exception of tile
location of the physical mainfr'ame, each environment ;'esembles
a controlled-access facility in that it contains all of its required
1/O devices, its computer operator stations, its user terminals and
workstations, its printers, etc. 3 his area may be subdivided into
specif": areas for computer operation and user populations. As
required, the area may be further isolated by TEMPEST and
other protection controls. The protected envirorment forms the
physical partition for a PRISM environment, and is externally
connected to the ES/3090 mainframe, which is protec -d to the
level of the facility.

" Procedural Isolation Controls: All access by personnel to the
protected processing environment is controlled by procedures.
In particular, it could be required that all operations or user
personnel permitted to enter the isolated facility must be
identified by guards or other security personnel as being suffi-
ciently cleared and authorized to do so. Similarly, it could be
required that all device access is either obtamied from within the
isolated processing environment or via appropriate cryptographic
isolation. System security officers would define the processing
environments, selected operating systems, etc. for each of the
partitions that will be controlled by the PR/SM TCB.

" Automated Isolation Controls: The PR/SM TCB must provide
controlled access to multiple levels of classified data by
dedicating and constraining the accesses of each partition to a
unique security level. The PR/SM TCB would automatically
create each isolated processing partition with its own defined
copy of a selected B1/C2' trusted operating system.

The automated isolation controls of PR/SM and the ES/3090 are believed
sufficient to provide no less assurance than would be obtained from operating
Dedicated Machines in Isolated, Controlled Environments. In this sense, the trusted
PR/SM system would provide concurrent Feriods processing for up to seven separate
security levels at a time.

Copyright © IBM Corporation 1989

189

It appears that there is the additional potential to use an applopriate operating
system evahlated to the B2/C2' or higher7 level of the TCSEC in thie individual
partitions. This would seem to provide the capability for the total PR/SM systcem
to support a very broad span from the least cleared user to the most sensitive
classified data on the system (e.g., raising the possibility of securely supporting 21
or more security classes at a time, with potentially equally large composite risk
raages), certainly more man in any traditional trusted system environmeit.

The PR/SM TCB will be a separation kernel. This kernel will permit each
of the partitions to nin with its own configured operating system or special
application system. Each of these systems could be configured, in concert with a
system accreditation plan, to support customized access control policies within the
partition.

The PR/SM TCB can also provide stronger assurances of control over what
happens in each of the partitions than is guaranteed by stand-alone network
components in a multilevel network. This is because the PR/SM TCB maintains
continuous control over each partition and has the ability to define, constrain, create
o r destrov rn rti tiinnc nr-ric, lu n r inrtiin a tn th'o r tVjiuirp rantiv c1 , ',",,tr'l .

*_j j-- -s r -- Jr. J t 't.n*Rl-!u ,. *.-A.t,

security officer. Unlike the situation in a network, there are extremely high techni-
cal assurances that any command issued by the security officer will be immediately
enforced on the partition.

In many respects the PR/SM controls are superior to those provided in manual
periods processing installations. The TCB provides exacting controls over concurrent
periods processing applications, reducing the possibilities of operator error. In
addition to being able to support several distinct security levels concurrently, there
is also the possibility to provide swift automated support for additional dedicated
processing environments that can be enabled sequentially when other isolated
environments conclude their processing. The PR/SM TCB can provide fast assured
color changes.

7The reason for B2/C2' vice Bl/C2* is to provide requisite assurance for trusted labeling within

the individual multilevel virtual machines.

'We argue that PR/SM could offer this capability precisely because of the strength of its

pattitioL-ing of the physical machine into completely isolated processing environments. Unlike a
traditional networking configuration, there is no potential comnmunication provided between partition
elements, and there is therefore no direct or indirect means ot sharing data at a common security
level between two partitions. This elininates the potential for security concerns that would be posed
by the Cascade Problem, defined in tile TNI.

Copyright Q IBM Corporation 1989

190

3-State Hardware

The standard IBM S/370 architecture provides two processing siates.
Implenlen!ations of IBM operating system products have made effective use of the
two states by reserving the "supervisor" state for the operating system and other
privileged programs, and confining customer applications programs in the un--
privileged "problem" state.

In distinction to the IBM S/370 computer family, the IBM ES/3090 Processor
series on which PR/SM is implemented provides the logical equivalent of thiree
environment-specific execution states: The software running in each of the
individual partitions is presented with the logical equivalent of a two-state IBM
S/370 family computer; the PR/SM Separation TCB is run in its cwn private domain
of execution. This security architecture provides the mechanism for efficiently
implementing and servicing completely isolated partitions by a tamperproof TCB and
support domain.

Compatibility with tile IBM S/370 XA series architecture and instruction set
is provided in each partition in the ES/3090. This is sufficient to permit each of the
partitions to be configured' with a designated B1/C2T TCB that executes with the
protections and privileges of the IBM S/370 "supervisor" state. Meanwhile, the non-
privileged S/370 "problem" state can be reserved for all user applications programs
within each partition.

Separation TCB,

The PR/SM Separation TCB is implemented in hardware and microcode,
Support for the System Security Officer (SSO), System Security Administrator
(SSA), and System Operator (SOP) r6les will be provided at controlled workstations.

9"Configuration" as used here refers to the software configuration of the specific B !/C2' TCB,
as opposed to a hardware configuration.

Copyright © IBM Corporation 1989

191

The PR/SM Separation TCB will consist of the following principal modules:

* Primitive address management

. Primitive 1/O channel management

. Primitive exception management

* Cache management

* SSO/SSA support

• System operator (SOP) support

- Partition Isolation Integrity (configuration database consistency checking
[Tnrsted Process])

• Primitive Partition Scheduling (event-driven, priorities, load balancing
loptional])

Mechanisms

Much of the assurance gained from the PRISM Separation TCB is based on
its implementation in an appropriate combination of hardware, microcode and
software mechanisms. The decision to place many of the mechanisms in hardware
or in microcode that operates in the IBM ES/3090's unique TCB domain helps to
ensure that the PR/SM Separation TCB can provide consistent and efficient low-
overhead policy mediation services while providing high assurances that it can
neither be bypassed nor illicitly modified.

The PR/SM Separation TCB principal functions will be implemented wi!h the
mechanisms identified below:

I1R/SM Separation Kernel: Implemented in a combination of hardware and
microcode.

Partition iXmfiguration Databases: These databases are the internal
representation used by PR/SM to define the isolated single-level partitions.

Copyright Q IBM Corporation 1989

1 92

I-:11Niiiionnients: The enIvironmlients constitute the single lcel areas in which
operational personnel, users, terminals, operator coilsoles, data devices, etc. are
confinied. The implemlentation mechanism is primarily one of physical partitioning.
suplplemented Iby the isolation of 1/0 channels and subchannels by the PR/SM
Separation ITC13.

Partition "l'('[s: Each partition will operate at a single security level.
Single-level paltition-high policy cnluorcenienit will be provided by a selected B I/C2'
TC13. This TCB will be defined by the SSO/SSA at the time the particular partition
is defined and the TCB will be IPLed into the partition by the SOP, whenever the
parlition is to be enabled. The SOP will IPL the configured BU/C2' product prior
to passing control to the partition.

Policy

The formal access control policy to be implemented by PR/SM is enforced
both by the PR/SM Separation TCB and by a B1/C2' TCB in each partition. The
PRISM Separation TCB isolates defined partitions from one another and enforces the
mandatory isolation policy. The B l/C2` TCBs, executing in the individual pauilitions,
enforce discretionary access control and perforni other partition-specific services, e.g.,
audit, identification and authenttication, etc.

Separation TC.B Policy:

From the perspective of the PR/SM Separation TCB, the Subj'-cts are the
SSO, SSA, SOlP, and the individual single-level Partitions. At this level of
abstraction, the Objects are channels, devices, and address domains. 'Pie separation
policy permits the SSO and SSA to define pa-titions, the SOP to enable or disable
partitions, and confines each partition to those resources and operations defined to
the partition (i.e., it prohibits any one partition from communicating with or
referencing any other partition).

"The Mandatory access control policy is full isolation by formal security level
(classification and category set) for up to seven active Mandatory Security Levels
at a time; the discretioniary access control policy applies to the SSA/SSO, who
define only Devices and Channels authorized to the partition, and to the
SSA/SSO/SOP where ID and atuthorization profiles, real machine resources (e.g.,
CF's) are applied.

Copyright © IBM Corporation 1989

193

B /,C2* TCB Policy

Within the Bl/C24 TCBs, the Subjects are defined as Users, process in
execution, environment-specific operators and administrators; and the Objects are
Files, Data Sets, Inter-process communica¶i.., cross-memory services, Devices,
Terminals, Local [within environment] Machine Resources, etc.

The I)iscretionary access control policy enforced within the BI/C2* '[CBs
provides individual-controlled assignment for application-defined named objects; basis
is per named user or group or NACL or Negative group, by specific mode of
access.

Policy Implementation Mechanism

Partition

PR/SM's Mandatory access control policy is enforced by the PRISM
Separation TCB, which implements the completely disjoint single-level partitions.
F.iCrh partition ks ne2 eirded physical cal a. e *si -to - -_, " -.. ...

have been physically placed within the partition's environment. The partition's
devices and I/O channels will all be treated as though they are classified at the
security level of the partition. The logical assignment of these devices and 1/O
channels to the partition represents a Discretionary access control decision made by
the SSO/SSA at the time the partition is defined. These discretionary configuration
definitions can be redefined by the SSO/SSA, but may be enabled only after a
Power On Reset is performed if channels need to be reallocated.

Object Reuse

The PR/SM Separation TCB must guarantee that all object reuse and security
audit requirements are satisfied with respect to such redefinitions or reallocations of
resources.

Environment

Within a particular environment, the Mandatory access control policy is
enforced by physical isolation (although a BI TCB may be used to provide security
labeling within the partition).

Copyright © IBM Corporation 1989

194

Enforcement of the Discretionary access control policy within the single-level
environment will be performed by designated NCSC-evaluated B I Trusted Operating
System Products that exhibit the TNI-required enhanced C2' Policy and Audit
Features.

SSO/SSA and SOP Functions

The functions of the SSO, SSA and SOP must be controlled directly by the
PR/SM Separation TCB. In their official interactions with PR/SM, these personnel
have only limited r6le-based capabilities, according them limited special-purpose
functionality from authenticated isolated domains. The Separation TCB will require
positive operator login to provide an identification function and enforce individual
accountability for all actions, based on the official's identity and r6le.

The SSO, SSA and SOP can only be permitted to perform their functions
from terminal positions defined by the PR/SM TCB. The privileges accorded these
personnel may differ according to individual identity, so that, e.g., not all SSAs or
SSO should necessarily be able to perform the same acts.

To ensure consistency and simplicity, all SSA/SSO and SOP functions could
be performed from menu-driven workstations.

The PR/SM Separation TCB must perform necessary legality and consistency
checking on all SSA/SSO and SOP interactions, and all of these actions must be
audited at the system level.

Color Change

It may be necessary to time share the IBM ES/3090 over more partitions
(environments) than the maximum number that can be supported by PR/SM at any
one time. Bringing one partition down and replacing it with another partition is
called a "Color Change".

The ability to perform a color change will be controlled by the SSA. In
order to eliminate potential covert channels, the PR/SM Separation TCB will ensure
that color changes are transparent to other environments. In operation, the color
change can only be achieved via special procedures required of the SOP and the
SSO.

Copyright 0 IBM Corporation 1989

195

The SOP must first perform a Partition Disable action. Thiis absolutely
disables and destroys all partition activity, disables all partition channels and
devices, and purges all partition cache and memory objects. In effect, the Partition
Disable action quickly and surely renders the environment inoperative by taking
away the computer resource it had been using.

The SOP then causes the creation of a new partition (and the defined
environment) by invoking its name. The new partition cannot be enabled unless
sufficient PR/SM resource is available, including defined consecutive memory
locations, dedicated central processors (CPs), configured devices, etc.

Once the new partition has been created, the SOP performs an auditable
Enable/Activate action in which an IPL is performed of the B1/C2÷ TCB that had
been designated by the SSA. This IPL is performed from a controlled system image
that resides on a device placed under control of the Environment's SSO/SSA. The
PR/SM Separation TCB must audit the activation of the new environment. This
final step also causes the connection and enabling of all of the environment's
channels/devices consistent with the configuration-controlled definition.

Copyright 0 IBM Corporation 1989

196

INITIAL APPROACH FOR A TRW SECURE COKMUNICATIONS PROCESSOR

JUNE 22, 1989

BONNIE P. DANNER
TRW, INC.
2701 PROSPERITY AVENUE
FAIRIAX, VA. 22031
(703) 876-8760 OR 876-8160

197

Abstract

This report presents the preliminary results of a TRW investigation
to define security policy objectives, security requirements, and an
initial architecture for a general-purpose, multilevel secure
communications processor based on an existing TRW product, the Remote
Communications Processor (RCP). A goal of this TRW Internal Research
and Development (IR&D) project was to lay the groundwork for a
trusted (B2 level) TRW Secure Communications Processor (TSCP) in
cooperation with a concurrent TRW IR&D investigating the issues for
the development of a transportable, POSIX-compliant RCP. The TSCP
trusted computing base (TCB) is structured in terms of an operating
system kernel, trusted system functions, and trusted application
functions that will collectively satisfy the derived security policy
objective. The trusted communications processor initially defined by
this IR&D project will be applicable to specific operational
environments with MLS accreditation requirements. This study
provides an initial security "road map" for a B2-level,
general--purpose, transportable communications processor.

1. Introduction

This report describes the main results of a TRW security engineering
effort to d .fine an initial ajchitecLure for a multilevel secure
(MLS) communications processor that will satisfy the criteria for a
B2-level of trust in the Trusted Computer System Evaluation Criteria
(TCSEC) , DOD 5200.28-STD. Based on a successful, fielded
communications product, the Remote Communications Processor (RCP) and
on experience in a variety of multilevel security programs, TRW
initiated an Internal Research and Development (IR&D) project to
define an approach for a MLS RCP in response to the growing need in
the military and intelligence communities for such a product. The RCP
is an existing front end communications processor that was developed
on a VAX/VMS base by TRW in response to message processing
requirements for Navy Shorebased communications. The TRW experience
in Navy Command and Control System communications includes the
development of a major Navy upgrade, The Ocean Surveillance
Information System (OSIS) Baseline Upgrade (OBU). Within the OBU
project, TRW developed a multilevel secure message handling system.

Concurrent with the TSCP IR&D project, a separate IR&D project was
launched to examine the feasibility of building a transportable RCP
in accordance with the POSIX standards and to define the requirements
for a transportable RCP. The requirements for a trusted and
transportable RCP were examined cooperatively to derive a foundation
for a transportable TRW secure communications processor (TSCP).

The prcposed TSCP will provide communications services in the form of
on-line, automated, near real time message switching for the timely
receipt, display and correct routing of message traffic to a variety
of destinations. The TSCP will be a front end processor hostable on
computer systems that support POSIX and X Windows interfaces and will
provide appropriate modem devices as required for specific
environments.

198

1.1 Motivation for a TSCP

There is increasing need for general-purpose, .nultilevel secure
(MLS) communications processors that meet military and intelligence
community requirements for enhanced capabilities with improved
security. Most current classified systems operate in system high or
dedicated modes with reliance for security placed largely on
procedural or physical controls. To open existing computer systems
to users with differing clearances requiring access to multilevel
data would pose unacceptable risks. Enhanced computing capabilities,
increased operational and communications requirements, and
advancements in hardware are driving the requirements for MLS.

State-of-the-art technology currently provides limited MLS operating
system products, and promising new MLS products are being developed.
Independent research projects and government research programs are
striving to address the critical need for MLS. Some examples are:
the Multinet Gateway Program, (RADC, Ford Aerospace); TRUMMP,
(Magnavox); LOCK, (Honeywell) ; ASD, Sybase Secure Sequel Server and

ASOS, (TRW); and numerous MLS operating system products. However, no
general-purpose, certified B2-level communications processor is yet
available. This TRW IR&D project responded to the need for a defined
approach and initial set of requirements to achieve a B2-level,
general-purpose secure communications processor.

While guidance exists in the TCSEC, the Trusted Network
Interpretation (TNl) and numerous service and agency documents, there
is no well-defined, single approach to securing specific
applications. Application and interpretation of the guidance
documents will be necessary to develop MLS products that meet
specific defense communication needs.

1.2 Objectives and Approach

The overall objectives of the TRW SCP IR&D project were to:

- Formulate initial B2 security policy objectives and high
level security requirements for the TSCP.

- Derive an initial TSCP architecture to meet B2 requirements
and also address applications portability (POSIX standards).

- Define the basic steps to design and develop the
trusted and transportable SCP in cooperation with the TRW
Power Projection IR&D project.

The TRW approach was to redefine the architecture for a fielded,
successful RCP to meet MLS requirements. Examining both B2 trust and
portability issues, TRW investigated relevant, current research
projects, defined requirements, and examined alternativ approaches
for the SCP.

2. Initial IR&D Results

This IR&D project accomplished its initial objectives to lay the
ground work for the development of a TSCP. Difficult issues will

199

need to be solved to develop a B2 TSCP: B2 certification challenges,
limitations of current technology, potential unavailability of
suitable trusted products, integration of trusted applications with
an evaluated product, portability goals, inadequacy of current models
for application systems and distributed system complexity.

2.1 Results Overview

To define security policy objectives and derive draft security
requirements, TRW analyzed issues such as interpretation of MLS
guidance documents, determination of trusted application functions,
identification of the trusted computing base (TCB), implementation of
access controls and accountability, and the formulation of an
architecture that simultaneously meets performance, trust and
portability requirements. A survey of pertinent MLS research
projects confirmed the need for B2-level communications processing
and identified a variety of ongoing efforts responding to the
technical challenges.

TRW analyzed the B2 criteria with respect to TSCP operational needs,
defined security constraints and feasibility. The TSCP TCB was
structured in terms of an operating system kernel, trusted system
functions and trusted application functions that collectively satisfy
sercuritv nplir.y ohbjectives°

A MLS operating system will support TSCP security requirements, and
security functions will be assigned accordingly. There is risk
associated with the assumption that a secure product will be
available for TSCP development. However, the probability that a
suitable Bl-level, UNIX-based operating system will be available in
1989 is high. A multilevel secure TSCP with the required B2
supporting features can be devel::ped on a Bl base and transported to
a B2 operating system once it becomes available. AT&T has predicted
its B2-level, POSIX-compliant UNIX operating system will be available
by mid 1990. Other vendors are claiming they will achieve comparable
products in the near future.

On another project, TRW is developing a MLS product to meet the
highest achievable level of trust, Al, with an Ada-based operating
system for real time applications, the Army Secure Operating System
(ASOS). As one possible alternative, the SCP security architecture
can be tailored to accommodate application on ASOS with a suitable
operating system interface designed to meet POSIX requirements.

The TSCP security policy objective addresses a general purpose
classified communications environment tasked with processing
multilevel data. The TSCP must examine message traffic flowing into
and out of the system, reject any messages failing to meet
established security criteria, log all messages (r:jected messages
with reason for rejection) and export only valid messages in
accordance with the security access rules for classified data, port,
and destination security levels.

The TSCP must separate functions that implement security to minimize

200

the possibility of undesirable side effects and enhance the
credibility and correctness of the system. Additionally, the
partitioning of the TSCP into trusted and untrusted elements,
supported by physical separation and modular design will enhance the
security assurance activities. The TCB will be modeled, specified,
and validated in accordance with TCSEC B2-level criteria.

2.2 TCB Overview

TRW defined a trusted computing base for the TSCP that will make use
of MLS operating system advances and employ a hierarchical, layered
approach to trusted system design. The TSCP will provide front end,
automated message switching functions for the receipt, display and
routing of military message traffic. The TSCP TCB will consist of
computer software, firmware and hardware jointly enforcing TSCP
security policy.

All functions of the TSCP system will be partitioned into tiusted and
untrusted elements. The operating system will act as a base on
which the TSCP functions operate with a trusted operating system
kernel mediating TSCP accesses to sensitive system objects in
accordance with B2 security policy. Figure 1. presents a conceptual
view of the software security layers in the TSCP.

The software portion of the TCB for the TSCP will be composed of the
trusted software functions that support the security policy enforced
by the B2 operating system and its TCB as well as the trusted
application functions that support secure message processing, message
export, message import, operator/administrator window interfaces, and
security audit/alert management. Trusted functions are those that
must be relied on to correctly enforce the defined security policy.

External interfaces of the TSCP will be controlled by the TCB
functions for MLS processing. The security perimeter of the TSCP
necessarily will include the system and application functions
responsible for message flow through the TCB. The external view of
the TSCP, the trusted partition, major functions and mnajor interfaces
are illustrated in Figure 2.

TSCP TCB functions will include:

- review of all communication between users and subscribers
Sidentification and authentication of system users
- mediation of all accesses of defined objects by defined

subjects where subjects are TSCP system users and processes
acting on their behalf; objects are messages, sensitive
files, devices and processes

- identification and maintenance of message sensitivity
- validation and correct routing of messages
- rejection of all messages that fail defined criteria
- creation and protection of security audit trail
- approval of all outgoing messages for validity and security

prior to export.

201

r momr
m ---

Untrusted applications:i
SCP functions/COTS software

Untrusted OS FunctionsI

Trusted I (Security)
OS Functions Trusted Perimeter

Functions
KernalOS KernelI Perimeter

I/Fs external to the TCB: 1/O devices Sysztemn
1iMedl'ia devices Perimneter -

Outside world: Users MediacontisI
Lermi-als etwork connetion

The security layers of the SCPR from
mast critical to untrusted are:
- Operating system (OS) kernel (most critical)
- Other trusted OIS functions
- Trusted SCP: Kernel I/F

Trusted Applications
- Untrusted Applications

Figure 1. SCP Software Security Layers

202

External View of the SCP TCB

I TCB: Security
Permieter

Untrusted User and Trusted OS 4-

System Operations and Kernel
Support, ML and SL
Iuntons Devices:

Untrusted User I/F Fucio

and System Control
Functions * Oparator

ML a~nd SL TerminalsCommunication

Lines: _ wi--

S Trusted SCP Software Functions to
SInclude: Tape
* 1Devices

* I/0 Security Printers
Window Management Management
VIAutomated Message Security Auditing

Processing Secure DBM

L - i

The SCP security perimeter provides a trusted
boundary for system coommunications. All message
and user interfaces are controlled by TCB functions.

Based on RCP, I/F support includes:

- Bidirectional Asychronous links
(JANAP 128 Msgs)

- RIXT/SRT (Navy/AUTODIN)
- Slow Walker
- Protocol Interface Processor (PIP)

- x.25 (future)

- HLDC (future)

- ADCCP (future)

Figure 2. Externr,-l view of the SCI) TCB.

203

The -%2B functions must satisfy a defined security policy that meets

the criteria for a B2-level of trust.

2.3 Security Policy Obective Overview

The security policy objective represents the first step to define the
TSCP approach and provide a foundation for security that is
applicable to the MLS system design. The TSCP Security Policy is
intended to be flexibly tailored to specific message processing
environments.

The initial security policy objective:

- has general purpose applications
- defines a general message processing environment
- satisfies TCSEC B2 policy guidelines
- addresses administrative and procedural issues
- defines basic security assumptions for the TSCP environment

and personnel
- defines top-level security requirements that are system

enforceable:
-- discretionary access controls
-- mandatory access controls
-- object reuse
-- human readable labels
-- message handling
-- accountability
-- secure data base management
-- system integrity

- applies to the TRW Power Projection research project for a
trusted and transportable communications processor

- provides a basis for the TSCP security model.

The policy objective will be applicable to a general military/
intelligence communications processing environment operating in
multilevel or compartmented mode. The TSCP must also satisfy
security policy for specific environments in accordance with DOD,
agency, intelligence and service policies as applicable.

The policy describes a classified message processing environment
capable of handling multilevel and single-level communications lines
and devices and serving users cleared at different security levels,
compartments and need-to--know for data access. Data confidentiality
is provided at the B2 level of trust. Integrity and assured service
issues are addressed as important specific requirements and design
concerns to be specified outside of the security policy model.

The TSCP policy description provides a generic environmental overview
and includes security policy statpments that are procedural,
administrative, and system enforc able. Fundamental policy
statements enforceable by the compute]r system represent high-level
security model assertions that provide a foundation for the Formal
Security Model. The chosen design ultimately will determine the

204

means of enforcement while B2 criteria mandate certain system
security functions that must be implemented by the software and/or
hardware of the computer system.

2.4 TSCP Architect'ire

The TSCP architecture defines major software functions and their
security relevance for B2 policy. The software architecture can be
developed on a variety of hardware systems. The current approach
assumes a single system host compatible with a chosen MLS,
POSIX-compliant operating system, or as an alternative, a MLS
operating system combined with a B2 trusted, POSIX-compliant
interface.

The operating system will be a commercial product (or TRW's ASOS)
that provides a trusted base for TSCP security. The most privileged
security layers will reside in operating system kernel functions.
Additional trusted operating system functions will operate in less
privileged layers. The security kernel will mediate subject to
object access as defined by the TSCP application. The trusted kernel
ensures that discretionary and mandatory access control policies are
enforced.

The TSCP will extend the existing operating system security policy.
Specifically, the TSCP application will be a trusted software layer --

on top of the trusted operating system. It will include a
hierarchical upper layer of the TCB and enforce security policy
cooperatively with the secure operating system. Therefore, TSCP
software must be evaluated to ensure that the extended policy
correctly adheres to the operating system policy, and that together
they satisfy the TSCP policy objectives.

The resulting TSCP security evaluation will depend on the rating of
the operating system base and can achieve the operating system trust
level as a maximum.

Figure-3 illustrates the major application software elements, their
interfaces and the operating system base for the TSCP security
architecture.

Major software elements proposed for the TSCP are:

1) Untrusted User Interface--Supports non-security-relevant
user functions for message management, status displays and
routine system operation and management controls.
Communicates indirectly with users through the TCB Secure
window Manager, Trusted User Interface and operating system
functions. The interfaces to the TCB include:

Untrusted User Interface to
-Secure Window Manager for display updates for
operations monitoring and message management

-Message Processing for initialization of
communications data

-Data Base Manager for message transactions

205

MI and St
Cotr0 nu1n to-ionls

r i' --i--"-

I ... M essage I/o I-
O-Mgrnt I B2 OS

IData
ExchangeIQ

i Msg Processing Untrusted Uset I/F
Communications MQMm- Processing Status Display/Sys.1 _ a__Il Monitor & Control

ITrusted User Ta/e

I. Dtabase__ I..I l I,,,,-.

I I 1 •IP.It]Lt ~ I Devi vces----
-

MI andi S[
Peripheral Mgmt. ' . Peripheral Devices

Secue . Security Mgmt. PrintersSe~cure

WindowI Manager r

Operator

" 1ermines

Operator

The TRW 82-level SCP security architecture
ensures MLS enfoicement through modular,
trusted application processes interacting with
the operatfi system mechanisms to satisfy a
common 02 security policy objective.

Figure 3. SCP Architecture for Software-
Elements.

206

-Trusted User Interface for status data requests,
message and operational alert selections and command
log handling.

2) Trusted User Interface--Provides security-relevant functions
for system management, security alert/log management and
peripheral device management to support sensitivity labels,
accountability and access control requirements. Supports
security manager functions for definition and maintenance of
security data files and user accountability. Relies on
operating system security mechanisms to ensure policy
implementation and supports trusted external interfaces for
classified data export to multilevel and single-level
devices. Internal and TCB interfaces include:

Trusted User Interface to
-Untrusted User Interface for current line (display)
classifications, inputs to security alert/audits,
display requests, statistical display,

-Secure Window Manager for display updates and valid
operator modes

-Message Processing to provide communication line
security

-Peripheral Devices to provide labeled external
outputs.

3) Secure Window Manager--Supports secure external interfaces
with TSCP system users and provides trusted labeling of
window displays in accordance with MAC and DAC policies.
Requires trusted operating system mechanisms to enforce
security controls and interfaces with untrusted user
functions to support command authorizations for identified
users according to their clearances and roles. Internal and
TCB interfaces include:

Secure Window Manager to
-Untrusted User Interface for commands and mode
selections and valid mode requests

-External operator terminals to support labeled
window displays for system operators.

4) Data Base Manager--Supports trusted data base management of
sensitive analyst data for the TSCP enforcement of access
control policies. Provides a trusted application layer to
ensure security policy is enforced for analyst data base
functions. Requires trusted operating system mechanisms for
secure implementation. Interfaces with Secure Window Manager,
Trusted User Interface, and Message Processing to support
trusted user operations. Internal and TCB interfaces include:

Data Base Manager to
-Untrusted User Interface to send message and
directory data, security log and alert entries,
communications parameters, and communications data.

-Secure Window Manager to provide message displays and
appropriate classifications

-Message Processing to send messages for transmission.
207

5) Message Processing--Provides message-level, trusted
communications management. Parses, validates, translates,
rejects, sanitizes, routes and transfers classified messages.
Supports integrity of labels, messages and their correct
association. Helps ensure secure message flow with the
support of trusted operating system mechanisms to conduct
communications handling and ensure the security of the
message processing applications. Implements levels 3-7 of
the OSI Reference Model. Internal and TCB interfaces
include:

Message Processing to
-Untrusted User Interface to provide current
commurnications parameters and line security, for
communications and status data, and to send security
axerts/audits

-Data Base Manager to provide invalid messages and
and messages requiring operator attention

-Message I/O to send messages for transmission and
link control.

6) Message Input and Output (i/0). Message Input supports
trusted receipt, protocol handling, collection,
identification, sanitization of messages whose classification
dominates security level of TS node and su,.or .. nessa-.
information logging and acknowledgments. Message Output
provides trusted message partitioning, protocol handling,
checking for secure export, and secure transmission of
classified messages. Message I/O interfaces with the trusted
user interface to support security alerts and interfaces with
message processing for message handling functions. Support;
the trusted external interface with a variety of multilevel
and single-level communications lines and network interfaces.
Implements layers 1-2 of the OSI Reference Model. The
trusted operating system provides essential support mechanisms
to ensure that multilevel secure message handling policy is
enforced. Internal and TCB interfaces include:

Message I/O to
-Untrusted User Interface for message logging and
management of security and link alerts

-Message Processing for transfer of imported messages
and link status

-External Communications for import and export of
message blocks, acknowledgments, and modem responses.

7) Operating System--The B2-level operating system consists of
its own TCB as well as untrusted system functions. Provides
a software layer that protects hardware and sensitive system
elements from direct application access. The kernel contains
the most privileged system functions and provides a reference
monitor to mediate subject to object accesses and enforce
security policy. The operating system provides system
integrity, process separation, object reuse, trusted path,
user authentication and identification, and secure

208

interprocessor -ommunication in accordance with its security
policy and in support of TSCP policy objectives. Also
ensures security database access protection. The operating
system interfaces with every TSCP element to support all TSCP
software functions.

The full extent of the trusted software functions compared to the
overall system will need to be further evaluated. The total size of
the software within the TSCP system is assumed to be relatively
small.

2.5 Requirements Overview

The security analysis from this IR&D project supports the first step
toward the development of a prototype TSCP to meet the B2-level of
trust and the POSIX standard. The initial security requirements are
summarized here. The TSCP requirements will continue to be defined,
and it is expected that they will be included in a system
specification for a future TRW IR&D project.

An overview of the TCSEC B2 requirements is presented in Table-i.
Security requirements for the first two TCSEC areas are addressed in
more detail in the TSCP Security policy objective, and they were
initially applied to specific rTSC elements in the Power Proj etio~i

IR&D project.

The informal policy objectives were partially derived from the B2
criteria which state that the TCB for the TSCP shall be based on a
clearly defined and documented formal security policy model that
provides discretionary and mandatory access controls (DAC and MAC)
for all subjects and objects in the computer system. An English
language statement of security policy is required to define the
protection requirements for the system in terms of MAC, DAC and
marking policy. Message screening for security, message input and
output security handling, and security auditing will be included.
Specific security policies will be specified with respect to
acceptable flow rules.

The security policy statements must then be written in a formal,
mathematical language which presents an unambiguous description of
TSCP security policy. The formal security model can be written in
any mathematically-based language. The Gypsy Verification Environment
(GVE) tools are available at TRW, and TRW has used Gypsy in a number
of projects.

Accountability must be assured to the granularity of a single user.
To ensure the security of classified information, individual
accountability will be required for all access mediations of objects
by subjects as defined for the TSCP.

The TSCP will require unique identification from system users and
will provide trusted and protected authentication data to recognize
and authorize users for specific access permissions. In addition,
the system will have the capability to associate users with the

209

Security Policy:
Discretionary access controls

Object reuse

Labels
Label integrity

Exportation of labeled information

Exportation of multilevel devices

Exportation of single level devices

Labeling human readable output

Mandatory access controls
Subject sensitivity levels
Device labels

Accountability:

Audit

Trusted path

Assurance:

System architecture

System integrity

Security testing
Design specs and verification

Covert channel analysis
Trusted facility management

Documentation:

Security features users guide

Trusted facility manual

Test documentation

Design documentation

Table 1. The B2-Lovel Criteria from the TCSEC

210

auditable, security-relevant events they perform. The system must
recognize unique message identifiers to properly handle access
mediation and auditing requirements for secure message processing.

Their will be a trusted co-mmunications path between each system user
and the TSCP TCB. The TSCP TCB will ensure that only the identified
user can initiate communications via the associated trusted path.

The TCB will provide the capability to audit security-relevant
events. Auditing includes the recording of authentication/
identification activities, specified access meditations,
system/security administrator actions, object deletions and
transfers, rejected messages, and security alerts. Pertinent
security information will be identified with each audited event as
specified in detailed auditing requirements for the TSCP. An audit
file will be maintained and protected by the TCB to prevent
unauthorized access to security log information.

2.5 Assurance Requirements Overview

Assurance requirements for a B2-level TSCP mandate signiiicant
operational system functions and life-cycle activities. Security
features that provide system protections within the software and
hardware of the TSCP •ill be necessary.- The TCB wi- l - designed and
built to provide MLS protection. Assurance activities will provide a
high degree of confidence that the security requirements are
correctly designed and implemented in the TSCP.

The security architecture for a B2 system is an important driver for
the total system architecture. As required by the TCSEC, the TSCP
will consist of a TCB which maintains an execution domain that is
adequately protected against external interference. Distinct address
space under TCB control will be required to maintain process
isolation. Modular software functions and hardware isolation will be
needed to support the protection of critical elements. Additionally,
the TSCP will require analysis of potential covert storage channels
and require system separation of operator and administrator actions.

Security assurance methodology for the TSCP will require a
Descriptive Top Level Specification (DTLS) which provides a complete
description of the TCB and its interfaces. The DTLS must satisfy the
TSCP Formal Security Policy Model. Testing requirements will include
testing to determine the TCB is relatively resistant to penetration
and consistent with system documentation, specifically the DTLS. All
discovered security flaws must be corrected. Configuration
management activities will be required for the strict control of all
security baselines and accurate traceability. Automated tools will
be defined and used to ensure that TCB code baselines are maintained.
Additional security documentation will be required: TCB design
documentation (formal model and consistency evidence, DTLS, covert
channel analysis results); security test plans, procedures and
results; and a Security Features User's Guide and Trusted Facility
Manual.

211

2.6 Development Methodology Requirements Overview

Trusted system development for the TSCP will require careful software
engineering practices to ensure correctness. To achieve a feasible
B2-level operational system, security will be integrated into the
overall development process. Security is an important initial
driver of the system. Basic security engineering principles apply to
any good systems engineering effort. The difference will. be the
emphasis on satisfying security requirements.

Good security engineering practices to be applied may include:
deliberate, systematic design using both hierarchical and horizontal
system views; top down analysis and traceability; and use, as
feasible, of a type-safe, higher order language. The TSCP will use
an object-oriented design approach with an implementation language
selected to meet portability and trust goals (eg., Objective C).

Security assurance requires increased analysis and review of TCB
design and code, testing of security functions, testing for the
overall satisfaction of the security policy, and testing for
resistance to penetration. In addition, risk analysis and
accreditation planning are required for an operational system for a
specific application. Security risks must be carefully monitored and
reduced to acceptable levels throughout the development of an
operational system to achieve accreditation. Once operational, the
system will require continued security assurance activities for
maintenance and re-accreditation as necessary.

3. Conclusions

In this TSCP IR&D project, TRW expanded its current MLS work to
explore a secure communications solution, specifically for DoD
networks (e.g., DDN, AUTODIN). Recommended next steps include: a
detailed analysis of alternatives, development of a formal security
policy model, initiation of a dialogue with NCSC and a detailed
evaluation plan, and coordination with a chosen MLS operating system
vendor.

Not only are common protocols required for information exchange, but
common approaches to security are necessary for interoperable MLS
components. The TSCP security policy, tailored for an operational
environment must be coordinated with other MLS components for a
cooperative B2 policy that satisfies operational risks as a whole.
This project represents a first step toward one piece of the
challenging puzzle facing government, industry and ac:ademia for MLS
communications.

REFERENCES

[1] D. Bell and L. LaPadula, "Secure Computer System: Unified
Exposition and Multics Interpretation," MTR 2997, The MITRE
Corporation, Bedford, MA, July 1975.

[2] M. Carsin, R. Chapman, W. Jiang, J. Liang and D. Yakov,

212

"From B2 to CMU: Building a Compartmental Mode Workstation
on a Secure Xenix*Base," in Proceedings of the AIAA/ASIS/IEEE
Third Aerospace Computer Security Conference. December 1987.

[3] A. Cincotta, Initial Draft POSIX System Administration FIPS,
NIST, September 1988.

[4] D. Clard and W. Wilson, "A Comparison of Commercial and
Military Computer Security Policies," in Proceedings of the
1987 IEEE Symposium on Security and Privacy. April 1987

(5] Department of Defense Trusted Computer System Evaluation
Criteria, DoD 5200.28-STD, December 1985.

[6] G. Dinolt, J. Freeman and R. Neely, "An Internet System
Security Policy and Formal Model," in Proceedings of the
11th National Cumputer Security Confereice, October 1988.

[7] M. Gasser, Building a Secure Computer System, New York:
Van Nostrand Reinhold Company, 1988, Part III.

[8] G. King, Bill Smith, "ANFOSEC IRAD at Magnovax: The Trusted
Military Message Processor (TRUMMP) and the Military Message
Embedded Executive (MEX) ," in Proceedings of the 11th National
Computer Security Conference. October 1988.

[9] D. Kuhn, "Briefings on X WINDOW System FIPS", NIST, September
1988.

[10] R. Martin, "Briefings on POSIX FIPS 151", NIST/NCTL,
September 1988.

[11] J. McLean, "Reasoning About Security Models," in Proceedings o
the 1987 IEEE Svmposium on Security and Privacy, April 1987.

[12] J. McLean, C. Lunwehr, and C. Hertmeyer, "A Formal Statement
of the MMS Security Model," in Proceedings of the 1984
Syiposium on Security and Privacy, April 1984.

[13] S. Migues, "A Guide to Effective Risk Management," in Proceeding
of the AIAA/ASISiIEEE Third Aerospace Computer Security
Conference, December 1987.

[14] National Computer Security Center, "Trusted Network
Interpretation," NCSC-TG-005, 31 July 1987.

[15] P. Rougeau, "Integrating Security into a total Systems
Architecture," in Proceeding of the AIAA!ASIS/TEEE Third
Aerospace Computer Security Conference. December 1987.

[16] M. Shafter, G. Walsh, "LOCK/IX: On Implementing UNIX on the
LOCK TCB," in Proceedings of the 11th National Computer
Security Conference. October 1988.

213

(17] W. Shockley and R. Schell, "TCB Subsets for Incremental
Evaluation," in Proceedings of the AIAA/ASIS/IEEE Third
Aerospace Computer Security Conference, December 1987.

214

TRACK B

PRIVACY FOR DARPA-INTERNET MAIL

John Linn
Secure Systems

Digital Equipment Corporation, BXB1-2/D04
85 Swanson Road

Boxborough, Massachusetts 01719-1326

Stephen T. Kent
BBN Communications Corporation

150 CambridgePark Drive
Cambridge, Massachusetts 02140

Abstract

This paper summarizes the current status of the DARPA Internet Activities Board (lAB)
Privacy/Security Task Force's ongoing effort to enhance privacy of electronic mail transferred
in the DARPA-Internet. The results of this effort will be detailed in a set of Requests
for Comments (RFCs), noted here as [MP-RFC], [ALG-RFCI, and [I-M-RFC], and dealing,
respectively, with message processing, algorithms, and key management. Official Interret
RFC numbers will be assigned during the formal RFC release process.

The facilities discussed provide privacy enhancements on an end-to-end basis between origi-
nator and recipient User Agent (UA) processes, which may be impexmuiitd o" heterogi±,vu,
systems. Disclosure protection, originator anthenticity, and message integrity facilities are
provided. A cryptographic key management approach employing RSA-based public-key cer-
tificates is defined and recommended.

Terminology

For descriptive purposes, we have used a number of standard terms defined in the OSI X.400
Message Handling System (MHS) Model per the CCITT Recommendations. The terminology
has proved valuable even though the mail system considered in the current discussion is
not built atop OSI protocols. This section replicates relevant definitions in order to make
the terminology clear to readers who may not be familiar with the OSI MHS Model.

In the MHS model, a user is a person or a computer application. A user is referred to as
either an originator (when sending a message) or a recipient (when receiving one). MH Ser-
vice elements define the set of message types and the capabilities that enable an originator
to transfer messages of those types to one or more recipients.

An originator prepares messages with the assistance of his or her User Agent (UA). A UA
is an application proceas that interacts with the Message Transfer System (MTS) to submit
messages. The MTS delivers to one or more recipient UAs the messages submitted to it.
Functions performed solely by the UA and not standardized as part of the MH Service
elements are called local UA functions.

The MTS is composed of a number of Message Transfer Agents (MTAs). Operating together,
the MTAs relay messages and deliver them to the intended recipient UAs, which then make
the messages available to the intended recipients. The collection of UAs and MTAs comprises
the MIIS.

215

Motivation, Approach. and Constraints

Motivation and Approach

Electronic mail is one of the-nost significant results of DARPA networking research, and is
perhaps the result with the most wide-ranging impact on modes of human intercommunica-
tion. It is a visible and omnipresent use of networking technology, used daily as a matter of
course by thousands of human users on hundreds of host computers. A wide variety of hosts
implement Lnteroperable mail service functions, supporting end users as well as relaying
mail to other systems. Unfortunately, few requirements to provide privacy protection for
information transferred by electranic mail have been addressed as diverse implementations
have proliferated. This paper summarizes the current state of the DARPA Internet Activ-
ities Board (JAB) Privacy/Security Task Force's ongoing effort to enhance electronic mail
privacy within the current Internet context.

The task force is providing a series of Requests for Comments (RFCs) to the DARPA-Internet
community, presenting proposed standards for privacy-enhanced mail implementors. There
are three current RFCs. RFC [MP-RFC] specifies the processing procedures to be applied
to messages in order to provide privacy protection, given prior possession of appropriate
cryptographic keys by originators and recipients as a necessary precondition. RFC [KM-
RFC] specifies a recommended supporting key management strategy based on the use of
public-key certificates and the Rivest, Shamir, Adleman (RSA) algorithm. A supporting
certificate generation infrastructure is to be provided by RSA Data Security, Incorporated
(RSADSI). RFC [ALG-RFC] contains definitions and references for algorithms employed in

m uiie d1l1it~ttLLure,.

Services, Constraints, and Implications

Constraints and Security Services
In order to achieve applicability to the broadest possible range of Internet hosts and mail
systems, and to facilitate implementation, testing, and application without the need for prior
modifications throughout the Internet, two basic restrictions are imposed on the privacy
enhancement mechanisms:

1. Measures must be implementable at endpoints and will be amenable to integration at
the user agent (UA) level or above. Integration into the MTS (e.g., SMTP servers) will
not be required. No reliance is placed on privacy-relevant service characteristics which
may or may not be provided at lower protocol layers in particular hosts or networks.

2. The set of supported measures offers added value to users, enhancing rather than re-
stricting the set of capabilities available to users. System integrity features to protect
privacy enhancement software from subversion by local users cannot be assumed in gen-
eral. In the absence of such features, it appears more feasible to provide facilities which
enhance user services (e.g., by protecting and authenticating inter-user traffic) rather
than those which enforce restrictions (e.g., inter-user access control) on user actions.

As a result of these restrictions, the following security services can be offered:

"* data confidentiality

"* data origin authentication

* message integrity

216

* if public-key key management is employed, non-repudiation of origin

but the following privacy-relevant concerns are not addressed:

"* access control

"* traffic flow confidentiality

"* routing control

"* address list accuracy

"* issues relating to the casual serial reuse of PCs by multiple users

"* assurance of message receipt and non-deniability of receipt

"* automatic association of acknowledgments with the messages to which they refer

"* message duplicate detection, replay prevention, or other stream-oriented services

Since privacy enhancement services are provided on an end-to-end basis between originators
and recipients, no privacy enhancements are offered for message fields which are added or
transformed by intermediate relay points. Note that the "endpomits" involved in electronic
mail transfer are application layer entities within originator and recipient hosts. Although
an originator and recipient may engage in a direct, real-time connection in order to transfer
mail, this cannot be assumed in general. It is common fo mail to be staged and relayed at
one or more sites between originator and recipient.

Two distinct privacy enhancement service options are supported:

1. an option which provides data origin authentication and message integrity

2. an option which provides data origin authentication, message integrity, and also data
confidentiality through encryption

No facility for confidentiality without authentication is provided. Both options allow an
originator to indicate portions of message text which are not to be enciphered; this allows
non-sensitive text (as a possible example, content abstracts) to be accessed by a recipient's
delegate without requiring that the delegate be privy to the recipient's personal keys.

Interoperablllty Issues
In keeping with the Internet's heterogeneous constituencies and usage modes, the privacy
enhancement mechanisms are applicable to a broad range of Internet hosts and usage
paradigms. Figure 1 illustrates an example environment. In particular, the following at-
tributes are notable:

1. The defined mechanisms are not restricted to a particular host or operating system, but
rather allow interoperability among a broad range of systems. All privacy enhancements
are implemented at the application layer, independent of any privacy features which
may or may not be available at lower protocol layers.

2. The defined mechanisms are compatible with Internet components which have not been
enhanced to perform privacy-specific processing. Mail processing by intermediate relay
hosts which do not incorporate privacy enhancement features will not be affected.

217

Figure 1: Environment Example

ORIGINATOR AT RECIPIENT AT
SERVICE HOST WORKSTATION

PRIVACY USER RFC-822 USER
ENHANCEMENT AGENT C, AGENT

FILTER- PRIVACY
MAIL ENHANCEMENT

TRANSFER MODULE
AGENT
(SMTP)

t RETRIEVAL
SMTP HOP

MAIL MAIL
TRANSFER SMTP TRANSFER

AMMNT (RFC-A211 r A "FNI
(SMTP SHOP
RELAY)F- -Ik EI

INTERMEDIATE RECIPIENTS
RELAY POINT MAILBOX HOST

3. The defined mechanisms are compatible with a range of mail transport facilities (MTAs).

Within the DARPA Internet, electronic mail transport is effected by a variety of SMTP

implementations. Certain sites, accessible via SMTP, forward mail into other mail pro-

cessing environments (e.g., USENET, CSNET, BITNET). The privacy enhancements

must be able to operate across the SMTP realm; it is desirable that they also be com-

patible with protection of electronic mail sent between the SMTP environment and other

connected environments.

4. The defined mechanisms are compatible with a broad range of electronic mail user

agents (UAs). A large variety of electronic mail user agent programs, with a corre-

sponding broad range of user interface paradigms, is used in the Internet. In order

that privacy enhancements be available to the broadest possible user community, it is

desirable that the selected mechanisms be usable with the widest possible variety of

existing UA programs. To facilitate deployment, it is desirable that privacy enhance-

ment processing be incorporable into a separate program, applicable to a range of UAs,

rather than requiring internal modifications to each UA with which enhanced privacy

services are to be provided.

218

5. The defined mechanisms allow electronic mail privocy enhancement processing to be
performed on PCs separate from the systems on which UA functions are implemented.
Given the expanding use of PCs and the limited degree of trust which can be placed
in UA implementations on many multi-user systems, this attribute can allow many
users to process privacy-enhanced mail with higher assurance than a strictly UA-based
approach would allow.

6. The defined mechanisms support privacy protection of electronic mail addressed to mul-
tiple recipients or to mailing lists, although protection of mail which is addressed to
lists which are not expanded to individual recipients at the originator's site is limited
to per-list rather than per-recipient granularity.

Message Processing Procedures
This section provides a high-level overview of the components and processing steps involved
in electronic mail privacy enhancement processing.

Keying Hierarchy

A two-level keying hierarchy is used to support privacy-enhanced message transmission:

1. Data Encrypting Keys (DEKs) are symmetric keys, used for encryption of message text
and for computation of message integrity check (MIC) quantities (where MIC computa-
tion algorithms requiring the use of keys are employed). DEKs are generated individ-
ually for each transmitted message; no predistribution of DEKs is needed to support
privacy-enlhanced message tiauIM~-,isson.

2. Interchange Keys (IKs) are used to encrypt DEKs for transmission within messages. Or-
dinarily, the same IK will b- u..ed for all messages sent from a given originator to a given
recipient over a period of time. E;chi transmitted message includes a representation of
the DEK(s) used for message encrypttion and/or MIC computation, encrypted under an
individual IK per named recipient. The representation is associated with "X-Sender-ID:"
and 'X-Recipient-ID:" control fields, which allow each individual recipient to identify the
1K used to encrypt DEKs and/or MICs for that recipient's use. Given an appropriate
IK, a recipient can decrypt the corresponding transmitted DEK representation, yielding
the DEK required for message text decryption and/or MIC verification. The definition
of an IK differs depending on whether symmetric or public-key cryptography is used for
DEK encryption:

" When symmetric cryptography is used for DEK encryption, an IK is a single symmetric
key shared between an originator and a recipient. In this case, the same IK is used
to encrypt the MIC and the DEK for transmission to a recipient. Thus there is one
encrypted copy of the DEK and MIC for each recipient. Version/expiration information
associated with the originator and with the recipient must be concatenated in order to
fully identify a symmetric IK.

" When public-key cryptography is used, the IK used to encrypt a DEK for a recipient is
the public component of that recipient. Thus there is one encrypted copy of the DEK
for each recipient. However, the IK used for MIC encryption is the private component
of the originator, and therefore only one encrypted MIC representation is included per
message, rather than one per recipient. Each of these 1K components can be fully
identified by an "X-Recipient-ID." or "X-Sender-ID:" field, respectively.

219

Encapsulation and Encoding Procedure

An encoding procedure is empiloyed in order to represent encrypted message text ill a uni-
versally transmissible form and to enable messages encrypted on one type of system to be
decrypted on a different type. As Figure 2 illustrates, the header fields used for message
transport are separated explicitly from those with end-to-end significance in privacy en-
hancemnent processing. As a result, transit modifications of header fields used for message
transport do not disrupt privacy processing.

Four phases are involved in the enicoding process:

1. (Local Form) A plaintext message is accepted ill local form, using the host's native
character set and line representation.

2. (Canonicalize) The local form is converted to a canonical representation, defined as
equivalent to the inter-SMTP representation of message text.

3. (Encipher) The canonical representation is padded to satisfy the requirements of the
encryption mode. MIC computation is performed, and if data confidentiality is selected,
the padded canonical representation is encrypted.

4. (Printable Encoding) The output of the preceding step is encoded into a printable form.
The printable form is composed of a restricted character set which is chosen to be uni-
versally representable across sites, and which will not be disrupted by processing within
and between MTS entities.

The output of the encnding procedure is combined with a set of hcendr fields whx,. carryh

cryTtographic contro). information. The result is passed to the electronic mail system to be
encapsulated as the text portion of a transmitted message. Figure 3 presents a concrete
example of an encapsulated messaga in which public-key key management is used. Note
that only one version of encrypted message text is needed in a message, independent of the
number of recipients, since the message text is encrypted in a for'm which is usable by all
recipients; only the IKs are recipient-specific, not the DER rhe set of per-recipient quan-
tities is limited to the (relatively small) "X.Recipient-ID:" and "X-Key-info:" encapsulated
header fields.

WVxen a privacy-enhanced message is received, the control fields within its encapsulated
header provide the information which the authorized recipient requires in order to perform
MIC verification and decryption on the received message text. First, the printable encoding
is converted to a bitstring. If the transmitted niessage was encrypted, it is decrypted into
the canonical representation. If the message was not encrypted, decoding from the printable
form produces the canonical representation directly The MIC is verified and the canonical
representation is converted to the recipient's local form, which need not be the same as the
originator's local form.

In summlary, the outbound message is subjected to the following composition of transfornia-
tions:

Encode(Encipher(Canonicalize(LocalForm)))

220

Figure 2: Mess'dqe Encapsulation Mechanism

User provides other data ENLSN7EADER
enclosing header RfC-822 header fieldis

ENCAPSULATED HFADEF1:

User provides addres-s Contains encryption control
information needed to fields (e.g., IV, !K 10, DEK)
pei~orm. encryption and related into (e.g., MAC)

1-00.1 ENCAPSULATED
KNCAPSULT TED): _2 MESSAGE

-(E~RYPTText porion of
message as

Plaintext of user User message text processed by
prvayenhanemrequrnt Optional copies of electronic mail

piayehneetprotected enclosing system

User provides message Privacy enhancement Result passed to W
text, address, und other fuanction adds encryption mail system for
header Information conttrol Information transport

The inversc transformations are performed, in reverse order, to process inbouind privacy-

enhianced mail.

Key Management App~roach
Overview

RFC [KM-RFC] defines a recommended key management architecture based on the use of
public-key certificates, supporting the message encipherment, and authentication procedures
defined in RFC [MP-RFCII. (Other alternative key management approaches may be defined
in the fuxture.) In the proposed architecture, a Certification Authority (CA) representing an
organization applies a digital signature t(, a collection of dat~a consisting of a user's public
key compo3nent, various information that serves to identify the user, and the identity of
the organization whose signature is affixed. This establishes a binding between these user
credentials, the user's public component and the organization which vouches for this binding.
The resulting signed, data item is called a certificate. The organization identified as the CA
for the certificate is the "issuer" of that certificate.

221

Figure 3: Example Encapsulated Message

----- PRIVACY-ENHPANCED MESSAGE BOUNDARY -----
X-Proc-Type: 3,ENCRYPTED
X-DEK-Info: DES-CBC,F8143EDE5960C597
X-Sender-ID: Feldman@ccy.bbn.com:
X-Certificate:

jHUiBLpvXROUrUzYbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPjCUWbz8Lr9wloXIk
YbkNpkOaqV2 IzUpk8t EjmF/zxB+bATMtPjCUWbz 8Lr9wloXIkjHU1BLpvXROUrUz
agV21zUpk8tEjmFjHUlBLpvXROUrUz/zxB+bATMtPjCUWbz8Lr9wloXIkYbkNpkO

X-Issuer-Certificate:
TMtPjCUWbz8Lr9wloXIkYbkNpkOagV2IzUpk8tEjinFFjHUlBLpvXROUrUz/zxB+bA
IkjHUIBLpvXROUrUzYbkNpkOagV2IzUpk8tEjmF/zxB+bATMtPjCUWbz8Lr9wloX
vXROUrUzYbkNpkOagV2l zUpk8tEjmF/zxB+bATMtP jCUWbz 8Lr9wloXIkjHUlBLp

X-MIC-Info: RSA-MD2, RSA,
5rDqUcM1Kl Z 6720dcBWGGsDLpTpSCnpotJ6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz

X-Recipient-ID: Feldman@ccy.bbn.com:RSADSI :3
X-Key-Info: RSA,

IBLpvXROUrUzYbkNpkOagV2l zUpk8tE jmIF/zxB+bATMtP jCUWbz 8Lr9wloXIkjHU
X-Recipient-ID: privacy-tf@venera.,isi.edu:RSADSI:4
X-Key-Info: IRSA,

NcUk2 jHEUSoHlnvNSIWL9MLLrHBOeJzybhP+/fSStdW8okeEnv47jxe7SJ/iN72oh

S .. ~.......~n /StWken4j7Sj/iN72oh~cUk2j HEUS oHin-VA5iWLgM

8tEjmF/zxB+bATMtPjCUWbz8Lr9wloXIkjHUlBLpvXROUrUzYbkNpkO agV2IzUpk
J6UiRRGcDSvzrsoK+oNvqu6z7Xs5Xfz5rDqUcMiKlZ 6720 dcBWGGsDLpTpSCnpot
dXd/H5LMDWnonNvPCwQUHt ==
.. -PRIVACY-ENHANCED MESSAGE BOUNDARY -----

The contents of the certificate are as follows:

"* Serial Number

"• Issuer Name

"* Subject Name

• Validity Period Information

"* Subject Public Component and Associated Algorithm Identifier

"• Certificate Signature (encrypted hash) and Associated Algorithm Identifier

In signing the certificate, the CA vouches for the user's identification, especially as it relates
to the user's affiliation with the organization. The digital signature is affixed on behalf of
that organization and is in a form which can be recognized by all members of the privacy-
enhanced electronic mail community. Once generated, certificates can be stored in directory
servers, transmitted via unsecure message exchanges, or distributed via any other means
that make cei tificates easily accessible to message originators, without regard for the secu-
rity of the transmission medium.

222

Prior to sending an encrypted message, an originator must have acquired a certificate for
each recipient and must have validated these certificates. Briefly, validation is performed
by checking the digital signature in the certificate, using the public component of the issuer
whose private component was used to sign the certificate. The issuer's public component is
made available via some (integrity assured) out of band means or is itself distributed in a
certificate to which this validation procedure is applied recursively.

Once a certificate for a recipient is validated, the public component contained in the certifi-
cate is extracted and used to encrypt the data encryption key (DEK) that is used to encrypt
the message itself. The resulting encrypted DEK is incorporated into the 'X-Key-Info:" field
of the message header. Upon receipt of an encrypted message, a recipient employs his pri-
vate component to decrypt this field, extracting the DEK, and then uses this DEK to decrypt
the message.

In order to provide message integrity and data origin authentication when public-key key
management is used, the originator generates a MIC, signs (encrypts) the MIC using the
private component of his public-key pair, and includes the resulting value in the message
header in the "X-MIC-Info:" field. The certificate of the originator is also included in the
header in the 'X-Certificate:" field. Upon receipt of a privacy enhanced message, a recipient
validates the originator's certificate, extracts the public component from the certificate, and
uses that value to recover (decrypt) the MIC. The recovered MIC is compared against the
locally calculated MIC to verify the integrity and data origin authenticity of the message.

Scope and Restrictions

While X)509 defines the concept of certification path, allowing recursive validation of a chain
of certificates, our proposed architecture imposes additional conventions for certification
paths beyond those required by X.509 or by its underlying cryptographic technology. The
decision to impose these conventions is based in part on constraints imposed by the status
of the RSA cryptosystem within the U.S. as a patented algorithm, and in part, on the need
for an organization to assume operational responsibihty for certificate management in the
current (minimal) directory system infrastructure for electronic mail.

Thus, for example, we propose a system in which the user certificates represent the leaves
in a shallow certification hierarchy (tree). Figure 4 illustrates an example certification hier-
archy consistent with the architecture. In this example each oval represents a certificate for
a specified organization or (generic) user. Note that only organizations act as issuers in this
architecture; a user certificate may not appear in a certification path except as a terminal
node in the path. Each line in the figure points to a certificate which is issued by the orga-
nization from which the line emanates. The solid lines mirror paths in the (X.500) naming
hierarchy, whereas dashed lines indicate additional certification relations not implied by the
naming hierarchy. (Thus organizations pointed to by dashed lines are generally identified as
subjects in more than one certificate.) The line between RSADSI and the U.S. Government
demonstrates "cross-certification," i.e., each organization has issued a certificate vouching
for the other. This facilitates interoperation across jurisdictional boundaries, as discussed
later. The conventions noted above, though not required by X 500, contribute to simplified
validation of user certificates.

RFC [IKM-RFC] proposes that RSADSI act as the generator of certificates on behalf of most
organizations, with two notable exceptions. First, the U.S. Government has royalty-free
use of the RSA algorithm and thus may establish a certification facility on behalf of its
organizations, personnel, etc.. Second, organizations outside of the U.S. are not bound by the

223

RSA patent and thus certification facilities will probably be established in other countries.
The role RSADSI will play for most U.S. organizations can be effected in a "transparent"
fashion so that the organizations appear to be the issuers with regard to certificate formats
and validation procedures, while imposing accounting controls in support of licensing. This
avoids the need for an organization to establish the stringent accounting mechanisms and
enter into more elaborate legal agreements that are required if an organization assumes
responsibility for certificate generation in support of its user community. It also establishes
a uniform level of trust in the certificate generation procedure that would be difficult to
obtain in a more distributed environment.

Figure 4: Certification Paths

RFC [KM-RFC] specifies procedures by which users order certificates either directly from
RSADSI or via a representative in an organization with which the user holds some affiliation

(e.g., the user's employer or educational institution). Syntactic provisions are made which
allow a recipient to determine, to some granularity, which identifying information contained •
in the certificate is vouched for by the certificate issuer. In particular, organizations will =
usually be vouching for the affiliation of a user with that organization and perhaps a user's o
role within the organization, in addition to the user's name. In other circumstances, a :
certificate may indicate that an issuer vouches only for the user's name, implying that any•'-
other identifying information contained in the certificate may not have been validated by
the issuer. These semantics are beyond the scope of X.509, but are not incompatible with --
that recommendation.

Tu

The certificate issued to a user for a $25 biennial fee grants to the user identified by that
certificate a license from RSAJDSI to employ the RSA algorithm for certificate validation and
for encryption and decryption of DEKs, MICs and message digests in this electronic mail

context. No use of the algorithm outside the scope defined in this RFC is authorized by this

224

00 A(

license. The license granted by this fee does not authorize the sale of software or hardware
incorporating the RSA algorithm; it is an end-user license, not a developer's license.

Certificate Ordering Procedures

A user may order a certificate in two ways: through the user's affiliation with an organization
or directly through RSADSI. In either case, a user will be required to send a paper order to
RSADSI on a form containing the following information:

1. Distinguished Name elements (e.g., full legal name, organization name, etc.)

2. Postal address

3. Internet electronic mail address

4. A one-way hash function, binding the above information to the user's public component

If the user is not affiliated with an organization which has established its own "electronic
notary" capability, an organization notary (ON) as discussed in the next subsection, then
this paper form also must be notarized by a Notary Public. If the user is affiliated with
an organization which has established one or more ONs, the paper form need not carry the
endorsement of a Notary Public. Concurrent with the paper application, the user must send
the information outlined above, plus his public component, either to his ON, or directly to
RSADSI if no appropriate ON is available to the user. 'Transmission between a user and an
ON is a local matter, but we expect electronic mail will also be the preferred option in many
circumstances.

Organizational Notaries
An organizational notary is an individual who acts as a clearinghouse for certificate orders
originating within an administrative domain such as a corporation or a university. An ON
represents an organization or organizational unit (in X.500 naming terms), and is assumed
to have some independence from the users on whose behalf certificates are ordered. An
ON will be constrained (by mechanisms implemented by RSADSI) to ordering certificates
properly associated with his domain. For example, an ON for BBN would not be able to order
certificates for users affiliated with MITRE nor vice versa. Similarly, if a corporation such as
BBN were to establish ONs on a per-subsidiary basis (corresponding to organization units
in X.500 name parlance), then an ON for BBN Communications Corp. would not be allowed
to order a certificate for a user who claims affiliation with BBN Systems and Technologies
Corp. (see Figure 4).

It can be assumed that the set of ONs changes relatively slowly and that the number of ONs
is relatively small in comparison with the number of users, so a more costly and better-
assured process may reasonably be associated with ON accreditation than with per-user
certificate ordering. Restrictions on the range of information which an ON is authorized to
certify are established as part of this more elaborate registration process.

An ON is responsible for establishing the correctness and integrity of information incorpo-
rated in an order, and will generally vouch for (certify) the accuracy of identity information
at a granularity finer than that provided by a Notary Public. Although it is not feasible to
enforce uniform standards for the user certification process across all ONs, we anticipate
that organizations will endeavor to maintain high standards in this process in recognition
of the "visibility" associated with the identification data contained in certificates. An ON

225

also may constrain the validity period of an ordered certificate, restricting it to less than
the default two year interval imposed by RS.ADSI.

An ON participates in the certificate ordering process by accepting and validating identifi-
cation information from a user and forwarding it to RSADSI. The ON accepts the ordering
information described earlier, plus the user's public component, from a user. (Each user lo-
cally generates his own public and private component pair. he holds, the private component
secret, so that neither his ON, RSADSI, nor any other user is ever privy to this value.) The
ON sends a privacy-enhanced electronic message to RSADSI, vouching for the correctness
of the binding between the public component and the identification data. Thus, to support
this function, each ON will hold a certificate as an individual user within the organization
which he represents. RSADSI will maintain a database which identifies the users who also
act as ONs and which will specify constraints on credentials which each ON is authorized
to certify.

Certification Authorities

In X.509, a CA is defined as "an authority trusted by one or more users to create and assign
certificates". In X.509, however, there is no requirement that a CA be a distinguished entity
or that a CA serve a large number of users, as envisioned in the proposed privacy-enhanced
mail architecture. Rather, any user who holds a certificate can, in the X.509 context, act
as a CA for any other user. We have chosen to restrict the role of CA in this electronic
mail environment to organizational entities, to simplify the certificate validation process, to
impose semantics which support organizational affiliation as a basis for certification, and to
IC f t.L .41 t.. - iel~ WX-l - .

In the proposed architecture, individuals who are affiliated with (registered) organizations
will go through the process described previously, in which they forward their certificate
information to their ON for certification. The ON will, based on local procedures, verify the
accuracy of the user's credentials and forward this information to RSADSI using privacy-
enhanced mail to preserve the integrity and authenticity of the information. RSADSI will
carry out the actual certificate generation process on behalf of the organization represented
by the ON. It is the identity of the organization which the ON represents, not the ON's
identity, which appears in the issuer field of the user certificate. Therefore it is the private
component of the organization, not the ON, which is used to sign the user certificate.

In order to carry out this procedure RSADSI will serve as the repository for the private
components associated with certificates representing organizations or organizational units
(but not individuals). In effect the role of CA will be shared between the organizational
notaries and RSADSI. This shared rcle will not be visible in the syntax of the certificates
issued under this arrangement nor is it apparent from the validation procedure one applies
to these certificates. In this sense, the role of RSADSI as the actual generator of certifi-
cates on behalf of organizations is transparent to this aspect of system operation. RSADSI
merely appears as an organization which happens to have "cross-certified" most other orga-
nizations in the U.S (non-government) naming hierarchy Similarly, any U.S. Government
CAs and foreign CAs will cross-certify RSADSI, and vice versa, to permit uniform certificate
validation procedures across the administrative boundaries implied by these CAs.

RSADSI has offered to operate a service in which it serves as a CA for users who are not affil-
iated with any organization or who are affiliated with an organization which has not opted to
establish an organizational notary. To distinguish certificates issued to such "non-affiliated"
users the distinguished string "Notary" will appear as the OrganizationalUnitName of the

226

issuer of the certificate. Thus not only RSADS1 but any other organization which elects to
provide this type of service to non-affiliated users may do so in a standard fashion. Thus a
corporation might issue a certificate with the "Notary" designation to students hired for the
summer, to differentiate them from full-time employees. At least in the case of RSADSI the
standards for verifying user credentials that. carry this designation will be well known and
widely recognized (e.g., Notary Public endorsement). Figure 4 illustrates how the "Notary"
convention could be employed by both RSADSI and MIT.

Revoked Certificate Lists

X.509 states that it is a CA's responsibility to maintain:

1. a time-stamped list of the certificates it issued which have been revoked

2. a time-stamped list of revoked certificates representing other CM

There are two primary reasons for a CA to revoke a certificate, i.e., suspected compromise
of a secret component (invalidating the corresponding public component) or change of user
affiliation (invalidating the Distinguished Name). As described in X.509, "hot listing" is one
means of propagating information relative to certificate revocation, though it is not a perfect
mechanism. In particular, an X.509 Revoked Certificate List (RCL) indicates only the age
of the information contained in it; it does not provide any basis for determining if the list is
the most current hot list available from a given CA.

To help address this concern, the proposed architecture establishes a format for a RCL in
vwhich not only the date of issue, but also the nexL scheduled date of e • spec-issu..
(This is a deviation from the format specified in X.509.) When that date arrives a new
RCL must be issued, even if there are no changes in the list of entries. Thus each CA can
independently establish and advertise the frequency with which hot lists are issued by that
CA. This does not preclude issuance on a more frequent basis, in case of some emergency,
but no mechanisms are provided for alerting users that such an unscheduled issuance has
taken place. This scheduled RCL issuance convention allows users or UAs to determine
whether a given RCL is "current."

The X.509 recommendation previously required revoked certificate lists to contain entire
certificates. The recommendation now calls for each hot list to contain the serial numbers
assigned to the revoked certificates. The inclusion of a serial number in each certificate,
unique for all certificates issued by the indicated CA, and the corresponding change to the
revoked certificate list format, were a direct result of suggestions offered by members of
the Task Force. It is gratifying to see these suggestions incorporated into the CCITT/ISO
standards process within the course of one year.

Status
As of this writing, the message processing procedures RFC [MP-RFC] is about to be released
in its third version and the first versions of the companion key management RFC [KMI-RFCI
and algorithms RFC [ALG-RFC] are also slated to be released shortly. Successful interop-
erability tests, among several sites, have been perform.Ad to validate the privacy-enhanced
message processing specifications. Tests employing the certificate-based key management
technology have been carried out at one site. We anticipate distribution of a "reference
implementation,' integrated into the MR mail system for use with Berkeley UNIX TM and

IM UNIX is a trademark of AT&T-

227

derived operating systems, throughout the Internet in the Fall of 1989. The supporting key

management infrastructure described herein also should be in place by late 1989.

Acknowledgments
This paper is a result of a series of IAB Privacy/Security Task Force meetings and of RFCs
generated as a result of those meetings. Particular thanks are due to the following task
force members and meeting guests for their comments and contributions: David Balenson,
Curt Barker, Jim Bidzos, Matt Bishop, Morrie Gasser, Russ Housley, Dan Nessett, Mike
Padlipsky, Rob Shirey, Miles Smid, and Steve Wilbur.

The authors' participation in IAB Privacy/Security Task Force activities (for the case of John
Linn, during prior employment at BBN Communications Corporation) has been supported
by the Defense Advanced Research Projects Agency through tasking under Contract No.
F29601-87-C-0086, Network-Oriented Systems. The views and conclusions contained in this
paper are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U. S. Government.

References
CCITT, Recommendation X.400, "Message Handling: System and Service Overview".

CCITT, Recommendation X.402, "Message Handling Systems: Overall Architecture".

CCITT, Recommendation X.411, "Mes,.age Handllincg Systerms: Message T-ansfer oyste-:
Abstract Service Definition and Procedures".

CCITT, Recommendation X.500, "The Directory - Overview of Concepts, Models, and Ser-
vices".

CCITT, Recommendation X.509, "The Directory - Authentication Framework".

Crocker, D. H., Network Working Group Request for Comments (RFC) 822, August 13, 1982,
"Standard for the Format of ARPA Internet Text Messages".

Postel, J., Network Working C ip Request for Comments (RFC) 821, August 1982, "Simple
Mail Transfer Protocol".

Glossary
CA: Certification Authority

DARPA: Defense Advanced Research Projects Agency

DEK: Data Encrypting Key

IAB: Internet Activities Board (of DAPF''

IK: Interchange Key

MHS: Message Handling System

MIC: Message Integrity Check

MTA: Message Transfer Agent

MUTS. Message Transfer System

228

O/R: Originator/Recipient

ON: Organizational Notary

RFC: Request for Comments

RSA: Rivest, Shamir, Adleman (public-key encryption algorithm)

RSADSI: RSA Data Security, Incorporated

SMTP: Simple Mail Transfer Protocol

UA: User Agent

229

KEY MANAGEMENT AND ACCESS CONTROL FOR AN ELECTRONIC MAIL SYSTEM

Martha Branstad
W. Curtis Barker
Pamela Cochrane
David Balenson

Trusted Information Systems, Inc.
Glenwood, MD 21738

1.0 Introduction

Traditional end-to-end encryption systems are implemented in independent hardware components accessed
at or below the interface between the network and transport functions of the host computer. This approach
assures a relatively inviolate domain for high integrity cryptography. However, placement of cryptographic
services below the transport layer constrains the ability to provide user-to-user cryptogiaphic protection
needed to support a secure electronic mal! ryvm. A secure ecctric -- !ail system wit encryption. beow
the transport layer requires substantial modificaticn to existing networks protocols and the inclusion of large
amounts of ftequently changed user information in outboard cryptographic modules but still retains a critical
dependency upon the host system software to establish user identity and the security level of mail messages.
A reasonable alternative for secure electronic mail is to place encryption at a higher level in the hoqt
system. This placement implies software control of cryptographic functions. In such a system the
recognition that cryptography is required for protection of a message, the isolation of header from message
text, and the correspondence of user with key identifier are. all performed by the system software. Systems
with cryptographic control software demand the assurance and support of trusted system technology, as well
as that of cryptographic technology, making them classic examples of Information Security (INFOSEC)
products.

Trusted Information Systems, Inc. (TIS), under Defense Advanced Research Projects Agency (DARPA)
funding is investigating means for providing Infonnation Security to the Internet. User-to-user protection
of electronic mail and transport layer protection are being studied. The research is integrating techniques
for protection of sensitive information within a computer with those for information in transit between
computers, attempting to meet both communications security and trusted systems objectives. An initial
proof-of-concept prototype, the Embedded Network Security (ENS) system, is being developed in which
cryptogiaphy and key management are embedded in the software of a trusted system, TMach [1]. The ENS
system provides confidentiality, message integrity, ard source au;hentication services in conjunction with
electronic mail and transport services. This paper examines key management and access control services
associated with the ENS Trusted Mail (TMail) system, indicating how both encryption and trusted system
functionality provide protection. The interaction between trusted system protection mechanisms and those
supplied by cryptographic techniques is highlighted, illustrating how INFOSEC products make strong
demands on both disciplines.

230

References

[I] Barker. W. C., et al., "Embedding Cryptography into a Trusted Mach System," Proceedings of the
Fourth Aerospace Computer Security Conference, December 1988.

[2] Nelson, R., "SDNS Services and Architecture," Proceedings of the 10th National Computer Security
Conference, September 1987.

[3) Linn, J., Request for Comnljt.s (RFC) 1040, Privacy Enhancement for Internet Electronic Mail:
Parl I: Message Encipherment and Authentication Procedures, January 1988.

[51 American National Standard Data Encryption Algorithm, ANSI X3.92-1981, American National
Standards Institute, Approved 30 December 1980.

[6] Branstad, M., et al., "Trusted Mach Design Issues," Proceedings of the Third Aerospace Computer
Security Conference, December 1987.

[7] Branstad, M., et al., "Access Mediation in a Message Passing Kernel, Proceedings of the 1989
IEEE Symposium on Security and Privacy. May 1989.

[81 Rashid. R., "Threads of a New System," Unix Review, Vol.4, No. 8, August 1986.

[9] Federal Information Processing Standard Publication 113, Computer Data Authentication, May
1985.

[10] Department of Defense, Trusted Computer System Evaluation Criteria, DoD 5200.28-STD, December
1985.

[11] DoD Computer Security Center, Computer Security Requirements -- Guidance for Applying the
Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments,
CSC-STD-003-85, June 1985.

231

June 30, 1989

A TOKEN BASED ACCESS CONTROL SYSTEM FOR COMPUTER NETWORKS

II
Miles Smid, James Dray, and Robert B.J. Warnar

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

U.S. Government Contribution. Not Subject to Copyright.
Supported by the Defense Advanced Research Projects Agency under
order 6373.

232

ABSTRACT

This paper describes a Token Based Access Control System (TBACS)
developed by the Security Technology Group of the National
Institute of Standards and Technology (NIST). TBACS replaces
traditional password based access control systems which have
often failed to prevent logins by unauthorized parties. A user's
access to network computers and resources is mediated by a smart
token implementing a transparent cryptographic three-way
handshake with the target computer. The token's onboard
processor and memory are exploited to provide sophisticated
security mechanisms in a portable device. In addition to access
control, the TBACS token may be used for random number
generation, cryptographic key generation, data encryption, data
authentication, and secure data storage.

233

I. INTRODUCTION

A computer is a valuable resource which should be protected. The
information within the computer should be protected from
unauthorized disclosure and modification, and the computing power
should be limited to authorized users. The recent rash of
computer viruses and the previous successes of hackers in gaining
access to computer systems indicates that many computers are not
properly protected. Inadequate protective measures are not
justified by the statement that the computers contained only
unclassified data. The failure to control access to a computer's
resources (whether classified or not) has serious consequences.

Most computer systems attempt to protect their resources by
authenticating the identity of each user attempting to login.
once the user's identity is established, the system then
controls the access of the user to resources based upon some
predetermined access control policy.

Unfortunately, as we progressed from localized stand-alone
systems to distributed processing systems on large networks, it
became easier to subvert the traditional protective mechanisms.
At one time, access to a computer's resources could be controlled
by limiting the access to the room where the computer was
physically located. Today computers are networked so that remote
users may take advanLdge of distributed resources without having
to be physically co-located. We now rely on password systems
which are not up to the task of protecting computer resources.
In theory, there are three types of information for
authenticating the identity of computer users [1,23:

1. Something the user KNOWS (such as a password)

2. Something the user POSSESSES (such as a token), and

3. Some PHYSICAL CHARACTERISTIC of the user (such as
fingerprints or ither biim-ie-ric data).

In practice, most computer systems use only the first type of
information (e.g. passwords) to authenticate user identities.
Password systems predominate because they are inexpensive and
they appear, upon first examination, to be easy to use. Password
systems do not provide the highest level of security. If
properly implemented, password systems can provide effective
security [3]. However, these systems are seldom properly
implemented. Time and time again we hear about cases where a
user selected a trivial password, the user wrote down or shared a
password, the operating system debuggers left well known
passwords in the system, or the passwords were transmitted over
an unprotected channel in the clear.

Th owneiLrs and users of most computer systens have not been
willing to suffer the expense and the effort associated with

234

token and biometric based authentication systems. A major
exception to this rule has been the retail banking community.
Most users of Automatic Teller Machines are accustomed to the
fact that in order to obtain their money, they must produce a
bankcard as well as a password known as a Personnel
Identification Number (PIN). These systems have had some
security problems but it is generally acknowledged that they are
superior to password-only applications. If all computer systems
required tokens for access, most hackers would be prevented from
entering systems to which they were not authorized.

The cost of electronic technology has decreased substantially
over the last ten years making biometric based authentication
much more feasible. Biometric systems are now being considered
for limited high security applications. Although, biometric
systems still have a significant cost, they may some day become
the standard in authentication systems.

Password systems alone are not as easy to use, in a secure
manner, as some previously thought.

1. If passwords are randomly generated, they are written
down. If passwords are generated by humans, they can
oftni be guessed.

2. If a user needs a different password for each computer to
which access is permitted, then the user becomes
frustrated dnd writes the passwords down.

3. If the communications link between the user terminal and
the host computer is unprotected, then a line tapper can
determine the password and later login as the user.

This paper describes a Token Based Access Control System (TBACS)
which is being developed by the National Institute Of Standards
and Technology (NIST). The first version of TBACS will use a
single user password and a smart token containing cryptography to
reduce or eliminate several of the drawbacks associated with
password systems. Later versions may employ biometrics for
increased security as that technology becomes more cost
effective.

235

II. DESIGN REQUIREMENTS

TBACS was designed by NIST to satisfy the following requirements:

1. TBACS shall be easy to use. A TBACS user only needs to
remember one password for all computer systems to which
the user has access. The TBACS user authenticates to the
token via the password, but does not have to type any
challenges or responses. The token authenticates the
user to dll computers (the user workstation and remote
hosts).

2. TBACS shall implement the mechanisms for cryptographic
authentication as well as cryptographic key storage on
the token itself. 'The closer the security to the user
te- eE-Her. Once inserted, keys will not leave the
token.

3. TBACS shall be consistent with existing government and
American National Standards Institute (ANSI) standards.
The token implements the Data Encryption Standard (DES)
cryptographic algoritho specified in Federal Information
Processing Standard (FIPS) 46 [4], and could also be used
to authenticate computer data and messages as specified
in FIPS 113 [5], ANSI X.9 [6], and ANSI X9.19 [7j. TBACS
is consistent with Draft American National Standard for
Financial Institution Sign-On Authentication for
Wholesale Financial Systems (ANSI X9.26) [8].

4. TBACS tokens shall have the capability to store
additional information such as sensitivity labels and
other access control information.

5. TBACS shall be capable of serving multiple security
needs. Although TBACS token is primarily designed for
user authentication, it can also be used for random
number generation, cryptographic key generation, low
speed encryption, low speed Message Authentication Code
calculation, and secure data storage. Future versions of
TBACS could function with biometric authentication
devices.

NIST decided that the best way to ensure that all its
requirements were met was to specify the exact command set that
the token would implement. In addition to implementing the
desired capabilities, security could be improved because only a
limited well defined command set was allowed.

236

III. SYSTEM DESCRIPTION

The NIST secure computer network research model consists of a Sun
workstation connected to an Ethernet with one or more hosts
(Figure 1). Each computer on the net is interfaced to a token
reader/writer system. Access to the net is granted after a
predefined sequence of authentications have been completed
between the user, the token, tke workstation, and any selected
computers on the network.

When the token is inserted into the reader/writer, a C-language
program in the workstation starts the login sequence by making
calls to commands implemented in the token. The user is prompted
for the user identifier (ID) and a Personal Identification Number
(PIN) which, if correct, authenticates the user to the token.
From this point on, the token acts for the user to perform a
mutual DES based cryptographic authentication with the
workstation and any other hosts to which the user is permitted
access (Figure 2).

A. Hardware

The smart token consists of a plastic carrier containing a
microprocessor and nonvolatile memory. The carrier has the same
major dimensions as a standard credit card, with six recessed
Mik et11s iCcontacts aln orn Thedge.wierpovds
following electrical connections to the token via the six
contacts: power, ground, hardware reset, clock, serial data in,
and serial data out. The reader/writer connects to the
workstation through a standard asynchronous serial communications
port, eliminating the need for a custom communications interface.

TBACS is designed to operate with workstations operating under
UNIX (TM), which implement the DES in hardware using a
crytographic chip set. The use of personal computers (PCs) as
workstations will also be supported.

B. Software

NIST designed a set of sixteen individual token commands.
Several of these commands must be executed in a predefined
sequence. The sequence is controlled by a set of flags which are
checked each time a command is performed. If '.he flags are not
in the expected state, the system will return an error and the
current command will not be executed.

The commands are grouped into three classes: the Security Officer
(SO) commands, the user to workstation commands, and the user to
host commands. The SO commands provide for the initialization of
tokens including the loading of cryptographic keys, host IDs, and
PINs. The token is ready to be issu..d to the user after the SO
has completed the loading process".

The token key table contains the host IDs and the

237

Figure 1.
N1$" Secure Computer Network Model

NIST SECURE COMPUTER NETWORK RESEARCH

1-TBA•-S HOST ._T __,,BAcS -
L I~~cOMPUTERSI -

ETHERNET

READER I WRITER

THE SECURE COMPUTER NETWORK USES:

1. SMART TOKEN AUTOMATIC SIGN-ON

T BACS -CONTROLLED 2. DES ENCRYPTION
WORKSTATION SMART

TOKEN 3. THREE-WAY HANDSHAKE AUTHENTICATION

A. USER (-) TOKEN

B. WORKSTATION H-1 TOKEN

C HOST H-) TOKEN

238

.000

040

if~

.0.

Lu 4A

L23

corresponding cryptographic keys. The design supports 100
cryptographic keys for 100 different hosts connected on the
Ethernet. The host IDs and keys are part of a set of the
parameters that must be entered by the SO during token
initialization. The token uses the keys in this table to perform
encryption and decryption processing during workstation and host
authentications.

A software simulation program has been written in C which
implements the operations of the token as defined by its command
set. The simulation forms the main part of the detailed system
specification and is used to specify the system. The simulation
consists of sixteen functions, one for each token command, plus a
small number of internal functions. The total simulation consists
of about 2500 lines of code.

The workstation software must interact with the user token
through the reader/writer. It must also act as an intermediary
in the authentications between the user and the token and between
the token and the workstation cryptographic module. If the user
wishes to login to a remote host, the workstation software must
implement the necessary communications protocols and prompt the
token to perform authentication functions as required. The
workstation will have security officer controlled software for

able to calculate keys for all valid workstation users.

The software of the network host computers must be able to
communicate with the user workstation. Like the workstation, it
must have security officer controlled software for enrolling new
users and maintaining keys.

IV. AUTHENTICATION PROCESSES

In order for a user to gain access to computing resources on a
network using TBACS, a series of authentications between the
smart token, the user, and various host computers must be
performed. TBACS selectively controls access to all computers on
the network, including the user's local workstation. By taking
advantage of the processing capabilities of the smart token, the
login process can proceed transparently to the user while
providing a high level of security. The DES algorithm, operating
firmware, and critical data are stored internally on the smart
token.

A. USER/TOKEN AUTHENTICATIONS

When a user begins the login process on a workstation, the user
should have some means of determining the identity of the token.
A program called the "login manager" is executed on the
workstation when the user initiates a login, and is responsible
for mediating the required series of authentications between the
user, the token, and the workstation. The first step performed

240

by the login manager is to request the token identification
number (TIN) from the token and display it on the user's screen
for visual verification. The user can choose to either continue
the login process or abor'.. If the user chooses to continue, the
user must prove his identity to the token. The login manager
prompts the user for the user PIN, which is then encrypted by the
workstation and transmitted to the token along with the user ID.
The token decrypts the user PIN and uses it as the key to encrypt
the user identity. The result is then compared to the value
stored on the token, and if these values match the token accepts
the identity of the user as authentic. From this point on, TBACS
uses the token to authenticate the user's identity to other
computers.

B. THREE-WAY HANDSHAKE

The three-way handshake is the authentication protocol used
between the token and the workstation and between the token and
the remote host(s). This protocol allows each party to prove
that it possesses the same cryptographic key as the other party
[93 (Figure 3). This protocol works as follows:

1. Party A generates a 64-bit random number and transmits it
to party B.

2. Party B encrypts the random number using its DES key,
generates a second random number, and transmits it to
party A.

3. Party A decrypts the first number and verifies the
result. Party A then encrypts the second random number
and transmits it to party B.

4. Party B decrypts and verifies the second random number.
At this point, each party is satisfied that the other
party possesses the DES key corresponding to the claimed
identityr. Therefore both parties are implicitly
authenticated.

C. USER/WORKSTATION AUTHENTICATIONS

After the user and token authenticate to each other, the token
must authenticate to the workstation. To perform the
authentications between the workstation and the token, the login
manager requests a random numiber from the token. The three-way
handshake then proceeds with the token acting as party A and the
workstation as party B. If this handshake is completed
successfully, the login manager terminates and the user is logc,ed
in to the system.

D. USER/REMOTE HOST AUTHENTICATIONS

At some point during a session, the user may decide to connect to

a remote host via the network. The user activates a remote login

241

manager, which requests a table of the allowed TBACS hosts for
this user from the token and displays this table in a menu
format. After the user selects the desired remote host from this
menu, the remote login manager connects to the remote login
server on the remote host. At this point, the local remote login
manager acts primarily as a transparent communications path
b, tween the token and the remote login server. The token is
p ovided with the host ID, which it uses to select the proper key
for subsequent cryptographic operations. The steps of the
three-way handshake are then performed between the token and the
remote login server on the remote host. Finally, the remote
login server terminates and the standard remote login process
connects the user to the remote host.

E. SEQUENCE CONTROL

In order for the steps which accomplish the authentications
required by TBACS to function, some mechanism for ensuring that
these steps are executed in the correct order must be provided.
This is a critical design consideration, since the overall
security of the system is dependent on this order. TBACS
controls the order in which the authentication steps are executed
through a set of "sequence flags" stored internally on the token.
These flags are individual bits in the token's memory, which are
set in sequence upon successful completion of each step. The
flags are checked at the beginning of the next step. Since the
flags and the mechanism for controlling them are internal to the
token and no external access is provided, it is difficult to
defeat the correct sequencing of steps.

F. TOKEN DEACTIVATION

In addition to sequence control, the TBACS token is capable of
deactivating itself when certain conditions are detected.
Deactivation is accomplished by deleting the internal token
identification number, after which none of the authentication
steps required for user login will execute. A token is
reactivated when a security officer installs a new token
identification number. All prior user data is retained when a
token is deactivated, avoiding the problem of rebuilding this
information when the token is reactivated. The conditions which
cause a token to deactivate itself are as follows:

1. Three failed loqin attempts. The token maintains a
failure log, which is incremented each time a login
fails.

2. Token expiration date is reached. The token contains an
expiration date, which is compared to the current date at
the beginning of each login session.

242

a.-N
<0. z

3: cc
(1')z cccc w

< z

z 0 z

4) < zL
a0cc

I z
w cc:rw z

243

V. KEY MANAGEMENT

In the TBACS system a user has a separate DES key for each
computer on which the user is permitted access. When a user
first wishes to enroll on a TBACS computer, the user must contact
the computer's security officer. The security officer
initializes a blank token by loading the security officer ID
encrypted using a security officer PIN, the token expiration
date, the user ID encrypted using an initial user PIN, and a
token identification number. After receiving the token from the
security officer, the token user may reset the PIN to a new value
by supplying the current PIN value.

The security officer initiates a process which generates a DES
key and stores the key on the token encrypted using the user's
PIN and indexed by computer's identification. The DES key is
also stored in the computer's key database indexed by the user's
identity. This key database replaces the password database
currently used on most computers.

The user may now enroll on another TBACS computer by contacting
the appropriate computer security officer. As previously
described, the security officer initiates a process which
generates a DES key and stores the key in the token and in the
computer's key database. The TBACS token is designed so that
only the security officer who first initialized the token can
delete token keys. Other security officers can only append keys
to the token key table.

In some situations it may be desirable to eliminate the key
database stored in the computer. One possible method for
accomplishing this task is to assign a single master key to the
computer. This master key can be easily stored in the host
computer's encryption module for extra security. DES keys for
user tokens are generated from the master key by encrypting the
user ID using the master key. Whenever the user attempts to
login the user DES key is regenerated by again encrypting the
user ID using the master key. Thus, only a single secret master
key needs to be maintained by the computer or its encryption
module.

244

VI. OTHER CAPABILITIES

A. Random Key Generation

The primary purpose of the token is to generate random challenges
and to perform the encryption of challenges as part of the
three-way handshake used in the authentication process. However,
the token can be used as a portable key generator. The token
can be commanded to generate a 64-bit random number which may be
used to derive a DES key by the workstation or host cryptographic
module.

B. Encryption

The token can also be used for data encryption. Both the
Electronic Codebook and the Cipher Block Chaining modes are
supported [10]. The communications overhead required to pass the
data between the reader/writer and the token along with the
overhead of the algorithm may make encryption of large amounts of
data impractical. Nevertheless, it may be feasible to encrypt
human interactive terminal to host communications. The token can
also be used as part of an automated key distribution system to
decrypt new cryptographic keys sent from the host.

C. MAC Calculation

The token may be used to detect unauthorized modifications to
messages by calculating a Message Authentication Code (MAC) as
defined in ANSI X9.9 [6]. This algorithm is currently being used
to authenticate Electronic Funds Transfer (EFT) messages worth
trillions of dollars each day. The MAC computation is similar to
Cipher Block Chaining encryption except that the MAC is selected
from the last cipher block (Figure 4). The unencrypted data and
the MAC are transmitted to the receiver. The receiver performs
the MAC computation on the received message and compares the
computed MAC to the received MAC. If the two values are equal
then the message is accepted as unmodified. If the two values
are not equal an unauthorized modification is assumed. As with
data encryption, MAC computations on large messages may prove
time consuming using the token. However, a message digest
algorithm may be used to reduce a large message to a few 64-bit
blocks which are then MACed by the token.

D. User Authorization Code Storage

The TBACS token can store user authorization codes which may
control user access to information in the workstation or host
computers. These codes can be passwords or read/write
permissions for specific files or categories of files. A code
may also indicate the security level of the user to help enforce
mandatory access controls. The possible benefits of storing
access control information in a token rather than in the target
computer is a topic for future study.

245

Figure 4.

ANSI X9.9 DES Based MAC Calculation

12 In-i In

I DES F 40) EES SlDES.

On-I O

MAC
+ ~ +

D2 LDn

11 - 64-bit DES Inpiut Block
01 - 64-bit DES Output Block
D1 - 64-bit Message Block

6 ES - Data Encryption Standard Algorithm

S- Cryptographic Key

- Bltwise Exclusive-OR Ooeration

246

VII. CONCLUSION

Smart tokens can play a major role in solving access control and
other security problems. The computational capability of smart
tokens can be used to perform cryptographic functions to
authenticate users and protect data from disclosure and
modification. Smart tokens permit cryptographic security
mechanisms to be moved closer to the user where they may be
protected by the user. Smart tokens can also provide
conveniennes for the user which make improved security
requirements acceptable.

247

REFERENCES

1. Beardsley, Charles W., Is Your Computer Insecure? IEEE
Spectrum, IEEE, Inc., New York, NY, January 19"72, pp. 67-68.

2. Walkcr, Burce J., and Ian F. Blake, Computer Security
Protection Structures, Dowden, Hutchinson and Ross, Inc.,Sil;77.

3. Password Usage, National Institute of Standards and
Technoloqy (U.S.), Federal Information Processing Standards
Publication 112, National Technical Information Service,
Springfield, VA, May 1905.

4. Data Encryption Standard (DES), National Bureau of Standards
(U.S.), Federal information Processing Standards Publication
46, National Technical Information Service, Springfield, VA,
April 1977.

5. Computer Data Authentication, National Institute of Standards
and Technology (U.S.), Federal Information Processing
Standards Publication 113, National Technical Information
Service, Springfield, VA, May 1985.

. �Awercan Natioal Standard for Financial institution Message

Authentication (Wholesale), ANSI X9.9-1986, American Bankers
Association, Washington, DC.

7. American National Standard for Financial Institution Message
Authentication (Retail), ANSI X9.19-1585, American Bankers
Association, Washington, DC.

8. Draft American National Standard for Financial Institution
Sign-On Authentication for Wholesale Financial Systems, ANSI
X9.26-198x, Draft 6.1, American Bankers Associati•on,
Washington, DC.

9. Smart Card Technology: New Methods for Computer Access
Contril, National Institute of Standards and Technology,
Special Publication 500-157, National Technical Information
Service, Springfield, VA, September 1988.

2.0. DES Modes of Operation, National Bureau of Standards
(U.S.), Federal Information Processing Standards Publication
31,. National Technical Information Service, Springfield, VA,
December 1980.

248

APPENDIX A: TOKEN COMMAND SET

1) COMMAND: 00- RESET

INPUTS: NONE

PURPOSE: To allow for recovery from a critical error by
resetting the token's temporary global variables
to their initial state at power-on. The values
stored in non-volatile memory are not affected.

2) COMMAND: 03- Enter SO PIN

INPUTS: SO PIN, SO ID, Token expiration date

PURPOSE: This command allows an SO to initialize a blank
token by entering the required input parameters.
After this command has been executi I, only this
SO will be able to enter the user PIN, null a
value in tie key table, or reactivate a token.

3) COMMAND: 04- Authenticate SO

INPUTS: SO PIN, SO ID

PURPOSE: To authenticate the SO by matching the input
parameters against those stored on the token.
Flag F2 is set upon successful completion.

4) COMMAND: 05- Enter User PIN

INPUTS: Old User PIN, New User PIN, User ID

PURPOSE: Allows SO to enter User PIN onto the token. The
ID is encrypted under the PIN and then stored.
This command can also be executed by the user in
order to change the value previously stored on
the token.

5) COMMAND: 06- Load Key

INPUTS: Host ID, Key; User PIN

PURPOSE: Allows an SO to load a host ID and corresponding
key onto the token, granting the user access to
that host. The token encrypts the key under the
user PIN and stores the resulting value.

249

6) COMMAND: 07- Authenticate Token

INPUTS: Workstation ID, Random Number (RNl), date
(YYYYMMDD)

OUTPUTS: Token PIN

PURPOSE: To verify the authenticity of the token to the
user. The workstation displays the TIN to the
user for verification.

7) COMMAND: 08- Generate Challenge

INPUTS: Workstation ID

OUTPUTS: Random Number (RNI)

PURPOSE: This command is the first step of the three-way
handshake authentication. The workstation ID is
stored for later use in key selection, and a
random number is generated, stored and
transmitted back to the workstation.

8) COMMAND: 09- Authenticate User

INPUTS: eK(user PIN XOR RNl), user ID

PURPOSE: Verifies the authenticity of the user based on
the user PIN and ID. The user PIN is
decrypted, extracted from RNI, and then used as
the key to encrypt the user ID. The resulting
value is then compared to the value stored on the
token.

9) COMMAND: 10- Change Token PIN

INPUTS: (old token PIN), (new token PIN), workstation
ID

PURPOSE: Allows the user or SO to rhange the current
token PIN. If the old tokcn PIN matches the
value stored on the token, the new PIN is stored.

10) COMMAND: 11- Workstation Verify and Respond

INPUTS: eK(RNl), RN2

OUTPUTS: eK(RN2)

250

PURPOSE: To complete the final steps of the
three-way handshake between the token and the
workstation. The workstation encrypts the random
number (RN1) received from the previous generate
challenge command and generates a second random
number (RN2). These values are sent to the token
as input parameters for this command, which
decrypts and verifies RN1. RN2 is encrypted and
sent back to the workstation, which then decrypts
and verifies it. This completes the three-way
handshake.

11) COMMAND: 12- Output TD Table

INPUTS: none

OUTPUTS: Data block containing host IDs from key table

PURPOSE: Transfers the token's table of host IDs to
the workstation, which uses this information to
display a menu of available hosts to the
user. Since the ID table may be larger than the
capacity of the buffer, this command returns a
NACK each time it is executed until the entire ID
taible h 1 b-en transferred, a- whirh time an ACK
is returned. The workstation software checks this
return value and repeatedly executes this command
until an ACK is transmitted.

12) COMMAND: 13- Host Verify and Respond

INPUTS: eK(RNI), RN2

OUTPUTS: eK(RN2)

PURPOSE: Completes the three-way handshake process
between the token and a remote host. This command
is analogous to the workstation verify and
respond.

13) COMMAND: 14- Read Zone

INPUTS: zone name

OUTPUTS: Contents of the specified zone

PURPOSE: To access the contents of a memory zone.

TABLE OF PERMISSIONS FOR ZONE COMMANDS

ACCESS TYPe:

251

ZONE READ WRITE APPEND

0 all user user
1 user none SO

14) COMMAND: 15- Write Zone

INPUTS: zone name, data block

PURPOSE: To transfer data to a given memory zone on the
token.

15) COMMAND: 16- Append Zone

INPUTS: zone name, data block

PURPOSE: To append data to a given memory zone on the
token.

16) COMMAND: 17- CALLDES

INPUTS: 2-byte mode selector:

Bit 0 - set new key
Bit 1 - encrypt/decrypt
Bit 2 - load B from input buffer
Bit 3 - xor two input values (A A B)
Bit 4 - produce output

16-byte key or padding(required)
16-.byte ASCII hex data string A
16-byte ASCII hex data string B (optional)

OUTPUTS: NACK or ACK and 16-byte result, unless output is
suppressed (bit 4 of mode byte is 0).

17) COMMAND: 19- TEST

NOTE: The inputs consist of a 1-byte mode selector and
additional parameters which are depe•,dent on the
mode selected, as follows:

MODE:
0 1

INPUTS: data none

OUTPUTS: data f-log)
"NULL"

252

PURPOSE: This command provides the following test modes:

0- Echo data
1- Current token status

253

THE BOEING MLS LAN:

HEADED TOWARDS AN INFOSEC SECURITY SOLUTION

Gary R. Stoneburner and Dean A. Snow

Boeing Aerospace and Electronics
P.O. Box 3999, MS 87-06
Seattle, WA 98124-2499

Introduction

This paper describes how and why the Boeing Multilevel Secure Local Area
Network (MLS LAN) is migrating towards an Information Security (INFOSEC) solution
for providing protection against many of the security threats facing Local Area
Networks (LANs) today. INFOSEC is a combination of Computer Security
(COMPUSEC) and Communications Security (COMSEC). We are investigating the
addition of an encryption capability in to MLS LAN. This will complement an already
existing set ot security mechanisms which have been designed and built to satisfy the
class Al set cf requirements for COMPUSEC as specified by the Trusted Network
Interpretation (TNI) of the DOD Trusted Computer System Evaluation Criteria (TCSEC)
[1]. This paper includes a description of the MLS LAN history and why the addition of
,nv,,,yi on. is,., , a , esIrc1I - , u pfir foi many appiications. it wiii present the significant
design issues and give a preliminary overview of how encryption might be embedded
into the MLS LAN.

Backaround and Over.vew of MLS LANj

In 1983, an internal research and development group within Boeing Aerospace
and Electronics, a division of the Boeing Company, began developing the high
performance, fiber optic based MLS LAN. The purpose of the Boeing MLS LAN is to
allow users at different security levels to simultaneously process multiple levels of data
on the network. Both single-level and multilevel subscriber devices operating at
different security levels can be attached to the network. The MLS LAN guarantees the
separation of user data at different security levels and provides access controls
regulating the access of the users to the network devices and data. The MLS LAN is
targeted for advanced C31 applications supporting airborne, mobile ground, and fixed
ground sites. For an example of how the MLS LAN would fit into a very large campus
installation, such as an Army base, refer to [2].

Figure 1 shows the MLS LAN system and illustrates the extensive services it
provides for it3; users. These services include -

Network terminal access,
Terminalto-terminal communications,

Terminal-to-host communications,

Host-to-host communications,

Video circuit switching control, and

High-speed digital stream circuit switching control.

254

*0 >0

%X 0

0 Fa-

00

CcI

0> a4) U W

aE L

EE
E E

CD CL

E -- E

0

255

Major Components of MLS LAN

As shown in Figure 1 above, the MLS LAN is composed of three major
components, the Secure Network Servers (SNS), the fiber optic (or coaxial)
transmission medium, and the Network Management (NM) workstation. These
components are described below.

Secure Network Servers (SNS}

The MLS LAN SNSs contain interfaces to user devices and an interface to the
transmission medium. Depending on the configuration chosen, the SNSs provide an
interface to a fiber optic or a coaxial transmission medium. User device interfaces
(hardware and software) developed thus far include support for both single-level and
multilevel user terminals, workstations, host computers, video devices, and digital
stream devices (e.g., optical disks). The modular design of the SNSs allows for easy
development and addition of new user interfaces.

The DOD protocol suite is implemented within each SNS to route the data across
the network. Protocol support is included for TELNET, Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and Internet Protocol (IP). Future MLS LAN
plans include support for the ISO/OSI protocol suite.

MLS LAN is a broadcast network. When an SNS transmits a packet of data it is
broadcast to all SNSis on the network. Each SNS checks every packet for :ts own
address. If an SNS recognizes the address as its own, the packet is routed to the
appropriate attached subscriber device.

Most of the network multilevel security mechanisms are built into the hardware and
software resident within each SNS. The totality of the network security mechanisms
(including that portion which is implemented in the network management workstation)
is referred to as the network trusted computing base (NTCB).

Transmission Medipu_,_n

The second major component of the MLS LAN is the transmission medium. MLS
LAN can be configured with either a fiber optic trunk or an Ethernet coaxial trunk. The
fiber optic trunk consists of the fiber optic cables. and passive star couplers used to
connect the SNSs. Wavelength division multiplexilig is used to simultaneously
support the transmission of digital (100 Mbps), analog video, ard high-speed digital
stream (_175 Mbps) data across the fiber optic trunk. The iE.EFE 802.4 token bus
protocol is used to gain access to and route digital multiplexed data across the fiber
optic trunk. The MLS LAN system architecture is based on a iragmentod star topology.
Multiple SNSs are connected to star couplers by the fiber optic cables. Fragmented
stars are formed by interconnecting the star couplers. The MLS LAN bus topology
requires that every star coupler be connected to every other star coupler within the
network. When an SNS Or' C1Uster of SNSs connected to the same star coupler fails,
the remaining SNSs are able to continue communicating.

As an option to its fiber oplic configuration, MLS LAN offers an Ethernet
communication!,s twunk. The Ethernet option uses the IEEE 802.3 protocol, and coaxia!
cables to route Vne data across the communications trunk. The video cad digitai
stream setvices are nit available with the Ethernet option.

256

Network Management (NM) Workstatlion

The third major component of the MLS LAN is the NM workstation. The NM
workstation is connected to a single SNS via a special NM interface which is a
standard feature of all SNSs. [he NM workstation contains the network and security
administrator interfaces to the network. The network administrator is responsible for
n,3twork configuration and performance monitoring. The security administrator is
r•sponsible for setting the security parameters for the network users and devices, and
for monitoring the network audit events and a!arms collected and stored at the NM
workstation. The NM workstation is a part of the NTCB.

MLS LAN COPUSEC Evaluation

The MLS LAN has been developed and designed to satisfy the Al requirements of
the National Computer Security Center's (NCSC) TCSEC. In July of 1987, the NCSC
released a new set of requirements and criteria tailored towards trusted computer and
communications network systems. This document is known as the Trusted Network
Interpretations (TNI) of the TCSEC [1].

MLS LAN has been in the NCSC COMPUSEC evaluation program since 1985.
MLS LAN (less the NM workstation) has now entered formal evaluation with the
NCSC. The NM Workstation is in developmental evaluation and will enter formal
evaiuation as part of tile MVIL LAIN' at al ,-ter date.

Encryption vs. Physical Protection Requirements

Although the MLS LAN has been designed to satisfy the requirements and meet
the criteria of the TCSEC, without a data confidentiality service its transmission media
and SNSs and NM must be physically protected to system high to protect against
passive and active wiretapping attacks from both external and internal threats.

The MLS LAN Trusted Facility Manual (TFM) outlines the security design concept
and defines the guidelines for trusted facility management for the MLS LAN. It assigns
to the network and security administrators the responsibility for physically securing the
MLS LAN. The TFM requires that the MLS LAN transmission media, star couplers,
SNSs and network management workstation be protected by measures
commensurate with the highest level of data processed by the network. It also
requires that the subscriber devices and their device interfaces be protected to the
maximum level of data processed by or stored in the device.

For many applications, the physicai protection of the network equipment is an easy
requirement to meet. However, for other applications, the cost or feasibility of
providing secure facilities to house the SNSs and providing protected wire-line
distribution systems to house and protect the network transmission media preclude
this solution and an alternative method for protecting the network data is required.
Properly applied encryption techniques negate the physical protection requirements
for the transmission media and also reduce the physical protection requirements for
the SNSs from system high protection to measures appropriate for the highest level of
plain text data or cryptovariable processed by the SNS.

257

Encryption and the TNI Part II Security Services

The TNI "provides interpretations of the Department of Defense (DOD) TCSEC for
trusted computer/communnications network systems" [1] and is divided into two parts:

Part I of the TNI interprets the TCSEC requirements for networks, including LANs
such as the Boeing MLS LAN.

Part II of the TNI describes additional security services for network applications
and describes qualitative ratings to be assigned to netwcrks. The additional security
services described in part II are divided into three major categories; and each of these
major categories are further broken down into three subcategories for a total of nine
subcategories. High ratings are anticipated for each of the security services MLS LAN
provides, as long as the SNSs, NM workstation, and transmission medium are
physically protected. The addition of an encryption capability will allow MLS LAN to
retain its security service ratings without the caveat of physical protection. For a
detailed description of how MLS LAN currently provides for these nine security
services see [3].

The three major categories of additional security services described in part II are
communications integrity, denial of service, and compromise protection.

Comnmunications Integrity

Communications integrity is divided into the security services of authentication,
communications field integrity, and non-repudiation. The application to MLS LAN is
described below.

Authentication: Authentication provides an assurance as to the identity of a
communications entity. It provides protection against a subversive entity
masquerading as a legitimate network entity and against the replay of previous
network traffic. Currently MLS LAN does not provide any means to directly
authenticate its communicating entities. MLS LAN relies on the physical security of its
network components, and detects and reports the disconnection of network
components to provide a reasonable assurance as to their identity.

Q.ommnunications field intearit•: Communications field integrity provides protection
against the unauthorized modification of network traffic. This service protects against
Message Stream Modification caused by active wiretapping. Currently MLS LAN
relies on NTCB integrity mechanisms such as Cyclic Redundancy Codes, checksums,
error-detecting memory, and non-NTCB TCP integrity mechanisms such as
checksums, and packet sequencing to provide for communications field integrity.
Current communications field integrity mechanisms rely on the physical protection of
the MLS LAN components to protect against active wiretapping.

Non-repudiation services: Non-repudiation services protect against after-the-fact
denial of message transmission or receipt. The MLS LAN does not presently provide
non-repudiation services.

The addition of encryption into ML.S LAN could strengthen its communications
integrity services. Encryption services provide for peer entity authentication, and
provide cryptologic checksums and data protection mechanisms to detect MSM.

258

DDenial Of Service (DOS) 9

DOS security services provide protection against the unauthorized or inadvertent
denial of netwo,'k access and resources to human users and subscriber devices and
detect or prevent conditions that cause a reduction in network throughput below an
established minimum value. MLS LAN uses traditional methods to address DOS;
including control of resource utilization, detection of network component failures, and
the collection of performance data to detect reduced throughput. The strength of MLS
LAN's resistance to DOS is dependent upon the physical protection of the network
components. Encryption can play a role in DOS by protecting the mechanisms used to
address DOS against active wiretapping (unauthorized modification) when physical
protection is not provided. This includes protecting against and detecting the replay of
a previous communications session which could block network access and consume
network resources.

Qompromise Protectign

The TNI subdivides compromise protection into the services of data confidentiality,
traffic flow confidentiality, and selective routing. Data confidentiality is the protection of
network traffic from unauthorized disclosure via passive wiretapping. Traffic flow
confidentiality protects against traffic analysis, which is gleaning information from
network traffic other than data, such as message length, frequency, timing, and
addresses. Selective routing is the capability to route traffic through a more desirableu ,,•ilulicatlons,,,nk-, avoiding Speci,^fic" ..links . ihirh ,n y have been subverted or

through which certain information is restricted. Each of these items is discussed below
in the context of the MLS LAN.

Data confidentiality: Currently MLS LAN requires the physical protection of its
network components (SNSs, f~bar optic trunk and NM workstation) to protect the
network traffic from unauthorized disclosure, assuming no data confidentiality service.
Adding encryption to MLS LAN will provide a strong data confidentiality service and a
limited traffic flow confidentiality service. The strength ot the data confidentiality
service dependents on the strength of the encrption algorithm used, the granularity of
the encryption keys, and the method of embedding the encryption devices into the
network.

"Traffic flow confidentiality:_'he strength of the traffic flow confidentiality service
depends on the layer in which the encryption service is provided (the lower the layer
the stronger the service will be) and on use of additionai traffic padding services.

Selective routing .ervice: Since MLS LAN is a broadcast network, it does not
provide selective routing; however, a future MLS LAN gateway node will support this
service.

The NSA Commercial CQMSEC Endorsement Program

It was for the above reasons that the Boeing MLS tLAN applied for admittance into
NSA's Commercial COMSEC Endorsement Program (CCEP). A Memorandum Of
Understanding (MUUJ) was signed by NSA and Boeing Aerospace and Electronics in
August, 1988.

259

NSA, through the CCEP, provides industry with COMSEC technical expertise and
defines scourity requirements for proposed telecommunications systems. Industry
then develops the new secure communications systems using NSA-proprietary,
classified cryptography. Once the new system has been certified as meeting the
security requirements, NSA places the system on the Endorsed Cryptographic
Products List. Industry is then free to manufacture and market the endorsed system for
use in securing government information.

Goal of MLS LAN Participation In CCEP

The goal of MLS LAN participation in the CCEP is to embed the COMSEC
modules into the SNSs to -

Provide an encryption capability transparent to network users and attached
subscriber devices;

Receive an endorsement from NSA to secure the full range of classified
information (Type 1);

Negate the physical protection requirement for the transmission medium and
reduce the physical protection requirement for the SNSs;

Maintain, in more hostile environments, the ratings assigned to MLS LAN for the
security services it provides, as specified in Part II of the TN!;

Minimize the changes required to the current SNS architecture;

Be compatible with the proposed ISO security architecture;

Be compatible with Secure Data Network System (SDNS) protocol; and

Maintain the high data rate of the fiber optic trunk.

Encryption Design Issues

There are a number of issues to be considered and design decisions to be made
prior to adding an encryption capability into an existing system. Major issues include
the type of encryption to be used in the system; the key management techniques
providing the accounting, distribution and control of the encryption keys; and the
location where the cryptographic module will be embedded within the system.

Network Encryption Modes

The two most common modes of encryption are link level and end-to-end. Each
has its own distinct advantages and disadvantages which are briefly described below.
End-to-end encryption appears best suited to the encryption goals of MLS LAN.

260

Link Level Encrvption (LLE): The purpose of link level encrypticn (LLE) is to
protect data as it traverses the most vulnerable part of a communications network, the
transmission media. LL.E is characterized by the encryption taking place, according to
the ISO reference model, at the link layer or below so that everything above the link
layer is encrypted.

LLE is normally accomplished by attaching encryption devices to opposite ends of
a communications line and external to the network nodes. However, in some cases
the LLE devices are embedded within the communication equipment (or network
nodes). In this case, the encryption can take place at either the bottom or top of the
link layer.

Encryption taking place at the bottom of the link layer encrypts the entire message
and maintains the strong traffic flow security described above. A major drawback to
encryption taking place at the bottom of the link layer is that messages are encrypied
as they exit, and decrypted as they enter network nodes. This means that messages
not intended for a network node are vulnerable to attack while within that node. This is
contrary to the MLS LAN goal of reducing the physical protection requirement of the
SNSs.

Placing the encryption at the top of the link layer solves this problem, as it allows
the node to recognize its own unencrypted network address and only decrypt the data
portion of messages intended for it. Thus, data not intended for a specfic node (or
SNS)- remains protected \eHcypted) w.hile. - i...n that node. However since the link
layer protocol information is not encrypted, traffic flow security is reduced and traffic
padding and masking techniques are required to protect against traffic analysis.

LLE provides strong traffic flow security as entire messages, including the headers
themselves, are encrypted. In addition, LLE key management techniques are
relatively simple. Normally, each unique communications link is protected by a
different key, minimizing the number of keys used in the network. A drawback to the
simplified key management is that fewer keys put the network at greater risk for
compromise.

End-to-End Encryption (E32 The primary goal of end-to-end encryption (E3) is to
protect the flow of data between two communicating entities (such as two network
processes) over their entire communications path.

E3 is characterized by an encryption scheme that encrypts all of the user data but
leaves a portion of the message header in the clear. Therefore, the data portion of
messages need not appear in clear text form except at the originating and destination
nodes; which is consistent with the MLS LAN goal of reducing the physical protection
requirement for the SNSs.

E3 can be based on communication sessions. In this case, a single session key is
negotiated between the two communicating devices, is used to encrypt the data for the
life of the session, and is destroyed once the session has been terminated. Session
keys provide excellent separation between users.

261

E3 usually takes place at either the top of the network layer or the bottom of the
transport layer. All protocol control inforn-mation in the layers below the point of
encryption remain in clear text. In this regaid, a deci~sion must be made as to where to
place the encryption.

By using the network nodes as the E3 end points, only the network hardware and
software itself must interface to the E3 security mechanisms. Also, encryption
transparency is provided to both the network users and attached subscriber devices.
This has the drawback that the communication lines between attached subscriber
devices and network nodes must be physically protected, but provides the advantage
of reducing the scope of the complex E3 interface. Where it is not practical to
physically prctect the communication lines between subscriber devices and network
nodes; exteroal, line-level encryption devices would provide the necessary protection.

The main disadvantage of E3 is that with more keys to handle, key managerrient is
more compiex. Also, if traffic flow security is required, then traffic masking arid padding
techniques mu sed because message headers are unencrypted.

Key Managemen IMszeq

Key Distribution: There are a number of conventional and emerging key
distribution technologies being evaluated for use within MLS LAN.

One conventional technique is manual key distribution, where keys are manually
downloaded into a cryptographic module through a key fili device. This melthod can
be time consuming and error prone. Another conventional method is a key distribution
center, where keys are centrally located and automatically distributed as needed.
Centralized key storage and distribution can lead to a single point of failure.

An emerging key management technique currently being promoted by the SDNS
initiative is a derivative of public key encryption [4]. This keying system is based on a
two step process. Initially, an external key management center issues startup keys.
Then, when two entities desire to communicate, they exchange keying information and
generate a unique pair-wise traffic key. This emerging technology is well-suited to
MLS LAN's session-oriented type of traffic.

Key Granularity: Cryptographic keys are used in varying granularity.

Network keys are a form of key where one key is used to encrypt and decrypt all
traffic on the entire network.

Node keys are a form of keying in which each network node has its own unique
key. With node keys, an entity desiring to communicate with another entity on a
different node must have access to the destination node's key and then use it to
encrypt the message.

Session keys are based on comnunications sessions. Session keys are used for
all or part of a single communications session and then destroyed.

262

Keys based on security labels are another common form of keying. This form of
keying uses a separate key for each security level or security range and can even be
used to provide separate keys for ;ndividual security compartments. Keys based on
sensitivity labels provide good separation between data of different sensitivities.

~y..Gra•r.i~yAelated to.MLS LAN Treffi_.iij T ypes: The different types of

network traffic on trt.e MLS LAN lend themselves to different types of keys. Traffic
relatinq to the management, maintenan'e, and security report;ng of the network is well
suited to a form of net key. This type of traffic, (including network startup and shutdown
messages, network address translation messages, user authentication requests ,,id
responses, and security auditing messages) always involves communications
between the NM SNS and one or more of the remote SNSs. A slightly more complex
arid more secure keying scheme for these types of messages would be to use node or
SNS keys, in whinh case each SNS (node) would he assigned a different key. With
this keying scheme the NM SNS would have to store multip!e keys, one for each of the
remote SNSs. Each remote SNS would have to store the key of the NM SNS.

Another form' of traffic or the MLS LAN is connection-less traffic between SNSs
and between subscriber devices. Examples of this type of traffic are inter-terminal
messages, host.-to-host UDP messages, and TELNET session establishment and
termination messages. This type of traffic, like the previously described traffic, is well-
suited for a SNS (i.e., node) keying scheme. A variation of the SNS keying scheme
would be to use a different key for each security classification of data within the
security range of the SNS.

The third type of traffic on -le MLS LAN is connection-oriented tiaffic between
SNS subscriber devices such as terminals and host computers. Examples of this form
of traffic are terminal-to-host TELNET sr.essions and host-to-host TCP connections.
This type of traffic lends itself to dynamically created keys that ;-:.re create3d and
destroyed when the connecLons are estatlished ana terminated respective!y.
Dynamic keyinn, schemes. such as the SDNS pIuGl;c key exchange, will be
investigated tr, ..rmr'e their applicability to MLS LAN.

_gr2ii& _A r hi er

One o,c r decisions facing a system designer embedding cryptcgrapoic
modules is where to pIace. the modLiles(s) witHin the network. A primary goal while
embedding encryption into MLS LAN will be to minimize the changos that will be
required to the existing hardware and software. This must be accompiished wnile
maintaininj red/back separaiion which is keeping unencrypted (red) data isolated
from areas where encrypted (black) data is processed.

Approac nes- Er.me1d CvyptQo grap h

Three basic concepts for embedding cryptographic modules into a distributed
processing sy'-tem are identified in [5]. In one of these approaches, the dedicated
cryptographic communication subsystem, the cryptographic module resides within the
e id-user system, such as a host computer, and is outside the scope of a LAN. The
MLS LAN solution will be a combination of the other two approaches; namely
cryptographic coprocessor .and split-bus. These two approaches are briefly described
below.

263

In the c grypt hic coorocessQ-. oach, the cryptographic module would be
attached directly to the system bus.

With the ýplitbus cryp tographic ap roacgl, the cryptographic module would be
embedded to sp;it the system bus into separate red and black busses.

The MLS LAN Cryptographic Approach

Figure 2 below illustrates the current architecture of an MLS LAN Secure Network
Server (SNS) . A common systern bus is used to transfer all control information F- id to
transfer all data between system memory and a!tached user devices. A second bus is
used for all data transferred to or from the network (i.e., between system memory and
the Network Frontend).

All Data To/From Network

SNetwork Backend NtokFotn

Device Node System Transmission
Attachment Controller Memory Media

Units Inter-ace

Common System Bus
etwork

Figure 2. Current MLS LAN Architecture

All Data To/From Network

Notwork Backend Node Red Embedded Black
Device Controller System COMSEC System TIransmission

Attachment Meoy Module Memory Media

Units g• Interface

Red System Bus
-'k

Figure 3. Proposed MLS LAN Encryption Arch.1tecture

Figure 3 above shows the proposed placement of the cryptcgraphic processor
within an SNS. This solution has been selected since it minimizes the impact to the
present MLS LAN architecture. The red/black data separation is provided by the
existing dual, data busses. With this configuration the trusted softwa.e resident within
an SNS would be responsible for initiating the encryption and decryption of data. The
tIusted software would also be responsible for controlling bypass of message headers;
i.e., deciding which portion of a message to encrypt and which part would remain clear
text. The primary problems which must be addressed are -

264

Definition of the COMSEO boundary. Essentially this is determining the location
of all trusted software controlling the COMSEC function. The possible locations are (1)
on the Node Controller and (2) on the COMSEC module itselt.

-Rd/back separation.. The major concerns are the connection of the COMSEC
Module and Network Frontend to the system bus arid T-MPEST concerns related to a
common system bus.

Security Fault Analysis. Here the concern relates to the effects of hardware faults
in existing circuits cards that share the system bus with the COMSEC module.

This proposed MLS LAN approach simplifies the red/black separation issue with
the cryptographic module providing the separation betweon red and black data.
Moreover, the approach requires no hardware modifications to existing MLS LAN fiber
optic systems and only minimal changes to Ethernet systems.

This approach to MLS LAN encryption is being investigated to determine what
additional assurances or mechanisms are required to verify that unencrypted data
cannot be accidently or subversively routed pass the cryptographic module and out
onto the MLS LAN communications trunk.

By emrbedding an ennrvntinn capability into its MLS LAN, Boeing Aerospace and
Electronics is responding to a requirement for encryption in certair; C31
communications systems. It is also responding to NSA's goal of using INFOSEC
countermeasures to secure future communications and information processing
systems.

[1] National Computer Security Center, 3jJJt&_Ngf.L
Trusted CQomuter Syst.9m Evaluation CriJLer, NCSC-TG-005 Version-1, 31
July 1987.

[2] Philip C. Siover, "Designing Multilevel Secure Networks," presented at U°S.
Army ISEC Technology Strategies '87, February, 1987.

[3] Daniel Schnackenberg, "Applying the Orange Book to an Mt.S [AN," in
Proceedings of the 10th National ComP!A r•,-.q. r[Ly.. .,

September, 1987, pp. 51-55.

[4] Ruth Nelson, "SDNS Services and Architecture," in P .oE=!tig. . Qff
National Computer Security Conference, Septemb,.-r, 1967, pp. 153-157.

(5] John Jacobs, Thomas Kibalo, "Secure Data Netwo-k System "upporI using
Embedded Cryptography," in Proceedings of S. oLn._6_AnL Afi.EA
Intelligence Symposium, September 1987.

265

Abbreviations

Al A security level defined in the TCSEC
C31 Command, Control, Communications and Intelligence
CCEP Commercial COMSEC Endorsement Program
COMPUSEC Computer Security
COMSEC Communications Security
CRC Cyclic Redundancy Code
DOD Department of Defense
DOS Denial of Service
E3 End-to-End Encryption
IEEE Institute of Electrical and Electronic Engineers
INFOSEC Information Security

IP Internet Protocol
ISO International Standards Organization
LAN Local Area Network

LLE Link Leval Encryption

Mbps Million Bits per Second
MLS LAN Multi-Level Secure Local Area Network

MOU Memorandum of Understanding
NCSC National Computer Security Center
NM Network Manager
NSA National Security Agency
NTCB Network Trusted Computing Base

OSI Open Systems Interconnect
SDNS Secure Data Network System
SNS Secure Network Server
TCP Transmission Control Protocol
TCSEC Trusted Computer System Evaluation Criteria
TELNET Telecommunications Network (a terminal protocol)
TFM Trusted Facility Manual
TNI Trusted Network Interpretation (of the TCSEC)
UDP User Datagram Protocol

266

THE SILS MODEL FOR LAN SECURITY

L. Kirk Barker
IEEE 802.10 Editor, Datotek, 3801 Realty Road, Dallas TX 75010, (214) 241-4491

Kimberly Kirkpatrick
IEEE 802.10 Chair, MITRE, MS K3I4, Burlington Rd., Bedford MA 01730, (617)271-7555

Abstract

This paper describes the model on which the Institute for Electrical and Electronics Engineers (IEEE) 802.10
is basing its security protocols and services for Local Area Nctworks (LANs). The Standard for Intcroperable
LAN Security (SILS) will provide a standard protocol for protecting LAN traffic. It also will specify methods
of key management and system/security management with supporting protocols. Currently, the Secure Data
Exchange Protocol is nearing completion, and the Key Management and System!Security Management work
has begun.

The Secure Data Exchange Protocol will provide such services as Confidentiality, Integrity, and Access Control
for data. It also will allow the provisioning of such mechanisms as encryption and security labels. The Key
Management will provide for both public and private key methods, and the Sysicm/Sccurity Management will
be compatible with the current International Standards Organization (ISO) work.

1.0 Introduction,

The use of LANs and data networks in general has become wide-spread. LANs are used to transfer vast
amounts of information on which both industry and Government rely to perform their daily operations. In
many cases, disclosure of this information to competitors, or other governments, would severely undermine
the effectiveness of the organization.

The Standard for Interoperable LAN Security is the work item of IEEE 802.10. IEEE 802.10 is co-sponsored
by the IEEE Technical Committee on Security and Privacy and IEEE 802 LAM' Standards Cornmittee which
is the standards organization of the IEEE Technical Committee on Comiputer Communications.

The IEEE 802.10 Working Group was formed to address '.he urgent need to provide secure communications
on LANs. The requirement for standards in this area was identified by the emergence of products which
encrypt the data being transmitted between hosts on a LAN. As these products were introduced, it became
clear that a greater market could be addressed if the vendors could dcvcjop a standard for the secure
communications. As a result of discussions among vendors and users, a mecting was held in March 1988 to
dctermine if there was enough interest to produce a standard. The first meeting attracted 42 vendors and users.
Since that time, many vendors and users have been active in the devciopmcnt of the model in itis paper and
the supporting protocols.

The expectations of the working group arc that SILS will become an IEEE standard and then be submitted
to ISO through the American National Standards Institute (ANSI) for consideration as an ISO standard.
Naturally, as the standard progresses, members of the appropriate ANSI and ISO bodies are kept informed
as to the direction and objectives of the standard. In addition, all atctmpts are being made to remain
compatible with the on-going security work in ANSI and ISO, especially the ANSI X3T5.4, X9, and the
ISO/IEC JTC 1 SC 20 and SC 21 groups. A goal of the working group is that when the standard is presented
as an IEEE standard, there will be no surprises to the ANSI oi the ISO committccs.

This paper presents a snapshot of the model that the IEEE 802. 10 group is using to dcfht. sccuriiy for LANs
and as such reflects the work of the members as wclt as the authors. The body of this paper describes the
concerns of the IEEE 802.10 effort and then the model. Dctails 4f the Secure Data Exchange Protocol, Key
Management, and System/Security Management arc contained in the discussion of the model. Since the SILS
standard is still under development, all of the information presented in this papcr is subject to change.

267

IILEE 802.10 i. defining thrce areas for standardization: Secure Data Exchange (SDE), Key Managcment, and
Systci/Sccurity Management. Thcse areas of standardization havc 1--cci dcsigned so that the use of one does
not mandate the use of either of the other two interfaces. Thi:, allows specific imlepcmenlations to specify
compliance to SILS Key Management, SILS Secure Data Exchange, and SILS SystcnitSccurity Management
indcpendently.

The Open Systems Intciconnect (OSI) Basic Rcfercncc Model (IS 7498) defines a 7-layer communications
model. The SDE is an OSI Layer 2 protocol that provides services to allow the secure exchange of data at
Layer 2. The Key Managcmenw Protocol is a Layer 7 protocol that provides services for the managemen! of
tle cryptographic keys used to encrypt the data at Layer 2. The System/Security management is a Layer 7 set
of services that is used to securely manage the security protocols.

The model for SILS shows these interfaces, explains which aspects of the interfaces arc defined in this standard,
and shows the relation of SILS to OSi. Section 2.0 presents issues he IEEE 802.10 Working Group is
addressing. Section 3 explains the OSI concepis relevant 1t SILS. Section 4 introduces the SILS protocol
"stacks". Finally, Scetion 5 presents the detailed model.

2.0 Concerns

This section discusses the proposed relationship of SILS to thL definition of a system security architecture, and
to existing LAN devices.

2.1 Re.ton.shil to Entirc Security Architecture

The procedures defined in SILS play a particular role in iIhc dcvcloptuent of a security architecture. The
definition of a security policy is one of the first steps in providing the security architecture. The policy should
state "The set of laws, rules, and practices that regulate how an organization tnatnages, protects, and distributes
informaation" (Tbe O,-angc Book DoD 5200.28). All facets of security should bc considered in this policy (e.g.,
procedural, physical, legal ramifications, bcncfit/cost).

Based on the security policy, the system security requirements are defined and frt,m these requirements, the
features the ovcrall security architectdrc should provide are derived. An example of a security policy is:
"information will not be disclosed to unauthorized hosts." T'he system requirements, based on the threat posed
by the environment, could be: "data while it is o(t the LAN shall be protected from passive wire taps and data
addressed to. a particular host on the LAN shall not be accessible by any other than the intended host." The
security architecture which could meet these requirements would be an interface between the hosts and the
LAN which implements the SILS Secure Data Exchange services of Cotfid•ctiality and Access Control.

SILS defites the security service interfaces and the associated protocols. TIhese services can be chosen to
satisfy the security requirements of a particular system. It is likely that the strviccs provided by this standard
will not satisfy all the system sccurity requirements. Thus, the cntities responsible for the LANs that operate
in accordance with this standard need to ensure that the other appropriate security controls such as physical
or procedural arc in place.

Since, the protocols defined are independent of the particular key management and encryption algorithms that
are used. The algorithms selected can be chosen to meet the security needs as specified in the security
rcqairctnents in at cost cffctlivt manner.

2.2 Existing Networks

One of the biggest concerns of 802.10 is how the developed protocols will offcet cxisting network
coifigurations. To address thlis problem, at least one mode o! each protocol must support a transparent
implementation. A transparent implementalion is one that meets the following criteria:

0 It must be transparent to 802 devices that currently exist on dh network. That is, an 802.10
device can b" placed on a network without affecting the functioning of existing devices that

268
Ni!

do not implement the IEEE 802.10 security protocols.

By meeting the goal of transparcncy as noted above, implcmentations of SILS can be used to secure
applications working across existing LANs. It also mandates the co-existence of protcctid and unprotccted
traffic on the same LAN. IEEE 802.10 is siudying the effcct of the security prolocol.s on bridges anid LAN
analyzers.

3.0 OS Structure

There are two Open System Interconnection Models that arc relevant to the SILS modcl: the OSI Basic
Rcference Model and the OS1 Management Model. in the OS Basic Rcf'crence Model (IS 7498), protocol
services arc requesied across a service interface. The upper (N +1)-layer requests a service from the lower
(N)-layer (see Figure 1). The service varies depending upon what that layer is able to provide. Tho- u"cfulnc,;.,
of this layering concept is that the upper (N+1)-layer protOloI may request scrv•ccs of a lowcr (N)-laycr
without any knowledge of which mechanisms the (N)-layer employs to implement the service.

Nl Layer
-A-

I Service Interface

N Layer

Figure 1 -- Piotocol Layering

The IEEE 802 architecture maps onto this model as shown in Figuie 2. The Media Access Control (MAC)
layer consists of all OSI layer 1 and part of OSI layer 2. This MAC layer contains the LAN media
CSMA/CD; IEEE 802.3, Token Bus; IEEE 802.4, Token Ring; IEEE 802.5, Metropolitan Area Network; IEEE
802.6. The Logical Link Coatrol (LLC); IEEE 802.2 resides above the MAC layer and is in OSI layer 2.

LLC 802.2 Logical Link Control

Layer 2

MAC
802.3 802.4 802.5 802.6 Layer 1

Figure 2 -- IEEE 802 Architecture

The OSI Management Model (IS 7498/4) defines management as system mana)gemennt and layer ranagenmcnt.
System management uses all seven OSI layers for monitoring and controlling te network. Layer Managcmenil
acts directly at a single layer. The architectural entities required to manage an Open System arc System
Management Application Entities (SMAEs), Layer Managers (LMs) and Managcment Information Bases
(MIBs). Figure 3 shows the placement and relation of these cttilics. The protocol, which c:mn be used by
these management entities are the Common Management Information Proto•.ol (CMIP IS 9495) and IEEE
802.1 Systems Management Protocol.

For each protocol at each layer, there is a Layer Manager associated with that protocol. The ocpiction of LMs
in Figure 3 shows a LM concatenated with each layer to represent the requirement for an LM for each layer
and for each protocol in each layer. The LM may communicate with other LMs at its laye (,.g loopback)
to manage the layer. Usually, the main function of the LM is to manage the objects used by the protocol.
The operations on the objects (such as GET or SET or generation of EVENTS) are performed by the. LM
as directed by the SMAE.

269

The conimunikafion of the LMs and the. SMAEs% is a local nmtler and is Ocefincd inltc nally by a.? end system~.
This hintcrai communication is shown by the invcrted L-shapl'3_ boy-s in Figur- 3, anki iS oflien reterred to as
the manaigcmcni "cloud." The cloud consists of localt implemcna;i)n proied'.aes and dLita that span all the
layers of the mod:ul.

SMAEs aire laycr 7 application cntitics fl-at perform the systceras rnanagcnicru of' a nelwork. They
communicate via CMI4P or IEEE 802.1 protocols. Thus the commkinication ("or systcmtLý tikaiiagement is
standar'iited.)

F CMIP/802.1I SMAE S-[I L

I L

Figuirc 31 i-ay.-r1 Mainagors -

The obJ.cts, thai must be managed are defined with respect to each protocol. Examples of these ob 'Jects for
(-IMMUflICOi OAS protocols are window sizes, timers, and buffecr si:.ýcs. For st-curity protocols, sonic otliects wil!
ITe devo~ted W0 supportiing the. security. mechanisms employcd. For instance, it encryplion is used, a managed
object mig~ht fbe the cryptoperiod of a key. For security protkcioI5, tbose objcccs that count significant events

such as failures and th~~en gcrratc. an event once the count reachesy a ckrai tI ehl aInxrrcl sfl
The1;se objeccts, arc simore in the MiB. To furthcr (lepici the protection atid sepiaration of seý.krity-rcl-alcd
objcc~s from otnl manatgcnment objects, lhe concept of a Security MOB (SMl1B) is introduCed. T1-he struciure

of the. SM lB or the MIB is a local issue; however, the structure of the objects is standardized and ;. defined
in the Struc-ture (f hlanagcoment Information (SMi IS DP W0165.2).

3.0 SILS Protocol SI:t'K-

It is comimon to refe(r to the. piotocol which supportls 01C sci~c int ', trface and the piotocols bencath this
prmtocol as a "stack'. Us(ing ihis', icrrminologv, Figure 4 shows the st ks de fined for SILS: a i~cy ManagemeutM
Stack, multiple Data Exchange User Stacks, and a Syst-um;ut'F~cw Miiar agemntC Stack.

Eoch stack must have a separate Layerl 2 enity. in the ca'. oi Sysieni/Sccuritv Managci-icnt and Key
Maaagcmcnt, this Liycr 2 entity is LLC whitc.h I~ws *t i1gure 4 .-dow~s mulviptec instanhtiations of LLC dircciy

abae~c SDI: suhlaIycr. '11:_ only rc:qvircimnlt of thcsc Lavci 2 cntitm ', is; diat they can pro\'ide. the (N +)
layer mminterace experiecd by the KSDE ser! ice inierI'ý-cc_

3.1 Data Fxchaq_,e User LStack

OAn the lcft iii Figure 4 are boxes enituled "DtiExchange ' !'Lr Stacl-". Thcse. 'sacks request services from
thu SL -tre Data Exchange Seivice Inicriace. Whilc Owe Ke. Miianagement and System Managemntcn stacks miy
he additions required by tac SILS protocols, 11hese "User SZaCks` i:-ý what currenly exist on many Local Area"
NctWorkS. The User Stacv can aiso be thought of as a clicitn '] the SDE staLk. P~ 1equeMs" security sctivcics

270

fromt the SDI3 servicc interface.

While the SDF protocol provides an interface to the Data Exchange User Stack, SILS does not specify any
of the prowoeols th,, resit~i in this stack. The User Stack may be ainy protocols that would normally reside
directly above the M.\C lavor. The most obvious of the protocols is the LLC, but it could easily be other
protocols as lckii as the protocol maintains thc MAC interface.

DATA DATA DATA
EXCH~ANGE EXCHANGE EXCHANGE

UElRUSER 0 0 o USER KEY SYSTEM
STACK STACK STACK MGMT MGMT
W1 #2 L #N STACK STACK

"LLC] [LLC]K [LLC] LLC LC

I SECURE DATA EXCHANGE (SDE) PROTOCOL

I MEDNA ACCESS CONTROL (MAC) LAYER

tigure 4 -- ;d(ks

In the "transparent" mode, of the SDE protocol, this User Stac:k kuows, nothing about SILS. The Data
Excibange User Process would not communicate to either thc System/Security Managemnirt or the Key
Managemen- Stacks. None of the protocols in thc User Stack wvoiild need to lie changed as long as they
ma1.intained the normal MAC interface. A Sit-, device could provide a set of security serices for which it
wais configured without the User Staick 1-ecomning involved.

-1. SylstPi/Sccuritv Manapmrent and Kcy' MaaerctSck

SvstemIScxzui-i,' Managunicrit and Kcy Maniagenmen reside at Layer 7. The primaty- motivation for the
.iacemnirt at Izver 7 is that they can be. used by piotocols other thian the 5012 protocol. This. allows othei

pr 'tocols, perhaps; CVCf Systein/Security Management, to utilii the keys and attrilwites provided by the Key
Martagcmcmt Proto;:ol. The stacks for Key Management and Systecm/'Security Managemient consist of the Livecr
7 protocols and tho.,c protocols at other layers that arc required to support thecse L aycr 7 protocols. As work
progrcsses in the dehinitiori of Systern/Sccurtty and Key Managcnicnt, the particular i~roldlc will be dcfincd.

4. Atchitecture
40Dlic oc

Figui-e 5 depicts the overall modce-. of the protocols and services dclitied by this standard. The 1-tyer
Maiiagers are shown on the right in the figure. 1Ibe mianagemntci entitieis are thec Managemnict Information
BaSL (MID), the I-iyer Manage.:s (L.Ms), the Security Management Information 13ase (SMIB), and the
SysltainSccurity Management. Each of these will be discussed in more dctail later.

Each o1 the pr-otocols that will be- defined by the st-indaid are: denmted by shiaded boxes. These shaded boxes
contain the Key Management Protocol, the Secure Data Exchange .Protocoi, thuLr rcspc~i\ve 1,Ms, and a
Mapper. These protocols will be complete standards that incht 'C c0nfor manw' c teitig and at least one mode
of operation that allows Interope-rabilitv.

271

APPLICATION INFORMATION SHARING PATHS ,SY

VSMI
USER APPL K MGMT APPL SYSTEM/SECURITY

USE PL KE MT MGMT APPLICATION

KEY MGMT`* KSYS

PROTOCOL"' JM1 L M i* M
... i ..L ..•. ..-ii ! ...

DATA 7
EXCHANGE
USER 5I"
STACK X 0-7 4E 3 // LMs I-MI

I ,/ ! ~802.1 -

LLC LLC LLs

..:---SECURE DATA EXCHANGE (SDE) PROTOCOL:ý.i**::.ii:"""""'D LM.

[~A .. IMACLM-

TO BE DEFINED IN SPECIFIED BY
THE STANDARD THE STANDARD

MUST BE IMPLEMENTED
ACCORDING TO LOOP

SECURITY POLICY

Figure 5 -- Comlnlcoc SILS Model

272

The singlc-hashcd boxes (single lines tunning from lower lelt to uppcr right) indlicate rccoi'mmcnda tions th:at
will be made by the standard, but provide more than a single option for the inmilcmcntoi. Thllcrc arc three
of these boxes: the Systcnr/Sccurity Management Stack, the Key Management Slack, and the Systcm/Sccurity
Management Box. The Security Management box reptesents a yet undefined protocol. It is intended to
provide any security features needed by the Systcm/Sccurity Management Application that arc not provided by
CMIP or 802.1.

There arc five cross-hashed boxes that represent parts of the architccturc tha! must be implemented according
to local policy: the Key Management Application, the SystcmiSccurity Managcmlent Application, and three
boxes foir the System Security Management Information Base (SMIB). The Key Manageniment Application and
the System/Security Management Applications request services of their respective protocols, but have more

knowlcdgc about the local policy. A key change can illustrate the distinction. The Key M:,nagcmcnt Protocol
can perform the key change, but only the Key Management Application would have the knowledge of local
policy to know when the key must be changed.

It is also important to notice the arrows drawn between thc.: application proccsscs for the User, Key
Managcmcnt, and System/Security Management Applications. These arros indicate that it is possible for
these Application Processes to communicate although that communication is outside the sLope of this standard.
Generally, if the SILS protocols were implemcntcd in art in-line device, littlc or no exchange between the
Application Processes would be expected. In an integrated inmplcnicntation; howcvcr, it might be useful to
utilize this communication.

SILS must support both the ISO and the IEEE 802.1 management framc••ork. IEEE 802.1 is defined as
running directly above LLC while ISO dcfines management as a Layer 7 function. Although there arc two
different management protocols, it is unnecessary to specify two different key manag'mcnit protocols. SILS
will sm-cifv a "manncr" that will allow a single Key Managcmcnt lProtocol for both cenvironnmcnts. (Figure 5
represents this conflict in a box to the right of the Data Exchngc User "tack.) If the decvcelopecd key
management protocol requires services provided by the upper laycrs o" the ISO stack, but not provided by
LLC, then the mapper must provide these functions. The OSI protocols and the Mapper will be specified by
this standard so that the Key Managemenl and System/Security Maanagcment Pro•ocol:; can interopcrate with
other SILS devices.

The model assumcs a MAC interface at Layer I and an LLC intcrlfacc at l.aycr 2, buti the prottcols for
lUycrs 3 through 7 arc currently undefined for either the Key Management or Sysltcm/Sccui it)/Security
Management.

4.2 Key Managemnnt

The key managcmcnt application (Figure 5) makes use of the sciviccs provided by the Key Management
Protocol defined by the SILS. Due to export restrictions and the variety of user needs, IEEE 802.10 will
make ihe protocols independent of the encryption and key maniagcnicnt algorithms. As such, there must be
some mechanism put into plawc to allow the easy identification of algorithms. Fortunalely, ISO has defined
a standard for a registry of encryption algorithms in DIS 9979. They arc currently looking Ior a sponsor to
maintain the registry, and there are presently three volunteers. It is very likely that in the near future, the
registry service will be provided. (It is the hope of IEEE 802. It that a similar service will be provided for key
management.)

There arc a number of options that must be negotiated in regard to the)-cy), that is distribulcd. T[hesc options
include, but are not limited to:

o Key Management algorithm
o Encryption algorithm
o Access Control
o Security Services for which the key is used

Keys may provide protection for user data or for other keys. Also, keys may be used for symmetric or
asymmetric algorithms. In the case of an asymmetric algorithm, a key pair is rcquircd--cncrypt and decrypt.

273

The following protocol functions arc currently dell med.

1. SET -- Distributec a kcy and/or security attributes to another party.
2. GET -- Retrieve a kcy and/or security attributcs fromt another party.
3. UPDATE- -- Miodify the key and/or security attributes of another party. When applied to the key, it

mecans that a new key is generated as a function of thc existing key.
4. CREATE -- Create a key relationship where there is no master key ecnrypting key.
5. DEL.ETE -- Remove the key and/or security attributes of another part),.

F Logical Link Control

SDE -UNITDATA SDEUNITDATA UE_UNITDATA
request Iin-dicato STATS indication

SDE SUBLAYE1R

Provides: 1. Confidentiality
2. Connectionless Integrity
3. Data Origin Authentication
4. AccPz; Cohntroil

MAUNtJ A 7 MNITDATA I MA_-UNITDATA
requesti idcato STATUS indication]

A -

Media Access Control

Figure 6 --- SDE Security Sk~rviees

4.3 Secure Data Exchange (SPE)

The SDE ptotocol is placed transparently directly ahovc th, MIAC layer. The SDE security services are
provided using ihe primitives shown in Figure 6. The following is a list of the svrvices with a brief discussion
of the mechanisms used to provide flhe services.

o Data Confidentiality -- The SDE sutilayer provides data co-ifidenitiality by pcr-forniing encryption over the
LL.C Protocol D~ata Uinit (PDU). The sublayer provides for the use of inuliple encryption algorithms and
depends on an external .1ey management service for establishing at Data Enceryption Key (DEK) and for
choosing an encryption algorithm.

o Connc,-tionicss Integrity -- The SDE sublayer provides con riel ion less itegrity' by calculating an Integrity
Check Value (ICy) and appending it to the end of the SDE PDU). Thc subtayer depends on an external key
management service to establish an integrity key and [oi choosing an integrity' algorithm.

o Data Origin Authenticattion *- Data Origin Autthenication is achieved tiy the use of pairwise keys and/or
by placing the Source Address in the protected po~rtion of the ,ecuritNy header. The Source Address also

274

prevents reflection of the PDU.

o Access Control -- The SDE sublayer interacting with thc SMIB, providcs access contiol enlorccnemnt. For
cach PDU the source and destination MAC addresses arm used as an index into the SMIB. If no association
exists, thcn thc PDU is discarded and the Layer Manager is notified. A similar check occuis on reccipt. A
set of security labels may accompany the association. A PDU that is labeled outsidc the security label set of
the association will no: be dclivered and !he Layer Manager will be notified.

The threats that these scrviccs protect against:

"o Unauthorized Disclosure
"o Masquerading
"o Data Modification
"o Unauthorized Resource Use.

The security services do not protect against:

"o Traffic Analysis
"o Covert Channels
"0 Flooding
"0 PDU Damage
"o Replay
"o Physical/Elcctrical Damage
"0 Misordering Data
"0 Undetectable PDU Header Modification.

4.4 System/Security Managemcnt

Each of the individual protocols (e.g., Secure Data Exchange, Key Mandtgcmcnt) must identfy objects that they
nccd to be managed. The Layer Manager definitions in the key matagemcnt and SDE sections provide the
encoding of the objects and their effects on the protocol state machines. If it is necessary for system/security
management to communicate with another end-systcm, the Systcm/Sccurity Management Application Entity
does so using either CMIP or 802.1. Between the protocols and the application, there arc additional services
that arc standardized by 802.10. These services are enhancements to CMIS/CMIIP and 802.1 that provide the
sufficient security and functionality for the management of security to the SystctnSecurity Management
Application. These services may or may not require a protocol scparate from 802.1 and CMIP, so where
there is a "Key Management Protocol" and a "Secure Data Exchange Protocol" in Figure 5, the protocol for
Svstcni/Sccurity Management is labelled "Security/Mgmit".

The SMIB is part of the management *cloud" mentioned in Scxtion 3. The SDE management objects make
up part of the SMIB for the end-system. Key Management and Systcm/Stc'urity Management maay modify
objects in the SMIB. The effect of these modifications to each of the scourity objects identified by the SDE
protocol is specified in lhe SILS.

The SMIB provides an internal communication path between the Layer 7 Systcnm/Sccurity Managcment and
Key Management Application Processes to the Layer 2 SDE protocol within an end-systenm- The modification
of the SDE objects may affect the User Stacks or Key Management and Sytcm/Sc'urity Managcment. For
instance, Figure 7 shows the Key Management Application providing key matcrial for the SDE protocol via
the SMIB. This key material may be iised to protect the user informatioit if the appropriatc attributcs are set.

275

Key Management
Application

711 Keys, Dates, and Use
Key Mgmt
Protocol

User
Stack Key Mgmt

Stack

I_ _ LSMIB
SDE I

Figure 7 -- Use of the SMNB3

5.0 Conclusion

At the lime this paper was written, the SDE protocol was wri~ten and work on the other protocols was just
beginning. It is envisioned that by the fall of 1989, the SDE protocol will be balloted as the standard, and the
System/Security Managcmnct and Key Management standards should follow within the next year. The IEEE
802.10 working group is open to the public and participation is encouraged and welconmed.

6.0 Acknowlcdgernicnts

This paper reflects the collective work of the IEEE 802.10 committee as interprcted by the authors. As such,
the authors would like to express their appreciation to each participant. Special thanks are due Ken Alonge
v, ho helped develop the overall model graphics contained in this docunment.

276

A DYNAMIC NETWORK LABELING SCHEME FOR A MLS LAN

Peter Loscocco
Off-ice of Research and Development
National Computer Security Center

INTRODUCTION

In designing a multilevel secure network, certain design decisions must be made that have far-reaching ef-
fects on the network's final operation. One such decision is what subset of the total possibie levels of security
will the network support and how will its elements be represented. Once this decision is made and the network
made operational, can this subset or the representations of it be changed? Should it be changed? If so, what arc
the permissible changes and how will they effect the secure operation of the network? And at what cost does this
extra flexibility come'?

This paper will examine the need for a security level maintenance facility on a MiS LAN as well as its
implications. It wiil show how such a facility allows great flexibility to be introduced to the security-relevant
portions of the LAN, making it very sensitive to the security requirements of its users, and at the same time have
minimal impact on the network operation. Part of that added flexibility is a plan for variable length security la-
bels whose dimensions can be changed essentially "on the fly" without significantly disturbing the operation of
the network. There also will be a discussion on security label translators.

SECURITY LEVELS AND THEIR REPRESENTATIONS IN THE CONTEXT OF A MLS LAN

MLS LAN Background Information

The following discussion is based on a design for a Multilevel Secure Local Area Network (MLS LAN)
I1]. It is a broadband dual-cable bus LAN that uses the Transmission Control/Internet Protocol (TCP/IP) and
Carrier Sense Multiple Access (CSMA) [2,3,41. Although presented here for a specific LAN, many of the con-
cepts to be discussed could be generalized to apply to other MLS networks as well.

The major function of the LAN is to provide a secure transport service for its attached hosts. In essence,
that means that the LAN will provide a trusted communications path between pairs of hosts. The LAN will be
trusted to allow only those hosts whose users have both the proper clearance and need, to establish connections.
This is in accordance with the DoD security policy !5]. Furthermore, the LAN will assure that all message traffic
will belong to a valid connection and only the intended host will receive the messages. Clearly, a great deal of
trust would be required in the LAN, at the very least an B2-levei as described in the Trusted Network Interpreta-
ti 1 16], if it were ever to be used operatiGnally. The techniques involved in providing that level o.' trust, howev.
ci, will not be addressed in this paper.

There are no restrictions as to what kinds of hosts are. permitted to use the LAN. In fact, they may range
in capabilities from single-level untrusted to multilevel secure. However, if a host is to use the LAN it must be
attached to the LAN via a Multilevel Secure Bus Interface Unit (MLS BIU). The BIU's will relieve the hosts
from most of the burden of network processing, requiring the hosts to understand only a minimal Host-BIU pro-
tocol.

The Foundations of Security

Security on the LAN is maintained by restricting connections between hosts. When established, each valid
connection has a connection type and a set of security levels assigned to it. Only data of the proper type and with
a security level from that set are permitted on the connection. By restricting information flow in this way, only
legitimate traffic at the proper security levels is able to enter or leave the L,\.

Since security-related decisions on the LAN are made based on connection types and security levels, it is
important to understand exactly what these are. A connection type is exactly what its name implies, an identifier
which denotes what type of traffic will be on a connection. As an example, two types of connections could be
mail and remote login. By distinguishing the types like this, specific types of connections can be denied to a host
without completely isolating it. In keeping with the exainplc, it would be possible for a host to be allowed to
exchange electronic mail with another host withotit also allowing remote logins. Furthermore, it would be possi-
ble to permit a host's users to make remote connections but restrict users from other hosts from connecting to it.

Security levels are the fundamental elements in capturing the concepts of classification, clearance and, to
some extent, need-to-know. They may be associated with data, to denote its classification, or with hosts, to de-

277

note its user's clearances and need-to-know. Valid connections are assigned security levels based on the valid secu-
rity levels for the involved hosts and the level of data intended for the connection.

Security levels consist of three pieces of information, a scnsitivity value, a set of compartments, and a set
of handling restrictions. A partial ordering can be imposed on the set of all security levels using the well-known
dominance relation. By using the dominance relation, ranges of security levels can be referred to by using upper
and lower bounds. These bounds are assigned to connections and the range implied by them determine tne valid
levels of data that may utilize the connection. A more complete description of security levels and their ordering
can be found in [1] and [7].

There is one other way, unrclate,- to security levels, that access to connections on the LAN can be restrict-
ed. Access can be denied on the basis of host pairs with or without respect to connection types. This adds an ex-
tra layer of security by making it possible to prevent a host from making certain types of connections with certain
other hosts regardless of classification issues.

Components of the MLS LAN

Each host is attached to the LAN via a Bus Interface Unit (BIU). It is the responsibility of the BIU's to
ensure that the LAN operates securely, allowing only legitimate traffic at the proper security levels onto connec-
tions between hosts. Although responsible for the total management of connections on the LAN, the BIU's do
not have the necessary knowledge or authority to approve or disapprove connection establishment. Consequently,
there must be some place for the BIU's to turn to for help. That place is the Access Controller (AC).

The AC is a special host whose primary function is authorizing BIU's to establish connections amongst
themselves. It bases its decisions on Mandatory and Discretiona:y Access Control (MAC/DAC) tables which con-
tain all of the necessary clearance and need to know information for each BIU and BIU pair 18]. These tables re-
side on the AC and are maintained by the Network Security Officer (NSO). Once a connection is opened, the AC
is no longer involved, and the security of the connection rests with the BIU's.

During the establishment phase of a connection, the AC instructs the involved B:U's as to what type and
at what security levels the connection is to be. At this point the BIU's have enough information to perform the
mandatory access control checks on all the data sent or received on that connection. It is a requirement that all da-
ta have a label that properly reflects its connection type and secrnritv leve!. The B!J's use these labels, a!.zng
with the information provided by the AC, to do the security checking for each connection. Only data labeled with
the proper connection type and a security level falling within the prescribed range of security values are permitted
to be sent or delivered.

The Representation and Use of Connection Types and Security Levels

To a large extent, the secure operation of the LAN depends on connection types and security levels. Al-
though well defined, these concepts are still quite abstract. In order to be used, they must be represented in some
more concrete way that the LAN can interpret. It will be these representations, and not the abstractions, that
will be used throughout the LAN to ensure security. Unfortunately, this places some limitations en the LAN.

Theoretically, there is no limit to the possible number of connection types and security levels, and in the
ideal situation, a MLS LAN would be able to support all of them. In reality this is not pY)ssible. Even with
modest choices for the numbers of connection types and elements of each component of the security levels, the to-
tal number can become prohibitively large when all the combinations are considered. The time and space required
to efficiently process and uniquely represent them is too costly to the performanc_ of the LAN. Consequently,
only a subset of the total possible connection types and security levels can be s.,ppoited by the LAN at once.

There are numcruus ways in which security levels could be represented, each with its own relative mer-
its. An optimal format would be one which required a minimum anmount time to compute dominmnce relations
and a minimui-i number of bits to represent, was the least complex, and could represent the maximum number of
security labels. Unfortunately, these criteria are at odds. The LAN designers have to make some compromise in
these areas to determine a format that keeps LAN performance at a maximum, cost at a minimum, and, perhaps
most important of all, satisfies the needs of the users.

The primary occurrence of connection type and security level representations is in security labels. The se-
curity label is a physical tag associated with each packet on the LAN that identifies the security level of the data
contained in the packet and the type of connection on which the packet belongs . A typical format for the Net-
work Security Label, as it is called, might consist of four fields, one each for connection types, sensitivi:y values,
compartments, uid handling restrictions. The first two fields would contain an actual value and the later two
would be bitmaps with one bit position to indicate the presence or absence of each of the respective elements
(fig. 1). A similar format to this has been previously used to represent security levels on a secure system [101.

If at all possible, the Network Security Label will be contained in the Internet Protocol (IP) header, spe-
cifically, in the two IP security options 13,9]. The DoD Basic Security Option, option 130, will contain the repre-
sentation for die sensitivity portion of the security level and the the DoD Extended Security Option, option 133,
would contain the representations of the connection types, compartments, and handling restrictions.

278

Con. Type Sensii-.'ity Compartments Hand. Restrict.

value value bit-map bit-map

FIGURE 1: FIXED LENGTH SECURITY LABEL

Since the Additional Security Information field of option 133 is not yet fully defined for all the Protec-
tion Authorities, the actual contents of option 133 cannot be stated with absolute surety. If this option does not
provid.2 fields for all the necessary information, then provisions would have to be made elsewhere in the protocol
suite.

Network security labels are not the only security labels used in conjunction with the LAN. All multi-
level hosts, and perhaps even some single level but trusted hosts, will have internal security labels for their data.
These Internal Host Labels, like the network labels are for packets, are the physical representations of the security
levels of data on that host.

The set of security levels supported by any given host, in general, is going to be a much smaller subset of
tde set of total possible security levels than the set supported by the network, but, in general, a subset nonethe-
less. Different hosts most probably support different subsets. For instance, some hosts may support compart-
ments and handling restrictions; others may not. Differences like these are unimportant as long as the security lev-
els are drawn from the same total set.

Even though it is true that designers of secure computer systems recognize the need for security labels for
data internal to their systems, it unfortunately is not true that they have agreed on a standard method for con-
structing those labels [10]. In tact, it is probably not to far from fact to say that there are and always will be as
many different forms of security labels as there are vendors building secure systems. As unfortunate as this may
be, its a fact of life that network designers are going to have to live with.

Since there are so many different ways that security levels will be represented on hosts and only one way
that they may be represented on the LAN, there must be a mechanism that will map the hosts' representations
uniquely into the LAN's and back. Without such a mechanism, the classification level of data could not be pre-
served as daia is translerred from one system to another across the network. Obviously this label translator has
to be familiar with both the host's and the network's representations of the supported security levels. This situa-
tions is analogous to the the Network Virtual Terminal concept in which all hosts on a network use a standard
network character set regardless of any internal character representations I 111.

There are two choices as to where the label translators shou!d be located, on the hosts or on the BIU's.
A case can be made for either choice, but the stronger of the two is for label translators residing in the BIU's. In
that way, the burden of network processing is further removed from the host, as it should be. More insight into
the label translation function will be given later.

A portion of the LAN that vitally depends on the representations of connection types and security levels
is the security checking mechanism inside the BIU's. In order to perform its function, this mechanism must know
the size and location of the representations in the data stream. Also the BIU's, as part of the state information
kept for each connection, store the representations of the connection type and the upper and lower bounds of the
valid security levels for both the incoming and outgoing traffic. It uses these to determine if data may flow on
that particular connection. The representations do not theoretically need to be the same as those for the network
security labels, but to minimize the time required for security checking should be.

After a BIU receives a message from its attached host and checks the security information against the type
of connection and range of valid security levels for the intended connection, the BIU can format the security infor-
mation into the network secutity label that is to be attached to the outgoing packets. Packets arriving from the
network are handled in a similar way. The security information is extracted from the network security label and
checked against the stored values. Only those packets of the proper type and with a security level falling within
the acceptable range will be forwarded to the host.

As described, the BIU security-che" r'ig mechanism will work properly if the attached host has security
labels that can be trusted. But what if the ,. does not support security labels or, equivalently, supports securi-
ty labels that cannot be trusted? Fortunately the LAN will still be able to operate in these situaJons. As a mat-
ter of policy, such hosts are assumed to be operating in a system-high mode. The BIU's will know at what securi-
ty level all connections would, by definition, have to be. In this mode, the network security label for all data
leaving the host automatically will reflect the system-high level of the host.

The AC validates a connection's type and security level ranges during its establishment phase. BIU's for-
ward connection open requests to the AC to determine if that connection is in accordance with the network securi-
ty policy. The AC must check the open request against the appropriate MAC tables. Only then may the AC au-
thorize the BIU's to open the connection. As might be expected, the MAC tables are constructed from connection
type. and security level tepresentations.

279

A MAC table is kept !fir each host that may use the I-AN. These tables store only the clearance portion
of the information diat t1.e AC needs in order to approve connections. It is from the DAC rubles that the AC de-
terlinics with which host.,, a given host may communicate. Conceptually, these tables can be visualized as a corn-
pletc list Cl the sccniity levels at which a host may Communicate for each type of connection. Actually, these con-
nections are not enumerated, and the table contains only as many records as are needed to encompass all the valid
conlnCctions.

Each record in a MAC table consists of three fiehlds, the first for the type of connection, and the remain-
ing two for the ranges of permissible outgoing and incoming security levels for that connection. Each of these
ranges is a pair of security levels, a minimunm and a maximum, where the first is necessarily dominated by the sec-
ontd. If a host is multilevel secure, then its MAC table can have essentially any number of records. Single-level
machines. on the other hand, can, at most, have the number of available connection types. The security level rang-
es on these would have to be set so that all outgoing traffic would be at the system high level and all incoming
would be at most the system-high level.

When a connection open request arrives at the AC, its security checking mechanism extracts from the re-
quest the pertinent information needed to make a decision. The two involved MAC tables are checked for the ex-
istence of a record which could authorize the connection. if one is found in each of the two tables then the connec-
tion would be in accordance with the mandatory access control portion of the security policy. The connection may
still be denied, however, basel on discretionary access or resource constraints.

Like the BIU's security checking mechanism, the AC's must know the sime ;,rd location of the informa-
tion it needs to acccss. It also must know the representations of the information in both the MAC tables and in
the open requests. Although theoretically unnecessary, it would, however, seem most efficient to make these rep-
resentations identical.

As presented, the security of the LAN rests heavily with the representations of security levels and, to a
lesser extent, connection types. Without them it would be impossible to enforce the security policy of the LAN.
A very important question still needs to be answered however. Where do these representations originas-?

The Static Nature of the LAN

In ihe mast, the conventional approach to incorpon-!e security level reprcsentations into secure systems has
been to define them and build themn into the fabric of the system 1101. Designers decided exactly how many securi-
ty levels their system could support, making a compiomise between the expected needs of the potentiai users and
practical concerns such as space constraints and system performance. They then defined the representation for each
level, not necessarily attributing it to any specific security level, and effectively hardwire.d them into the system.
At that point the initial design decisions, good or bad, are set in stone.

Applying this appr'oach to tie LAN would mean anticipating the smallest number of connection types and
elements of each security level component that could satisfy the requirements of all the potential users of the
LAN. The builders would then define the formats, traditionally a fixed size, as well as the representations for
the network security labels and the MAC/DAC tables. The assignment of actual security levels to the representa-
tions, ensuring that the dominance relation in maintained, would occur at a later time.

The implementation of the security checking mechanisms for the AC and BIU's, whether in hardware or
software, is completely dependent on the previously defined formats and can be straightforwardly built into the
system. As for security label translations, the hosts could be forced to adhere to a rigid front-end protocol, mean-
ing label translation would be done on the host. In any event, they too depend on the forniats and, with respect
to connection type and security level representation 3, the design would be static and not easily changed.

WEAKNESSES IN THE CONVENTIONAL APPROACH

An Inability to Meet the Changing Needs of Users

The most important. yet most difficult, part of the entire process would seem to be anticipating the con-
nection type and security level needs of the LAN's end users. If the LAN is to provide quality multilevel service
to its users, then it is imperative that it be capable of maintaining the types of connections that they require at the
appropriate security levels. Furthermore, the performance degradation introduced by the security features should
be minimal.

Using the conventional static approach to the representations would probably work fine, provided that all
the users needs were properly forecasted. There would be no problem with the service types at the proper security
levels. As for performance, it would not be optimal, due to the potential for wasted bandwidth brought on by
the fixed label length, but probably acceptable. But what are the chances of the LAN designers' predictions being
cornete?

For a single system whose security levels consist only of a sensitivity value, making the correct decisions
is complicated enough, but compounding the problem by adding an arbitrary number of other systems and adding
companmenis and handling restrictions to security levels makes choosing the correct security level subset next to

280

impossible. Even on the remote chance that the guess were on the mark, the needs of users are varied and subject
to change.

There aire essenlially twe, kinds of' changcs that may need to he miade to the subsects of the cecuritv level
and connection type seLs used by the LAN: additions and deletions. For instance, additions may be needed .1 sonic
users of a currently attached host require new conipaitnients or hosts with requircmenLs for previously unneeded
handling restrictions arc added to the LAN. On the other hand, certain clemenLs may become obsolete and have to
be deleted when hosts are detached from the LAN,

As a further example, considzr die sensitivity values provided for in the IP security option 130. At
present there are only the four U.S. v lucs detined. In the future, it is conceivable that other, perhaps foreign, val-
ues will be necded. There al.,; are currently only four protection authorities recognized in IP Security Option.,
130 and 133. As others are inco.,Ioratcd, changes could be required.

It is not unreasonable to expect changes such as these to be necessary throughout the lifetime of the
LAN. Even though they might be infrequent, a MLS LAN should be flexible enough to accommodate them. This
would not be the case for a LAN designed using the approach described above. In fact, it is a fundamental weak-
ness of such a LAN that these types of changes are difficult to make.

It is the LAN's static nature that makes this so. Since those portions of the L.\N that depend on the rep-
resentations of security levels and connection types would essentially have been built into both the hardware and
software, any changes to the security level or connection type subsets would have to wait for the next version of
the LAN. The designs for all the affected components would have to be modified so that the changes could be in-
corporated into the LAN. This could require a great deal of time and effort, not to mention money, and definitely
necessitate recertification. This is not only infeasible but unacceptable, especially if frequent changes occur.

Without eliminating the static nature of the LAN, it is still possible to anticipate this problem and make
allowances for it. Extra representations can be defined, but not assigned, only to be used if additions to the sub-
set are eve, need:d. The representations for elements no longer needed would still exist but never be used. Using
this approach tlr LAN would appear to be able to accommodate its user's needs for change.

Although possibly adequate, this approach is certainly not optimal. At best, it is a temporary solution.
When the extra representations are eventually assigned, the original problem returns. Also, those that are deleted
never can be reassigned to other values, thereby wasting part of an already limited number of representations.

Problems with Performance

A LAN with static connection type and security level representations has other problems than its inabili-
ty to conform to the. cbanging requiremen s of its users. There are inherent inefficiencies, and perhaps the biggest
example of this is in the network security labels. Consider the example security level representation gi,,en earli
cr. If there were a large number of coinpartmenLs, but only very seldom were more than one compartment associ-
ated with a packet at once, there would be a large amount of wasted bandwidth when transmitting the security la-
bels. The bitmap for the compartment field would have to be large enough for all of the compartments, anti only
a few bits at a time would ever be set. The problem is worse if, on that same network, two hosts communicated
but had no need for compartments. In this case, the entire compartment field would still have to be tacked on to
all the packets just as useless baggage.

What About Label Translators?

It is the purpose of a label translator to uniquely transform security levels represented in a host's inter-
nal format into the network format and back again. At first glance, this may seem like a trivial issue but, ulpon
closer examination, proves quite the opposite. What complicates the label translators job is the lack of a labeling
standard. There are different labeling fornats for different machines. It is possible to have a situation where dif-
ferent representations for the same security levels, or even worse, the same representations for different security
levels exist.

How is the function of label translation affected by the conventional approach described above? If it
were done in the BIU's, it would seem that the label translators would be subject to the same problems as the sc-
curity label representations as far as the difficulty involved in incorporating changes. Also there would have to
be different label translators for different machines and development of new translators would have to be (lone
for any new machines. There is aiso another problem. Most likely the translator would be implemented as some
sort of table look up. This table, unless it were able to be modified, would limit any changes that could be ruade
to a host's MAC tables.

What if the translations are done on the host? This has several disadvantages too. First, this task is an
extra burden on the host. One reason for having BIU's in the first place is to remove such burdens. No longer can
a host just pass its own security label along with the data. The second disadvantage is a security concern and neces-
sitates returning the label translators to the BIU's where they belong. In providing specifications for label trans-
lations in the host to BIU protocol, too much information could be inferred about the internal mechanisms of the

281

131U's. A greater concern, however, is in the sensitivity of the actual sccurity levels themselves. Many consurn-
ers of security levels will not tolerate a disclosure of even the names of these levels.

A DYNAMIC NETWORK LABELING FACILITY

The Introduction of a Variable Lecngth Network Security Label

Thus fai it has been shown that the static properties of the LAN can lead to a workable but certainly less
than optimal network in terms of functionality, usability, efficiency, and te some extent security. It is possible
to improve the sitoation by replacing the fixed length network security label with a variable one. One possible
format is a simple variation of the earlier example (fig. 2).

There would still be the four components to the security labels, and the connection type and sensitivity
fields would be the same. The difference comes in the way compartments and handling restrictions are handled.
The entire set of compartments is broken up into equally sized subsets, each being assigned a unique indicator.
Each clement of these subsets is assigned a position in a bit-map, one bit-map per subset. The compartment compo-
nent of the security label is then just pairs of subset bit. maps and indicators preceded by a field to identify the
number of pairs. There is also one additional bit position which would be set only if compartment information
were included in the label. The handling restriction field would be treated in an identical manner. It is important
to note that t lengths of the various fields vary with the number of elements in each of the subsets and that in
the degenerate case, where there is only one subset, this format is essentially the one originally discussed.

Connection Type Sensitivity CI HI

#CS CS#1 bit-map#1

CS#2 bit-map#2

i .-

CS#n bit-map#n

#11S IIS#1 bit-map#1

HS#2 bit-map#2

_ _ _ _ bit-map#rn

FIGURE 2: VARIABLE LENGTH SECURITY LABEL
Cl and Hi1 = Single bits set when compartments and handling restrictions are present in label:
#CS = The number of compartment subsets; CS#i = Subset indicator for bit-map # i;
#HS = The number of handling restriction subsets; HS#i = Subset indicator for bit-map # i

The greatest advantage to such a scheme is that many more security levels can now be represented in a
smaller amount of space. It is now conceivable that hundreds, or thousands, of compartments and handling restric-
tions can be supported on the L.AN at once where before such numbers were prohibitively large. If the number
and size of the subsets are iriltligently chosen, then most if not all of the security levels actually used on the net-
work could be representeml using at most one subset. This minimizes the size of the label and reduces the wasted
bandwidth significantly. This scheme also is not incompatible with the IP Security Options as they are currently
defined.

There is really only one tisadvantagc to using this variable length label. It is more complex. The savings
in reduced transmission time the shorter label brings could be offset during dominance checking and label transla-
tions But if recent trends in increased processing power continue, that lost time will be regained. It also should
be mentioned that this design actually adds inefficiency to the security label if only small numbers of compart-
nients and handling restrictions are needed.

A Security Level Maintenance Facility

Although the introduction of variable length security labels to the network addresses sonic of the perfor-
mance concerns stated earlier, it does not solve the problem brought on by the changing security needs of network

282

users. This section will show that by providing a security level maintenancc facility along with the variable securi-
ty lahbl, this problcm can be addressed and performance actually further increased.

A security lcvcl maintenance facility is a means by which the LAN learns about security levels and their
representations. No longer is this informnation built into the hardware and sofltware. This facility is to reside on
the AC aid be used by the NSO. When configuring the LAN, the NSO citers the needed infortiation, and all as-
pects of tie LAN that depend on this inflonnation are automatically initialized. As change-s become necessary, the
NSO can make them, and, as before, all affcctcd portions of the LAN ac atutomatically notified and updatcd.

What this means is that when the security level needs of the network users change, they can be acconinlo-
dated promptly, inexpensively, andi at little or no interruption of service to the LAN. There should be no need
for recertification as long as all changes are madc in conjunction with presL ibcd policy.

Such a facility gives amother aspect of flexibility because changes also could be made to the makeup of se-
curity levels. For example, if, for one reason or anothei, it were decided not to do access control based oil connec-
tion types, that field could be eliminated. The only field that is absolutely necessary is the sensitivity field.

It also is possible to improve perfoinance. If, during the monitoring of the network, it were noticed
that frequently more than one subset was required to rcprcsent compartment information, then tile makeitp of the
subsces or their size could bec adjusted until that frequency was reduced. In the same way, if mutliple subsets nev-
er OCCu-red, then the sizes might be reduced making more subseLs and shorter labels. This would in a sense b ia
mechanism to fiic 'une the LAN by reducing the avcriage security labe: size.

For this maintenance facility to function, some changes have to be made to the AC and B1U's. The AC
will have to keep other databases besides the MAC and DAC tables and support the interface for tile NSO. The se-
curity checking mechanisms on both tie AC and BlU's will have to be made more flexible, and the BIU resident
label translators now become dependent on the AC.

A parameter database will have to be maintained on the AC. This database will keep information such as
the maximumn numbers of each of sensitivities, compartments, handling restrictions, and connection types, (and if
each is supported). Also the dimensions of the subsets and subset indicators, as well as, lengths of other fields
needed in the security labels and checking mechanisms. This data will be referred to whenever changes are made to
ensure consistency.

There will have to be a database for the security levels and their representations. The elements of each of
th,, coqr-oncnts of security levels need to be_ lnt here alon with their representations. In the case of cempart-
ments arid handling restrictions this is a subset indicator along with a bit position. There is also a database for the
connection types for similar information. Both of these databases depend on the parameter database and cannot be
constructed without it.

There arc two databases associated with cot.nected hosts. The first, the host-type database, contains infor-
mation on different types of host,; and not specific machines. Among other information, the nm"':hines' internal se-
curity label representations, if any, are kept here. This information does not include the assignments of security
levels to those representations. The second datiabase, the host database, is for pertinent information on all hosts
on the LAN. This database depends on the both the host-type database and security levels database and includes
such information as the host type, security level assignments to the representations, if any, and the trustability of
labels coming from that host. Label translators will depend of this database.

All of these databases have to be present and consistent before the LAN can be made operational. T"e
MAC and DAC tables depend on all of them both for format and the entries. The AC's security checking mecha-
nisins must be flexible enough to handle changes in the formats of the MAC and DAC tables. The mechanism re-
mains fundamentally unchanged but becomes a function of the security level parameters. When the AC is started,
its checking mechanisms must be initiali/ed from the parameter database. The same is true for the security label
checking mechanism and label traTislators in tile BIU's. When a BilU is started, it needs to know the level of trust
at can place in its attached host, the format of the network security labels, and how to translate between them and
the host's. For all this, lie BIU depends on the databases on the AC.

The NSO is responsible for managing all of the AC databases and needs to have a trusted means for doing
so. The security label maintenance facility provides this to the NSO. It ensures that when the databases are con-
structed, all the dependencies are adhered to. Furthermore, it will force the NSO to verify that, for all the sup-
ported security levels, if one security level dominated an,., zr, th.-in their representations will pieserve that rela-
tionship.

Before the LAN is made operational, it is fairly straightforward to keep ever) 'ing consistent because ev-
erything is resident on the AC. Changes can bc made without any impact. This, however, is not the case with an
opcrationad LAN, and every change to any database could have great impact.

Changes could affect the MAC arid DAC tables, security labels aud the labl trantslators and thus ongo-
ing connections. For instance, if the LAN were cuirently supporting the mnaxim•ni number of security levels for
the current label size and it were deemed necessary to add others, the paurametcr database would have to be changed
to allow for the expansion. This has the side effect of changing the label si.e and all of the security checking
mechanisms. Also, if new security levels were added or even if the MAC table for a host were changed, this
would necessitate updating the BIU's label translator. If sectnity levels were deleted on the AC, it is possiblc
for a legitimate connection to suddenly become invalid.

283

Whienic\ei tie N SO aticnipts to alter any of hc ni aini enrcte lacility's databases, tile facility inu:t ensure
that tile proposcd changes preserve the consistency of the databases bhtore the changes can be made. To do this, i.
niust exarirne all Vic dalabase entries, using tlhe known database dependencies, lhat possibly could IV effected byl
tile change for polential ill'gal irdlications. When conflicts are detected, tile facility ailows tile NSO to ign•ore
tle original icqucst o0 attemipt to resolve the conflicts interactivcly.

As an example, consider the case where the NSO wants to alter a host's MAC table to allow it to coin-
nmitinnat•. using additional conipartiiwnts. Before this could be done, the nhmaintenance lacility must de termire if
tire coilpartlIent even exists and if there is a record of that host's internal representation tor that compartment
that Can be1" used in label translations. If cilher of these conditions is not nict tile NSO is given a chance to rectify
111 situation by allowing hill to enter the intornationi into the app.opriate databases. Butt these chang.es also
niuist be checked. What if, by adding tie new comnpartmirent, the nmaxinmutn nulmnber of comnpartmuents would be cx-
ceeded? Once again tile NSO will N- given tire chance to correct the inconsistency by increasing the maxinmum pa-
rainleters or canicel all the currint proposed changes.

As a second example, consider a situation where tile NSO is trying to deilete a conmpartment. This cannot
,, done until all reflerernces to that compartment in tile dependent databases have been elininated. These include en-

trio; ill the MAC tables as well as entries in the lhost,+ database. As before tie NSO can deal with tile potential
inconsi.stcncies as they arc detected. If all the depcldencies in tire databases arc coisidced when altcrations arc
made, then they should be able to bI kept consistent.

The maintenance facility's job is not completed as sot .; as it determines that tire AC databases can remain
consistent after tile NSO's proposed changes are made. It must examine tire state of tire network for potential
problems brought on by the chranges. If any are detected, the facility must reach out onto tile LAN to correct
them. Consider tire previous two ex-imples.

In the first, an addition was made to a host's MAC table. Before that host could possibly open a connec-
tion usinrg the new compartment, its BILJ would have to receive an update to its label translator, a rclatively mi-
nor effect to tie LAN. But if, as suggested, the maximurn number of conipartments had to be increased, the ef-
fects to the LAN are more significant By increasing the maximum compartments, the number and/or size of tire
conapartmoent subsets would change. This could, in turn, alter the size of the network security label. If so, thie 111-
cility would have to adjust the parameters for the security checking mechanisms oil the AC and each of the BIU's
along with their label translators,

In tire second example. dellteing a compiartment would necessitate the updatine of the label translators of-
all thie IU's that previously could use that conipartment to rellcct tire change. What if there wcre active connec-
tions: at that level? As part of tie NSO's tota! capability, there would be a facility to terminate connections.
The mainternance facility would have to evoke that power to terminate what would now be an illegal connection.
As a more considerate alternative, tihe facility, at the disgression of the NSO, might be allowed to wait for tile
connection to terminate naturally.

A lBelittlement of Potential Drawbacks

When tile s3cUritly label maintenance facility is modifying portions of the LAN, service may be temporari-
ly suspended. Tire magnitude of the changes will determine the length and extent of the interruption. If for in-
stance the change only affected one B1U, only that BIU's traffic would be delayed. On tile other hand, if the imnake-
up of security labels were to be changed, then all traffic on the 1.AN wou!d be stopped until the change was --oni-
ploted. Actually traffic between somne hosts would be able to continue until one of the involved BILl's is notified
of tie changes At that point communication would halt and not resume until both had been notified.

The biggest drawback to being able to dynamically update those aspect, of the LAN that depend on securi-
ty labels would perhaps be this interruption in n~ctwork service. If tire network were large with lots of open con-
nections, some changes could take a while and delays would be long. Requests; lor new connections would have to
wait adding further to the delay- There is also tire question of the extra burden on tire AC. Cair an already busy
AC hrandle tire extra work of'supporting the maintenance facility?

Fortunately, such changes should be infrequent and, when made, are in support of legitimate user require-
ments. Most chtnges would fall into tire category that do not have wide-spread effects on tire LAN. Changes,
such as in tire earlier example of increasing the maximum number of compartments, that have great impac, might
never be needekd, especially if tire initial system parameters were on tire niark. The facility, however, would be
there if needed.

The delays and extra burden to the AC should be infrequent too by tile zame reasoning. Attempt-s ilso
carl be made to minimize interrupted service. For instance tie AC could analyze tie current state of the LAN and
notify the BIU's in an order that would keep their individual waiting times to a minimum. Or, if it were no: im-
perative to effect the changes immediately, they could be queued until LAN usage was low, perhaps late at night.

The NSO could also help nininiiie tire service interruptions by intelligently choosing the order of his ac-
tions. If he were to make changes as a series of smaller changes rather than one large one, ten the computation in-
volved could be greatly reduced. For example, if instead of deleting a contpartent that many hosts still potential-
ly might use and letting the facility clean up the databases, tie NSO should delete it from each host individually

284

bia ore attemipting to edit the sceurity level databa<e. 'Iliis probably is Closer to wkhat in i'lit 1.cua l hppenl.
'Iherce pr obably would be no pr-cssinig need to dclete thAt Colliipartmenclt iunless all Olec hu,-ts oil the nectwolk 11o long-
Cr usd1 it.

1There arc otheir drawvbacks its well. The in ipicliccii tti on of the sec in ty I(' sc Iii a1.11cialC Ii Ic ru ac iiit) w oi I
nlot be all easy task. It adds to the C omnplex ity' of the AC and the IlU s. Thiis \,ill raise the end costi oh llth 1.\
andl complicate any ccrtificationl e Hurts. What policy guidelines would have to bie in place to ensure that ill
0chaniges by the NSO are appropriate? Is thce added uitility and 1lexibil ity worthI the added CXpetise anid e~tllo? 'Ill,:
answers Would ItaVe to rest With thec potenltial users of the NILS LAN.

CONCLUSION

Inl this pajvi it hals been shown that having a f'ac lit) f'or intainainirtg secuity Ic vels oii a Nil S nietwork i
not onl y desirable but quiiite he asible . AlIsi it has been shown that \\'benl used inl Conjui nction \0i1t1 a 'aria1'ic I Cii: ti
secu ritIy lalbel such Iitas the one ipresen ted, that inl add it ion to an added ability to ~on forn to thle chIian gin g sec iiri

nleeds of users, ant increase in performance mighit be achieved. Ahi\tough incorjl)ratiiig this se~urity level ulailniln
naneric f'acility into the AC of' the NIL.S LAN dtoes hiave an c fleet onl con i pie)i anld pci! oi iii ance , it Should be thatl
agaiij C1c and thopef~ully have ni ininial impact onl the day to day operation oh the I AN. Th'le concepts dec~rilcd lie i
currently ar-e kbing implemnirted, and will be tested, at the National Computer Security C'enter.

REFERENCES

11[. Luscoeco, "A Security Modexll and Policy tor a NILS LAN-, Proet'edinip o)f the 10th Natiomnal (iomputuI
,Security Conferen ce, September 1987.

12] Military Standard: 'Jransmnission Cotarol Protocol, MIL-STD- 1778, August 12, 1983.
13] Mfilitury Standard: Internet Protocol, MIL-STD- 1777, August 12, 1983.
14] '1/u' Etherniet, A Local Area Network- Spericifations, Version 2.0, Digital L-quipincti Corp., Intel

Corp., and Xerox Corp., Novenmber 1982.
5 1) 5?W0 I R. Thei lh'oartm('nt Of Defense Information Security Program Regulation, Jill) I 982.

l[i1 Trusted Network Interpretation (y' the I rumsed Comput(er Security Lvaluaijon Cr itcp ja, W(S'-TG -0115, 31
July) 1987.

171 C'DRI. 145. Formal lVraft Suhs.%).tem IDesiiýn Analysis Report - Engincci'rinsý Report: LAýN IriterbIices. C111:
Contract No. F19628-84-C-CO)2, 10 August 1982, Volume 4, Appendix C.

[8] D)epartment of Defense 'iruste'd Computer Security' LEvaluation Criteria, DoD 5200,28-Si'I, lDccenlibet
1985.

[9] RFC 103S, 1),evised IP Security Option, M. St. Johns, IETF. Jantiary 1988.
1101 SfOMI 11 ris.~ted Facilhv Manual, FSD-85-1 1-.S. I oneywell Federal Systems D~ivision, May 1986.
[ill Military Standaird: Telnet Protocol, MIL-sTrD- 1782, May 10, 1984.

285

Extending Mandatory Access Controls to a Networked MLS Environnicnit

R. S. Arbo
E. M. Johmvon

R. L. Sharp

AT&T Bell Laboratories
Whippanty, New Jcrsey 07981

ABSTRACT

We present a design of a software package that allows multi-levcl -,-cure (MLS) systems to securely
communicate without modifying or trusting the existing network applications. The package resides in
the security kernel and provides label passing, secure session setup, network trusted path, and auditing.
Also included is a description of an automated intcrfacc to a STU-III encryption modern.

INTRODUCIION

Mandatory Access Coiitrol (MAC) involves three things: an access request, the label of the subject, and
the label of thW object. When the subject and object reside on the same host these pieces of information
art: readily accessible. When the subject and object are on different hosts the task becomes harder.
Typically a new subject is c~eated on the host where the object resides to represent the original subject.
The label of this new ,ubject must iininnhim, itlyi renpre.-.ni Lh.- Lnbe! of the ,.original sub'e-t i'l
times. If not, MAC policy may be violated. In addition, this pairing of subjects should be recorded in
the object host's audit trail. This will allow a security event to be traced back to the actual uset.

Most networking software does not recognize labels or concern itself with audit trails. Wc could rewrite
the networking software to include these capabilities, but then we would be trusting this software, which
would increase the size of the Trusted Computing Base (TCB). In addition, it would require a large
maintenance effort as new releases of the software came out as well as delaying these releases.

Our solution is to use the capabilities already offered by a Multi-Level Secure (MLS) host to build a
security wall around the networking software. The networking applications remain untrusted and
unaltered. After the initial connection is made, the two kernels exchange labels and audit information.
We have developed a software module called TSES (Trusted Sessions) that is implemented in the kernel
to provide this functionality. The module is described in section 2.

The solution still requires the user to provide authentication information (password) to the called host.2

This authentication infomiation would normally pass through the untrusted network software on the
caller side. For this reason a trusted path capability has been developed to bypass the network software
for tra-asmission of sensitive information. The mechanism that provides this function (TPATIt) is
described in section 3.

We make several assumptions about services provided by the underlying network software and
hardware. These assumptions are outlincd in section 2. To provide a complete solution we develop"d a
secure pt)int-to-point network that satisfies these assumptions. The network is based on the AT&T
STU-Ill terminall']. The STU-III is an encryption telephone/modem approved for transmission of all
U.S. Government classified information. The interface to the STU-11I is described in section 4.

I. Or.ige Btox.* tenionology.

2 In this paper %%e rtfei to host initiating the call as the "caller" and the host receiving the call as the "called".

Q A '&T l tell IaNoraloncs N9

286

Thei secure operating system used for this project was AT&T',; System V/MLS.t' ,t. System V/Mil-S is a
secure version of AT&T's UN1XQ9 System V operating systemi.3 Many o1- thC details Of theC
implementation are UNIX-specitic and somec knowvledge of the UNIX operating system is assumied
throughout this paper. I lo%%cvcr. thle concepts used and discussed in this papecr should be relevant to any)
MLS operating systeml.

ISPS (TRUSTED SESSRIONS

1'SE.S is a sessions-oriented label enforcement dIriver. It is designed for usC in full duplex network or
point-to-po~int communications. A TSlES drive, is require(] onl both the caller host and die called host.
TSlES's l)U)L~ iS to unam311biguously pass the caller's labexl and other identification informiation to thle
c:alkd TSlES, and to restrict dhe serner in tile called host to operate only at this label. The informiation Is
passed via an exchange bletween the caller and called TSES.

Ilijgh Level Issues

In this sec tion we discuss the high level characteristics of- TISES and sonit, problemns that wec general to
the dlesign of MLS network interlaces.

Asmuuxptions of net-work ser-. ces -TSES trusts the network below it. It assumes thle following service
features:

*Error free daita transmission.

*Data arrives at thle dtstination In thle order it was written.

*A "Closed" network, that is, the hosts that canl be contacted fronm any TSLES po~rt wili have a TSLES
on theier pori(s).

*Data confidentiality (secrecy), pioteCtIon agairi~t disclosure of data to) any but thle intended rce:ipienit.

*Data Integrity

Although thle above requirements are certainly not trivial, they are feasible and could bN satisfied by a
closcd] l'CP/l1t . network.

TFransparency A"d otblty- iSlES is transparent to applications and networks. TSES is also highly
portable. Portability requires that 1'SIE.S make the fewest assumptions abo~ut thle behavior of applications
and networks. TSLES makes no assumptions about the behavior of thle network, only the services it
provides. The only assumption alxout the be-havior of the application is that the server excutes a
nmoditied version of the UNIX login programi.

Protocol Ifierarbhy - TSLES sits onl top of a trans~port provider. This can be, a 'real" transport provider
like TCP or it nmightlit e a lower layer as in tile case of network stacks that do not require a transport
layer, for instance, anl RS-232 po~rt driver. More inimportnt than TSLES being at any pa~rticular layer.
IS ES should be placed directly uindcnicath thle networking application.

Restrict net'.'ork session to a single label - Iecausc network connections allow dlata transmission in
NAt directions, both sidles of any' connection must have equal labels to avoid violating the security

3. S~ sicrii V/MIN eicwd for-,nal NC'AC evaluation for the III Ornargc 11OOIk rating ;F) Os10-itCf of IQ9tS It is c.xpecied that final
mhard of the It I rating %ill tw;cur in (Xiot'r, I'989 Systemu V/MIls is the first Fortable secure operatinrg sysirns and has ht-ca

,otdto scver-at vendor's Architectures.

287

liodiy. 1 or Instance, if thle caller weie lablvetd 1. NCLAS SIIILl) and the Called 'Acre Llabelcd SI CR1.1"
rcad,, initiated by thle caller would violate -no read up" and %krites jiuitimted 1iy tie call-d %kould %iolatc

Urutmed listener - Tile listener proce~ss over I SLS oin thle netw~ork porti Must ;s'lIOrIlI sescal funuction%~
which requiret it to be trusted. These I Lilictons include: caller 31ut1HM-uanlOn. TCIlalX.. hug the DCt~oAk p10r1
to the lats' oi'ta.incd by ISi:S. executing the rvquicstcd server with the appropriate lube I. and I CStiC ict g
thec Caller's session to that single label. The System V/NIl.S version of login atrcad) take,, carc ki of thse
tasks,. O1nl) iltiliol add~tiois were miade to support iSES. 'luts restricted nctkork appl ication"s it oll>
those that used ioxinf.

Netimork labels - System V/MLS supllkuts labels with up ito 2155 k-vels and 10,24 categories. It would
be mipractical to require a uriifoniu ijteqrprtation of labels across all hosts onl a Loge networK.

F~teroc even it this were roq.uired, it would be, difficult ito entorce. To alici late thle mituattoli.
TSES piovidecs network labecls, that are uriitonuly initerpretd across Lit: netwAork. Theni instead tit [tic
caller ISES passing a host specific label, it passthe network repre~sentation of this label. Oin ifi
callted side, tile netwvork label is niaplsvd to zhat host's equivalent label. It die cal led host does not has e
ani equiivalenit label, the connection is denied.

9OutgiNg portf - A problerit arises wAhen trying to supportn Outgoing porS()ts oI m ulti -level sec-ure systcni.
Since the ilnvtc',r opens the piort for both reading and writvng, tlie invoker's label Inns, match that ot [the
liort. It would be wastleful to restrict a piort to a Single label since a system coold h~ae tip to
unique111 labelsN. iliCICefui , theC Ini tIliust be7 a(tCcSSIIIIC 1-fi lita Sal ucr of' LaIhsls(il'Nc silopij%)t
H owever, allowing simultaneous access to the sdtlle jsu~rt b) subjects ot unequal labels would violatec
security piolicy since one subject might be able to read~ another's data. Our solution Is to save the labelI
of tile suibject that tirst opened thle TSES piort. If any, other subjects subsequently openm tile poKrt (betorc
tile first subject closes tile port), TSES checks their label for equality with tile first subljects label. For

examlple, if' a SECRET11 and an UNCLASSIFIED prtwcss both tried to olxen thle %.title outgoing I StS
porit, tile prkxess that got there first would succeed and tile othler womuld f~ail.

Imiplemientation -TSES h~as been implemented in two vetsions. li has becen implemntcned & ;I
SIRE.AMiS driver linked over the transpiort provider arid as a character-based psejudo driver for use over
nort-SIRLAMS drivers arid ports (e.g., IRS-232).

Miechanismi

This section diseusscs the actual mechanisms used to implement the design. Figure I dep~icts thlC data
flow betweeni TSES modules during a remnote login.

(Chat -To be transparent, TSITS must allow the caller uninhibited access to the network so that it canl
establish a connlection to tile called side. TSES assumes ilhc network is secure-, hence It does not
interfere in corninlunieat ions btx-ween thle caller and the network.

At sonme point, the caller TSES must transmit the caller's labiel. If it sends thle label beforc thle
coinnectionl is nmade to the other TSES, it may interfere with the connection setup and/or tile label may
be- lost, For this reason, die called TSES sends a unique stuing of characters back ito the caller TSES ito
indicate that the conneet~on has been madie. The caller TSES looks for thil% string in all of' thle reads. it
pewrboriis oil behalf of the applicat~ion. When this string is encountered, the caller 1 SES senids tihe

4 UNIX t11innainltoni

5. SIRFAMS is a AW& UNIX mechanism that attows stacking or prottxwd rniultus vrnitim the kenirrt

288

CALLER CALLED

~1~

user app•lplicationa plictio

26 Login

TSESI LISES_'5
3

nt driver __ nej driver

Physical Network

1. user invokes application 4. user logs into called host
2. caller application establishes 5. login retrieves caller label

connection to other side from •SES
3. caller TSES passes label to 6. login labels TSES port and

called TSES application

Figure 1: Data Flow During a Remote Log-in

caller's label to the called TSES. The exact string can be set by the system administrator. The string
can be as long as desired. It should be a string that is guaranteed not to come from the network during
connection setup. This restriction only applies during connection setup; there is no restriction placed
upon data once the connection is made.

Spotf protection As already mentioned, th. caller TSES allows the caller unrestricted access to 'he
network. We guarantee that the label read by the called TSES is not a phony label from the caller
appFWation by having the caller TSES tag the bona-fide label with a unique string that could not have
come from the application. The called TSES is hence assured of its authenticity. This is very similar to
the situation in which we had to let the caller TSES know that the called TSES had been reached by
returning a unique string. However, here there is the possibility that the caller application will try to
spoof this unique string. Therefore the caller TSES checks data written by the caller application to be
sure it doesn't send out this string. As before, this restriction only applies during connection setup, and
thus is quite acceptable.

Trusted listener to enforce label - TSES must prevent communications between tde caller and the
called application until the called's label is changed to match the caller's label. The chat ensures that
immediately after the network connection is established, the called TSES has the caller's label. Login
restricts the session to this label before turning the connection over to the application server. System
V/MLS uses a sessions database file to control the range of labels between which a subject can switch.6

6. System V/MLS support% dynamic relabeling of subjects. In other words, a user, can change his operating label from
UNCLASSMIED to SECRET without logging off the system (as long as the user haa the appropriate clearance).

289

If login detects a TSES port beneath it, it sets the session minimum and maximum label to that of the
caller. Also, the network port (i.e., the called TSES port), is labeled with the caller's label. This doubly
ensures that under no circumstance, can the called application ever change its label and violate the
security policy. It also protects aý,ainst other processes sending and receiving data from this port if not
properly labeled. System V/MLS provided easy-to-use mechanisms for setting session limits and for
labeling devices.

Auditing - System V/MLS provides an extensive security audit trail (SAT). TSES has added its own
probe point to the SAT driver. It is used to record network accesses on the called host. In particular,
the caller's real user ID, process ID, and hostnamne are recorded. This allows remote activity to be
uaced back to the point of origination, when the audit trails of the caller and called hosts are analyzed.

Label mapjýin - The exact mechanism used to support network labels is an extension of the standard
(non-networking), System V/MLS labels file. A new element, the network label, is added to the label
structure. The labels file-searching library routines are enhanced to handle this new field.

TPATH TRUSTED PATH)

One of the goals of our design was not to have to trust network applications. Unfortunately when a user
logs into a remcte host, the password must pass through the untrusted application (e.g., telnet, cu). It
would be a simplc mattcr for the application to steal the user's password and pass it on to another user.
This other user could then log onto the remote host and obtain all information authorized for the original
user. This would circumvent mandatory access controls and render useless all identification and
authentication measures. An alternate data path is needed for this sensitive information. The result is a
network trusted path mechanism for use during remote logins.7 A detailed description of the process
used to implement the trusted path is shown in Figure 2.

t igh_ Level Issues

A B2 trusted path, as defined by the Orange Book (i.e., for stand-alone systems), requires that only
uusted software may exist between the user and the TCB for initial log-in and authentication. System
V/MLS provides a B2 trusted path capability. However, in network configurations, a user may perform
a remote login any time after initial log-in to the local host. If a trusted path is required between a user
and a remote TCB, that implies a trusted path through the local TCB. The user must be unambiguously
assured that this trusted path has been established. We exploit the fact that the user's terminal is
directly connected to the kernel (hence the TCB) of the local host for this assurance.

Initiation of the trusted path - We had the choice of letting the user initiate the trusted path or making
the login process initiate it. We chose to let login initiate the trusted path to make it easier for the user
and to ensure that the user could not bypass the mechanism.

Data Transparency - A spccial string must be sent over the network from login to request set up of the
irusted path. We call this string the Request Trusted Path string (RfP). The RTP string does not have
to be a secret. However, it needs to be something that can only be sent by a trusted process such as
login. If anyone could send this string, then a user could be spoofed into believing he is talking with a
trusted process like login. To ensure a non-trusted procc3s cannot send this string across the network,
we use a process known as "data stuffing"'15. Suppose the RTP string is "1234" and an untrusted

7. As it turned out, the resulhng capability can te used for a 13 trusted path within the local system or across a networit

290

CALLER CALLED

telnet login

TPATH(a) TPATH(b) 1. TPATH (c)
L - --- .:10

TSES TSES

tpermt• ial net driver net driverport M~vcýr [{

physical network

1. The user executes teinet which sets up 7. TPATII(a) chc-:ks to see if the
a connection with the remote host trusted path is set up and signals

2. login prompts for lognarne and die TPATH(b) that it is ready
user reponds 8. TPATH(a) informs the user that

3. login signals TPATH(c) to set up a the trusted path is set up
trusted path. TPATH(c) sends the 9. login requests the password from
RTP string to TPATH(b) the nser. The password is passed

4. TPATH(b) receives the RTP string and along the trusted path in the kernel
prompts the user for the ATP string 10. login sends the RTP string to

5. TPATH(b) signals TPATH(a) that the cause takedown of the trusted path
trusted path is set up and waits for 11. All remaining communication goes
TPATH(a) to signal that it is ready through telnet as normal

6. The user enters the ATP suing
and TPATH(a) catches it

Figure 2: Data Flow During Trusted Path Setup and Takedowa

process needs to send the string across the network as part of the session. The string will pass through
the kernel on the remote hosL After seeing "123", the kernel inserts (stuffs) a "0". The string goes
across the network as "12304" which will not be interpreted as the RTP string. When the kernel on
the local host sees the "123" it checks the next character. If it is a "4" it initiates a trusted path. If, as
in this example, it is a "0", it will strip the "0" from the string and send it on to the user. This technique
effectively allows in-band signaling that is completely transparent to applications.

291

Setup assurance - The user must be assured that a trusted path has been set up. For example, a trojan
Ihorse program on the user's host could make the user believe a remote connection was made and request
the user's password, masquerading as the login process. Since the real login never got executed, the
trustcd path was not set up. The method used to assure the user of a trusted path had to be non-
spoofable. We explored two alternatives:

1. After the trusted path is set up the kernel sends a special string (password) to the user to prove to
the user the trusted path has been set up. This password is known only by the user and the
kernel. This is referred to as the "kernel password" method. The password would be randomly
generated by the kernel and given to the user at initial log-in to the local host. This method
required the user to remember this password throughout the sessi3n.

2. Login initiates the trusted path, however the user is requested to enter a special string to
authenticate set up of the tusted path. We refer to this string as the Authenticate Trusted Path
(ATP) string. The ATP string is caught by the kernel which checks to ensure a trusted path has
been set up. If not, it then returns a warning message to the user. If a trusted path has been set
up, it confirms this fact to the user and enables the trusted path.

The second method was chosen due to its cleaner user interface. Figure 2 presents a more detailed
description of the process used to set up and takedown the trusted path.

Because the user's terminal is connected directly to the kernel of the local host, we can be assured that
nothing can interfere with the transmission of characters from the terminal to TPATH. When TFTATH
sees the ATP, it informs the user as whether a trusted path has been established. The ATT suing used
to enable the trusted path is the same fn)r all users and can be publicly known. The AlT string should
be short and something the user does not frequently enter during a login session. This type of limitation
is not unusual; most network connection processes have an escape sequence (e.g., "-." for cu and "-q"
for telnet). Using this method, even if the user enters the ATP string during a session, the worst that can
happen is that the user will get a warning message from the kernel that a trusted path has not been set
up.

Multi-ttop - This design accommodates multi-hop network sessions. Multi-hop is the capability to log-
in on a remote host and then from there log-in on yet another host. The only additional TPATH
functio-ality needcd is for any kernel that is acting as an intermediary to just so up the trusted path and
pass on 'he RTP string to the next host. No special ATP string is needed on the intermediate systems.

T usted Path Takedown - Takedownrof the trusted path is also initiated by login. A second RTP
st.ing is used to signal the TPATH modules to take down the trusted path. No ATP string is needed
from the user.

Mechanism

Figure 2 provides a description of the design implementation. TPATH is the name of the kernel module
that provides the trusted path. A TPATH module is required over all user ports8 and all network ports.
We use telnet in our examples; however any network access process that connects with login at the
remote host is valid. In the example, the lower case letters a, b, and c are used to differentiate between
TPATH modules.

8. A user poit is the connection to the uset's terminal. We art currently assuming that all users fire comnected to the network
through a Systemn V/MLS host and .here are no terminals connected directly to the netwodrI.

292

TSTU (TRUSTED STU-I" INTERFACE)

They are a number of methods for providing the underlying serviecs that TSES requires. In this section,
we describe one solution that provides connectivity between MLS hosts across the public-switched
telephone network. This solution incorporates weparate STU-111 (Secure Telephone Unit) hardware in
conjunction with host-resident TSTU software. We briefly describe the design and features of the STU-
III product before discussing the overall solution in more detail.

STU-I11 (Secure Telephone Unit)

The AT&T STU-I1 is a communications terminal capable of transmitting voice or data, in either clear
or encrypted form, across a phone line. It is a government-approved, unclassified (when not keyed)
terminal that is designed to sit on a desk top. It is similar in appearance to a standard telephone. The
unit contains an intelligent modem capable of transmitting information at 2400 or 4800 baud and a
COMSEC module that performs the necessary encryption for secure voice and data transmission.
Keying information for encryption is supplied by a "Crypto-Ignition Key" (CIK). This is a ,rmall, key-
like device that must be inserted in the STU-III unit to enable operation in the secure mode. The key
contains memory and supplies encryption information to the STU-11 COMSEC module.

Two STU-III features essential to the TSTU development effort are Remote Operation mode and Remote
Authentication? The first enables the STU-Il1 to be controlled remotely by a computer through an RS-
232 connection. When the STU-Iil is configured in this mode, it can optionally be configured to
provide the second essential feature, remote authentication. Each STU-III CIK contains authentication
information which Iidici s a 1..y. ident.ification number. If remnot authentication is enabled, th~s
authentication information is exchanged between the STU-III's during secure call setup. The calling and
called users are then optionally able to examine this information and determine whether to accept or
deny the call.

TSTU Design Concepts

The TSTU module is designed to work in conjunction with the STU-11 communications terminal to
provide the set of network services required by TSES for secure operation. TSTU sits beneath TSES in
the software stack and handles STU-I1 interface and control functions while assuring that the TSES
network assumptions are satisfied at all times. This functionality enables MLS hosts to establish secure
TSES networking sessions over the public-switched telephone network. The connection can be host-to-
host or terminal-to-host. In this paper, we emphasize the host-to-host capability.

Utilizing the TSTU/STU-l1i solution, the services of connection-onented sessions, information integrity
and information confidentiality are all ensured by the STU-lII. Network access control is provided by
TSTU based on authentication information received from the STU-III during secure call setup.

TS'TU is implemented as a character-based pseudo-device driver that sits directly on top of the standard
character device driver associated with a STU-111 serial port. It is designed to be transparent from above
(to the user, and the TSES module), and it is identical on the caller and called side. The data flow
occurring during the various stages of a secure STU-Ill network session is shown in figure 3. We refer
to this figure throughout the TSTU design description.

Network access control - During secure call setup, TSTU (on both systems) provides network access
control by examining the re:note authentication information received from the STU-Ill. This information
is compared to an access control list which is maintained by the system security administrator (step 4 in
figure 2). After examining the remote authentication infoimation, if TYS'l deteimines that an illegal

9. Olty the AT&T STU .I piuvidcs ihis feature.

293

CALLER CALLED

application
application

6 pLogin1 6

2TSES yTSES

3.TSTU .et inofoTU6_ali etbi•

ac cess accessssSis

Figur3:DtFowD rn aST -I 3etor TSesio

STU

list
list

STU-lIR J. 2SI -HI

1. iUNI p'ucQSN Wnries Canl 4. Called 1sIU passes label
request to the STU-III to login process

2. STU-llJs exchange crypto 5. TSTU's write confirmation
and auth information to the STU-Ills

3. TSTU get info from STU 6. Call is established
and comparecs to access list

Figure 3: Data Flow During a STLJ-11i Network Session

party (as defined by the secusity administrator) is attempting to access cte MLS host., it denies the call
by sending the appropriate message to the STIs"Itev

The access control list is edited by the system saurity administrator and downloaded into the kernel.
The list can be configured as a "good-guy" yist, in which calls can be estaditshed only to those STU-U.ls
using CIK's that are specifically included in the list. Alternatively, it can te used as a "bad-guy" list in
which only invalid CIK identification numbus are listed. If TSTU detects that an attempt is being made
to establish a call involving an invalid CIK, TSTU denies the connection. This flexibility enables eTach
system security administrator to easily define a network access control policy that is consistent with
TSES requirements.

Auditin TSTU may deny access bawed on the accesp control list. Denying acces is a -.curity relevant
event which must be audited. TSTU iccords failed access(in the standard System V/MoLS audit trail.
Successful accesses will be audited by TSFS and by login atid are not audited by TSTU.

Network securitX label - In addition to network access control, the authcntication information
embedded within the CIK's forms a basis for determining the network security label for the call. Each
CIK is assigned a security label at its creation. During call setup, the security label of the CIK at each
end of the call is received by the TSTI.J module within the caller and called NILS hosts. At each end of
the call, the TSTU module calculates the lower of the two security labels and instructs the STUJ-IlI to
establish the call at that level. 294

After the network security label for a call is determined, the TSTU module on the called side translates
the network label into a host-specific security label and passes the label to the trusted System v/NMLS
login program, which ensures that the session label does not exceed the network label for the call (step 5
in figure 2).

Securing the STU-III command interface - The TSTU approach is to prevent the user from ever
gaining free access to the STU-I1I while it is in command mode (i.e. accepting commands from the
controlling computer, as opposed to transmitting the information over the phone line). When a user
opens the port to the STU-III the TSTU software pumps setup information into the STU-III to ensure it
is properly and securely configured. One of the pump commands turns off the capability that allows a
user to escape from data mode to command mode by using a special escape sequence. The user only
has access to command mode during call setup. Therefore, during call setup, TSTU monitors the
information written by the user process to assure that it is consistent with the valid call request
command format (svep 2 in figure 3). This prevents the user from configuring the STU-III in an
insecure mode.

CONCLUSIONS

We have found that it is possible to design a simple network interface that provides security at the B 1
level as defined in the Red Book. Our solution enables System V/MLS to be used in a networked
configuration. Exiting anrlic.atinns and networks can be used without modification. Our strategy has
been to build a security wall around existing networking applications so that they do not have to be
trusted thus minimizing the addition of software to the TCB.

We have successfully prototyped this design over several networks including: STU-III, Ethernt ,
direct-connect, and DatakityM. The prototype employed several network applications such as: teinet,
UNIX mail, and UUCP. We are continuing work in this project particulaily in the area of host
authentication, so that we may remove the requirement for a closed network,

REFERENCES

1. AT&T STU-I11 User's Manual, AT&T, April 1, 1988

2. C.W. Flink and J.D. Weiss, "System VMLS Labeling and Mandatory Policy Alternatives",
Proceedings of the 1989 Winter USENIX Conference, February, 1989.

3. Douglas Comer. "internetworking With TCP/IP". Prentice Hall, 1988.

4. D.E. Bell and L.J. LaPadula, "Secure Computer Systems: Unified Exposition and Multics
Interpretation", EDS-TR-75-306, The M1JRE Corp., March 1976.

5. A. S. Tanenbaum, "Computer Networks", Prentice Hall, 2nd edition, 1988

• Ethernet is a trademark of the Xerox Corportion

295

ON TIlE NEED FOR A THIRD FORM OF ACCESS CONTROL

Richard Graubait
The MITRE Corporation

Bcdford, MA

ABSTRACT

The premise of this paper is that there are some access control policies
employed in the DoD/Intelligence people-paper world which when mapped to the
ADP environment cannot be adequatcly handled by the two traditional access
control policieb, mandatory access control (MAC) and discretionary access
control (DAC). In this paper we will reexamin ý the traditional access control
policies. Then we will discuss one example of a policy that exists in the peop!c
paper world which is not adequately handled in ADP systems by MAC and DAC.
Finally, we will propose one possible sob tion to this problem in the form of a
new type of access control policy.

MAC AND DAC REVISITED

MAC

MAC is defined in the TCSEC [DOD85] as "a means of restricting access to
objects based on the sensitivity (as represented by a label) of the information
contained in the objects and the formal authorization (e.g., clearance) of subjects
to access information of such sensitivity." The TCSEC further goes on to state
the following conditions that must exist mn subject-object MAC relationship.

A subject can read an object only if the hierarchical classification in the
subject's security level is greater than or equal to the hierarchical classification in
the object's security level and the non-hierarchical categories in Ie subject's
security level include all the non-hierarchical categories in the object's security
level. A subject can write an object only if the hierarchical classification in the
subject's security level is less than or equal to the hierarchical classification in the
object's security level and all the non-hierarchical categories in the subject's
security level are included in the non-hierarchical categories in the object's
security level.

In further examining MAC we can observe that MAC policies have three
general attributes associated with them. First, MAC policies define a relationship
between a subject and a object which is not changeable by the owner of the
object. Second, when a subject reads an object and copies its content to a

296

second object, th: MAC' restrict ions iml1 ,,ed upon the firs:t object propagale to
thc second object. Finally, MA C policics arc uniformn across all subjects,, and
objects and are not tailorablv on a subject/object basi. That is to say, if MAC
prohibils a subject from accessing a object of specific sensitivity level, then that
subject will be prevented from accessing all objects of that ',:pecific sensitivity
level.

DAC

DAC is defined in the TCSEC as "a means of restricting access to objects
based on the idcntity of subject and/or groups to which which they belong. Thc
controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to any
other subject (unless restrained by mandatory access control)". As with MAC,
DAC also has three general aitcibutes associated with it. First, DAC policies
define a relationship between a subject and a object which is changeable by some
authorized subject (i.e., the owner of the object). Second, when a subject reads
an object and copies its content to a second object, the DAC restrictions
imposed upon the first obiect do not propagate to the second object. Finally,
I)AC policies are NOT uniform across all subjects and objects. Rather they are
tailorablu on a subject/object basis. That is to :say, although DAC may prohibit a
subjec! from accessing 1an object of specific sensitivity level, DAC will not
nc1ccssarily prevent that subject from accessing otheli objects of that specific
sensitivity levei.

THE TROUBLING CASE OF ORCON
/

We submit that there are applications in the people-paper world which use a
form of access control which is not readily mappable in the ADP world to either
MAC or DAC or a combhiat'on of the two. There are many examples of such
applications, but for the purpose of this paper we will limit ourselves to the case
of ORCON.

ORCON stands for ORiginator CONtrolled. In the people paper world, an
individual receiving a document marked ORCON can only pass it on to another
individual with the permission of the originator of the document. For the people
paper world this policy is workable as one trusts people not to release documents
which they are told are not releasable. The question for us is how we deal with
this policy in the AI)P world where we have subjects that act on the behalf of
people, but unlike people are not trusted.

Let us take the following example. Subject x acting on the behalf of
organization X marks object A ORCON, indicating that it can be released to
subjects acting on the behalf of orgaoization Y, but that tlhe object is not
releasable to subjects acting on the behalf of other organizations without the

297

pcrmission of the originator X. Moreover, any copies of A made by y (a subject
actinjg on tilc bchalf of Y) would be subject io the same policy restilctionl.

"Traditiontal implcmcntiations of I)AC would be inadequate for h i;idling this
situation. Under traditional 1)AC controls, subject y could read object A, and
copy its content into a new object (C). The access control restrictions placed
upon object C would be a! the choice of subject y, the owner ot object C. The
dissemination controls set by the subjects acting for X would be lost. 1

MAC would appear to be more adequate for this task. A separate category
could be associated with object A anc with the subjects x and y. If y were to
read object A wad copy thc data into some other object C, MAC policy would
ensure *hat object C would also be labeled with the category. This would prcvent
subject y from arbitrarily giving subject sonic third subject z (acting on behalf of
organization Z) access to object C. Thus, in this particular instance MAC is
adequate for handling ORCON.

Now let us assume that the situation changes and that a new organization W
(with subject w acting on its behalf) wishes to provide data in object 13 to
organization Y bil not to be shared with X or Z. I'or multiple reasons, the same
category that was used to protect object A cannot be used to protect object B
Using the same category would give subject x access to object B, and that is not
accep•able. Also, the use of th.. same category wou... 'k .. d° " :"":
who was the originator of the data. It would appear that the solution would be to
use another cat egory and associate it with object 13 and subject w and y.
However, While this solution works here, it is not a general puripose solu1ion.

A., the number of originators and recipients rises, so does the number of
categories required to support the isolation of data. Each originator wishes to
maintain exclusive control over their ORCON data. To accomplish this goal it
woo.ld appear that for every object transmitted between an originator and a set of
recipients, a separate category is required. Clearly it is possible (indeed likely)
that the nunmiber of categories required could easily grow to a number that exceed-
the nutiner supported by typical secure systems. Indeed the author knows of
environments that process thousands of flavors of ORCON. Under the approach
just described thousands of categories would be required to support such
etivironme•ts, and this would not be workablc under most secure systems.

1Understanding the distinction between owner and originator is essential for understanding
the ORCON problem. We use the term owner to refer to the individual or subject acting
on behalf of an individual that is responsible for the creation of an object and is thus
authorized to change DAC permissions on the object. Iln contrast to the owner, who is
associated with al object, an originator is associated with the data contained in an
object. The originator is responsible for the data, and for determining to whom the tiata
can be released. This responsibility is true regardless of which object or objects contain
the data.

298

The potential explosion in the ilnulmibcr of categories is not thc only rcason
that categories do not lend themselves to addressing OR(ON. In the pcoplc-
paper world, individuals arc briefed into citcgorics. Categories vre used to
represent a formal "iiced-to-know" whose characteristics arc uniform in thcil
meaning !nd restrictions based on policy set at the national level. For this Icason

categories associated with data (and the associatco clearance on peopie) arc
accepted across I)oi) and intelligence organizations. The same is not true of
ORCON. For ORCON there is no central 'clearing house' or guidebook that
determines which category should bc associated with a particular type of data,
thus indicating which user should get access to the data. Categories
corresponding to formal need-to know cannot be assigned to a subject if the user
on whose behalf that subject is functioning has not bccn briefed into that
category. In the case of ORCON, it is strictly up to the originator of the data to
decide who has "need-to-know" for i.e data. Indeed it could bic argued, that by
using the MAC categories to address both formnal need-to-know (for which the
MAC categories we'c dcsigned) and the more ad-hoc OR('ON need-to-know,
one is actually corrupting the use of the MAC categories. At the very least, for
category based ORCON to be viable, it would be necessary for the system to note
whether the category was based on formal need-to-know or ad-hoc need-to-know,
and in the case of the latter it would also be necessary to note the originator.

SUMMARY

DAC is clearly inadequate for addressing ORCON as the a cess restrictions
imposed by the originator would not propagate to new objects. MAC may be an
acceptable solution to ORCON when a very limited number of ORCON 'flavors'
are involved. However, the large number of ORCON flavors required by many
applications would quickly exhaust (he available number of categories on most
secure systems. Liven if the nuimber of ORCON categories required was not an
issue, MAC based categories do not support any mcchanisnm that would allow for
the association of an originator with the category. Therefore, MAC is not anl
acceptable general purpose solution to the problem of ORCON.

In short, neither MAC nor I)AC adequately address ORCON in the general
case.

POSSIBLE SOLUTION

From the previous discussion we can define the access control needs for
ORCON is follows. First, ORCON requires that the access control relationship
between a subject and a object is not changeabhl by the owner of the object (the
same as in MAC). Second, when a subject reads an object and copies its content
to a second object, the access control restrictions imposed upon the first object
pbopagate to the second e',jcct (the same as in MAC). Finally, the access Control
restrictions are not unifol,., across all subjects and objects. Instead they are

299

ai11l-ni' kll o a Subihct /obj ccl basis (I lic ,,;itle as in D A C). Thius, what is n ceded
lot OR(O P() is pdlicy that li as two of tile chat acici lst ies of MAC(, and one of
those of' 1AC.

N1 shni it as a so hit in i a t hild foltin of" access Conti of whilch we C all
Pt opagatcd Access (onti io! (PA C). PA C shit tcs some of thle chiaract erist ic, (-oI
both MIAC and I)AC. As with 1)AC, PAC may be maintained In list forml in a
PAC list o)i PA('I . PACI . (Ilkt: ACI .s) are associated wvith objects independent
of thec sensitivity label associated with thle object. Thus, like)A C, PAC Is
tailorahle on it ,ubJcoet/ohjcct b~asis,. Unlike ACI s which indicate read and write

acss (nniong others), IACLS 011ony areC uISed to indicate read access. TI'ls is
reason able, as thle ORCON problem is one of uncontrolled reading.

Another diffeýrence betweeni lAC and PA C is that the only user authorized
ito chiange i PA CL is thec originator of thle PAC(I., not thle owner of thle Object
with which the PA ('I is associated. III Order to piovide thle originator thie abillity

to cliangec thle lPAC(of' an object, thle Identity of' the originator miust btc
associ:tted xv t h tlte objct

Thec most import anii trait of P/1 TIs (and their associated access control
rcsti ictiotis) is thla PACI * propag.attL to new objects. Whenever anl authorized
subtject reCads anl object, tilie PACl. of' the object becomes associated with the
subject. Any) necw object created b~y the sub~ject acquires thle 1'AC'. of' thle
subject. Ini this regard~ P1ACl .s rescimblc: thle floating informnation labels of thle
Comtpartmnented Mode Workstations ((CMWs) IWOOl)871 which also tenld to
propagate. Note that this illustrates two additional differences between PACI s
and traditional ACI .s. Ilirst , ACI s arc only associated] with objects. PAOI., arc
associated withI subjects and objects. Second, 1A.Cl-s propagate along to objects
and subjects. 1Traditional AC Ls do ii 0l propagate. PACLs are mainitained with
subjects and obl~jeets so long as thle sul~bect/objeet contains data.

ILLUSTRATIVE EXAMPLE

The use of* PACl~s may be better under-stood through example. Originator
X (via its surrogate subject x) creates object A and associates a PACI. with object
A. The PACL indicates that X is thle originator of the PACL. and that only
subject y (surrogate for recipient Y) anl I-Cad thle object. Subject y reads the
object and in so doing thle PACE. becoines associated with subject y. If subject y
creates at new object C, then the IPAC1, becomes associated with object C. While
subject y mlay be thle owner of object C, it is not the originator of ihle PACL. As
such, it caninot change the PACE, and thus cannot give anly oth er subject read
access to object C. I owever, because y is thle owner of object C, y can still
impose additional 1)AC-based read restrictions onl object C as well as DAC-based
write restrictions%.

300

Conibining PACLs

Notc that P~AUL., may b,: cobinelnd. Let 1us cotinueIII Wit the (:uI lent1
ex~ul pie11, btit no Ot let s also asmitneL that soime stibject w (working oin b)ch alt of
Originator WV) creates, object B~ and associate,, it PACE. with object 11. Tihi-s
PA (1 in diciites that Wi ly 1,LIbjck-t, y and i can read object 13. To avoid con tusio ii
we will refer ito this l'ACI . s I'ACI..¼ (and thle PACE. associated with obje:Ct A
is PACI ..X). Subject y, which hias alrecady read object A, nlow reads objcti 11.
No rilizlly PACI- .VwonIId becomel associated with subject y. I lowever, PACI -_X
is already associated with subject y. Therecfore, the two PACLs become ANI)-ed
together and thle result ant PACI. ikall it I)AACI,-XW') is associated with subject y.
PACI.XW consists of those subjects wh-Ichi are common to both PACLX and
IPACI-W (in this% ease subject y) and lists both originators (inl this case W and
X). Any object subhsequenitly crecated by subject y will have IPACL-XW associated
with It. This is reasonable, as sub~ject y contains ORCON data fromi both X and
WV, and therefore the p mirission of both subljects: (originators) is nee~ded to
release thle data to any new subject.

Resetting PACLs

One consequence of thle PAC mechlanismn is that all subsequent objects
cre~iiCIIiby OI . t - I.. X~hI tis n~nrrN-.C~j

create~~hil bh, -h -1bjct.....t_ is,' FLA r rr.
it may he operationally uindesirable in cases where thle subject is somec general
puripose, process (e~g., editor). What we really want is for the IPACI~s to be
propagatled to new objects only so long as the subject contains the ORCON data
th at cauised the(PA ('1 to be set. We believe that one possible way that this result
call be achieved is if' thle PACJ~s lie implemented onl a UNIX-based CMXV.

Under UNIX, suibjects, which are represented by p~rocesCse, are given life by
thle fork and exec commands. The fork command creates a new process from an1
originathig (parent) process, and that new process is a duplicate of thle original
process. The exec command purges the new process's address space (eliminiating
all of [iehrc~ess's mnemory), and(replaices it with that of a new code body
specified by fihe exec. The PACI. associated with the process represents the data
currently in the proce-ss's address space. When the process space is purged (by
thce xec) the associated PACL is replaced with PACL associated with the code
b)ody specified in thle exec. If tile IPACL of the excc code body is null, then thle
PACI. of thi. new- process is set to null. Note that the scenario, just outlined is
similar to iiow the ClAW hari.dles floating labels wheni processes are forked and
exec-ed. The PACI. of a process may also be re3et by the intervention of a
authorized user who is privileged to rest thle process's PACL.

301

LIMITS OF PAC

We mnak e no ci aim thtat PA (i\ as strong as MIAC. Given the nature of thle
algorithmis iiivolv4d in calculating PA C, vce readily accept thle aigui[lelit that it
lacks the ni athematical simplicity of MA C.. H owever, the nion-propalgation
characteristics of PAC would appear ito ,.ink it far moie secure than traditional
DAC'. Nor doi wc doubt thait P'AC may bc subjectl to a variety of covert channel
threcats (though %Ae hiave no idea as ito how largec the bandwidth of such covert
channels might b;:).

InI some ways PAC is ninre li~ke MAC than 1)AC. IIn particular, PAC~s
should be !associated with storage objects (as aire MAC sensitivity lab~els) rather
thlan named objects (as arc I)A(AC I s). T he reason for this restriction is that
[named objects, (unlikc storage objectis) ire allowed to overlap (e.g., views in a
INIlMS). TIhis is not acceptablec for PAC , as such overlapping may result In
unauthorized data flows.

We do not suggest thant PA C should be a it-pkiccmnlct for traditional I)AC.
We beclcve l)AU is tile appropriate aiccess control1 system for addressing privacy
nteeds th at arise in) the lDol) anid non-IDoI) world. For those systems that require
thle enforcementl of ()RCON (or ORCON-likc functions,), PAC is a useful and
Ileeded suppeninen; to I A(' and MAC, In suich systems, access lby a subject to
an obiect would reotiirt' that NI AC(PAC, and ii)A C -allwtugn iI-V h.. o.,

Ibctore aiccess I., vrmratcd.

OTHER APPLICATIONS OF PACLS

We have Lised ()RCON as an exmuplc of where a concept !uch as PACI s
would be LIsefuil H owever, addressing tile OR(ON pirob~lem is not the Only
uitility of iPA('I s, PACI s could ailso be enlploycd for handling release markings.
Release rinak ings ire rinark ings that1 o fteni appear oni printed output in addition to
sen~sitivity labels (categories anid hierarchical levels). Release markings indicate to
wh ichi coun tries (othecr thzan the US) documents can lbe released. Thus, a
documenit mazrked TS RI]. UK can only be released to a TS cleared individual
who is either a member of US or UK. Similarly a document marked TS RELl
ROK can only) be released to TS clear person who is either a member of thle US
or a member of the Republic of Koreai.

As with OR('ON , only the originatzor of thle dat a in the document canl
determine to which nation thc docunlenti canl lb released (thle originator can also
auithor-iie thle release of the docurnent to a foreign national not covered by the
release mnarking). Release markings, likc ORCON, do not lend :hernselves to
being -supported by traditional MA(C categories. As with ORCON there is thle
concerni about rapidly mutilplying of nucded categories to deal with the various
flvors of release markings. Another problem with applying traditional MAC
categories it) release mrark lnigs, i:, that release markings do not combine in the

3 0 2

m

REFERENCES

DOD85 Departnent of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, December, 1985.

WOOD87 Woodward, J.P.L., "Exploiting the Dual Nature of Sensitivity
Labels," 1987 IEEE Symposium on Security and Privacy,
Oakland, CA, 1987.

303

,arc ay evIays catc1 oics. \W/l1v cicaeorics comb inc the icsuit is norc restrictivc
SCI of cItc.,(rie. C.g., AB is more restrictive than A or B). Ilowcvcr, as relcasc
markings corubinc the result is less restrictive (RI-I. UI, ROK is less restrictive
thain R-I. R,()K or R,. UK).

We also believe that PA(I.s may be a useful means for addressing the Virus
threat. Vikiuses lend to propogalc whicnver the code body containing the virus is
rcad or executed. Ani object with a PA ('I associated with it canno, be passed oni
to anotheer subjccl (user) without t h1 pcrtmission of the originator. Thus, a virus
infected objcct whichli has a PA(T'I associated with it, can only infect those user's
processCs that were Originally given permission to access the object. While this
will not stop viruses, it will slow down their propogation.

SUMMARY

Th'bis f1pcr has shown that there exists at least one application in the
people-paper world (i.e., ORCON) which uses a form of access control that is
not readily mappablc in the AD)P world to MAC, I)AC, or a combination of the
two. Tho paper has durinonstratcd the inadequacies of attempting to employ
1)AC or MA(' to solve the problem posed by ORC(ON. We have aiso proposcd
i , tl,is :p:'r a third form of acccss co•ltrol, PA C, which has the subicci-object
spcItIcily of I)A C, but the tigh hold, and access propagation restrictions of
MAC. PA(C appcars to be an ideal ncthod of addressing ORCON.

This paper was originally spurred on by the Intelligence community's nced to
dcal with OR('ON. Hlowcvcr, as we have noted, there are other applications in
other branches of the DoI) for which PAC is appropriate. As an example, we
believe that PAC is an excellent tool for automating controls on release miarkings.

We note in passing that PAC may also be an effective way of dealing with
proprietary data, especially if there are multiple contractors using the same
system. For somc linited applications i, may be an appropriate way of curtailing
the threat posed by Trojan horses and viruses.

Finally, wc have shown how PAC dovetails nicely with tile floating label
concepts of tine (MW. We believe that the CN4W would make an excellent base
to prototype, PA(C and denionstrale its feasibility.

304

The Digital Distributed System Security Architecture

Morrie Gasser, Andy Goldstein, Charlie Kaufman, Butler Lampson
Digital Equipment Corp.

85 Swanson Rd., Boxborough, Mass. 01719

Abstract

The Digital Distributed System Security Architecture is a comprehensive specification for security
in a distributed system that employs state-of-the-art concepts to address the needs of both coinmercial
and governnmernt en vironmnents. The architecture covers user and sys:tein authentication, mnandatory and
discretionary security, secure initialization and loading, and delegation in a general-purpose computing
environment of heterogeneous systems where there aie no centra1 authorities, no global trust, and no
central controls. The airchitecture prescribe.s a framework for all applications and operating systems
currently available or to be developed. Because the distributed system is an open OS environment,
where functional interoperability only requires compliance with selected prolocols needed by a given
application, the architecture must be designed t<) securely support systemsi that do not implement or use
any of the security services, while providing extensive additional security capabilities for thoEe systeeme
that choose to implement the architecture.

K Ove'rview

The state of the art of computer security today is such that reasonably secure standalone operakrImg systanx.s
can he built, and reasonably secure conntections between the systems can be implemented. The pmrpose
of the Digital Distributed System Security Architecture is to permit otherwise secure st.andalone systems
to interoperate in a distributed environment without reducing the level of security and assurance of those
systems. By "interoperate" we mean the ability to use, in a distributed fashion, all of the security capabiiities
inherent in standalone systems. Users "login" just once to the distributed system, users. and objects have
unique global names, and mandatory and discretionary access will be enforced regardless of the relative
locations of the subjects and objects.

This architecture primarily addresses feattres for "comunercial-grade" security aid lower TCSEC
IDOD85] classes up through D1. It addresses many security tren(ds outtside the scope of '.he TOSEC, and does
not cover assurance requirements requhied by TCSEC classes 132 through A 1. However, nothing precludes a
system from implenmenting this architecture with a level of assurance beyond 131.

Tire architecture makes extensive rIse of encryption. Confidentiality and integrity for conimunication using
symmetric (secret) key cryptography is presumed to be inexpensive and pervasive. Asyninretric (public) key
cryptography is used for key distribution, authentication and certifica.tion. Users authenticate themselves
with smart cards containing private keys, andt ruechatrismns to calculate cryptographiic algordittis, anrd all
systems possess their own private keys to authenticate themselves to other systemts.

Authentication is assisted by the use of certificates, digitally signed by certifying authorities and stored
itn a distributed naming service that provides a hierarchical name space. A certification hierarchy tied to the
naming hierarchy, along with the use of certain naming conventions, eliminates the need for global trust or
trust of the naming service. Systems that need to act, on behalf of other systems or users are explicitly the
right to do so through certificates signed by the delegating parties.

In this paper key terms defined here are in rtalhcs. While most of these termis are well-known, time
definitions here may be unconventional, different from past usage in similar contexts.

305

2 Security policy and reference monitors

The traditional concept of a single security policy and reference monitor IArnes83l for the entire computer
system is not practical for a distributed system. While there are certain distributed environments where
security management responsibility is centralized, in most cases the individual systems comprising Jhe dis-
tributed system must. be considered to be independently managed and potentially hustile toward each other.
Mutually suspicious systems should be required to cooperate only to the extent that they need each other's
services, and no more. Moreover, even if we could assume that a large distributed system were centrally
managed under a single security administrator, building a distributed reference monitor to provide all the
security capabilities of a single system presents unsolved research challenges.

Rather than a common security policy and reference monitor, each system implements its own reference
monitor enforcing its own policy. Each reference monitor is responsible for controlling access to the objects
it maintains. In the most general case the reference in nitor on one system receives a request to access one
of its objects from a subject controlled by a reference monitor on another system. Access is permitted only
if the reference monitor for the object can verify that proper subject authentication has taken place, that
the system from which the request is received has been duly authorized by the subject to make that :equest,
and that there is compatibility between the security policy of the requester's reference monitor and that of
the object's so that access rights can be evaluated. Implicit in this compatibility is some level of mutual
trust of the reference monitors.

In today's systems, reference monitors are usually operating systems and large subsystems or servers that
manage their own objects directly. In the future distributed system any application may become the reference
monitor for its own set of subject and objects. The subjects and objects controlled by such a reference monitor
may be implemented out of other subjects and objects controlled by another underlying reference monitor.
Also, in certain limited cases, several systems may "team up" to comprise a larger system implementing
a single distributed reference nionitor, all implementing exactly the same policy and fully trusting each
other. At this time the security architecture does not explicitly address the mnechannmam .- neemled i tU LUU (UbIi ui,
composite objects or multiple reference monitors in a computer system, and does not impose any structure
on the relationship between reference monitors. The architecture simply allows all reference monitors who
are able to identify their own components to securely manage their globally accessible resources in a uniform
manner.

For the most part, the architecture defines interoperable security meclianisnms and does not address
degrees of assurance of reference monitors as addressed in the TCSEC. Regardless of their assurance,
it is expected that all systems conforming to the architecture will implement interoperable mechanisms.
Assurance, where important, will impose design constraints and methodologies on individual systelms but
should not influence the security-related external behavior of those systems. For example, a security kernel
architecture might permit a reference monitor to be contained within a subset of a whole operating system,
allowing that system as a component of the distributed system to be granted ani AI rating. Such a subset.
must implement all of the relevant security niechanisnus that might be iniplemented by other (e.g., C2)
systems on the distributed system where the entire operating system acts as a reference nmonitor. The

architecture also permits different reference monitors to have a mutual understanding of their respective
degrees of assurance and accreditation ranges so that they can determine whether their security poll(;es are
compatible.

3 Computing model

'[lie world is made u1) of interconnected systems and users. A system is comprised of hardware (e.g., a
comul)ter) and software (e.g., air operating system), and a system can supp)ort one or more software systenms
running on it. Systems implement other systenis, so, for example, a computer imiplenients an operating
system which imnplements a database nmanagement system which implements a user query process. In this

manner, a system whose reference monitor controls one set of objects might inmplement another system with a
reference monitor for another set. of objects. For purposes of the security architecture, we rarely distinguish
between the different types of software systems such as hosts, operating systenis, database management
systems, nservers, and applications, and we rarely riced to get. involved iin the possible hierarchical relationship
between systemnii built out of underlying systeurs.

306

A user interacts physically through a keyboard and screen that are electrically (or securely) connected
to a system: usually a workstation, timesharing ,y_,ein, ur terminal server. The user invokes an operating
system and applicatiors processes on that system which he trusts to perform work on his behalf. The work
may involve only data local to the workstation, or may involve data on and interaction with remote services
on other systems.

All interactions, direct or indirect, between a uiser and a remote system pass through the user's local
system. Therefore the local system must be trusted to accurately convey the user's commands to tic reniote
system, and the remote systemn must be trusted to implement the commands. Because the local :.ystem has
access to any remote information that tile user cat access on that remote systel, the user has no choice but.
to trust his local system to be faithful to his wishes.

The remote system, in order to satisfy a user's command, may need to forward tile command, or make an
additional request, to a second remote system. Ini such a case the first remote system must also be trusted
to accurately reflect the user's wishes. In general, the user may interact through a chain of systems, where
the user must trust each system in the chai.n, and where communications between the systems in the chain
is assumed to be secure so that the commands and responues are safe from alteration, forgeiy or disclosure.

4 Message authentication and secure channels

The architecture depends extensively on the use of a message hash function that yields a message autheo-
tication code (MAC), a short "digest." of a message t~hat is much more efficient to con.municate and st-ore
than the original message. A good bash function has the pioperty that, given the MAC of one nmessage, it is
computation ally infeasible to create another message having the same MAC. While cryptographic MACs are
frequently used where two parties already have established a cryptographic association, message hashes of
greatest interest to the architecture are those whose security does not depend on knowledge of shared keys,
so that anyollc cam check the MAC of a niessage but nobody can forge another message with the same MAC.

This permits MACs of widely used messages to be freely distributed without prior negotiation of keys. An
example of such a hash function is provided in Annex D of the CCITT recommendation X.509 ICChTT878bl.

In this architecture, comtmuntcating securely mt eans satisfying one or both of the properties: (1) knowing
who originally created a message you are reading, which we call autherdication, and (2) knowing who cmn
read a message you create, which we call confidenttahty. The ISO (International Standards Organizat.ion)
terin "data origin authentication" JISO88b] is equivalent to property (1). Our concept of authentication also
implies "data integrity": assurance that the message you are reading is exactly tihe samle as the one that was
created (if the message is altered then it's not a message from the originator).

The terni "peer entity authentication", u.Sed by ISO to describe ihe property that you know with whom
you are communicating, is subsumed in our architecture by tboth properties (1) and (2). In the security
architecture it is meaningless to have "peer entity authent-ication" by itself: without either confidentiality
or data origin authentication (with integrity) you cannot tell whether your message is protected or whether
you are actually receiving what was sent and so communication is not secure in any practical sense.

ISO's definition of "confidentiality" is also not strictly the same as ours, as we assume tlat the recipient
is known and must. therefore have been authenticated at sone time in the past..

The concept of a secure channel, introduced by Birrell, et al. IBirrell861, is all abstract way of viewing
how we accomplish properties (1) and (2). A channel is a path by which two or more entities communicate.
A secure channel imay be a protected physical path (e.g., a physical wire, a disk drive and medium) or all
encrypted logical path. A channel need not be real tim.': a message written on a channel may not, be read
until sometimue later. A secure channel provides either authelt.ication or confidentiality, or both, while an
insecure channel provides neither. Communication via insecure channels is permitted but is not addressed
by the architecture.

Secure channels have identifiers known to t.1me senders and the receivwrs. A secure physical channel is
identified by a hardware address such as an 1/0 port. number on a computer or a disk drive and block
number. Aln encryption channel is identified by an encryption key. Any nmessagt, encry pt.vd under a given
key is said to be written on the channel identified by that. key, regardless of whether that. message is "sent."
anywhere. When thle message is decrypted it is said to be read front the channiel. The ciphertext of an
encrypted miessage imay be written on aiotlher cliannei before' being decrypted: typically tile ciphertext is

307

written on an insecure channel for tranlinission, read from the insecure channel, and finally read from the
seC(ure chalnel yw ,ecryption.

For a secure ch an nei tI hat proý ides a It]hent.ication, (lhe senders are known to the receivers and are thus
authent-icated. Specifically, a receiver ,of a message on a secure channel can determine that the message
was written by sonuceoe in a known set of senders. If there is more than one possible sender then, ini order
to determine the actual sender, tile receiver must trulSt the senders to cooperate by properly identifyinig
thlemselves within the text of the message or by not. sending unless requested.

For a secure channel that provides confidentiality, the receivers are known to the senders and are alitho-
rized by the senders to receive the information- In most cases there is usually only one possible receiver.
If there is more than one, and the sender wants to limit the message to a specific receiver, then the sender

iiust. trust the other receivers not to read messages unintended for them.
A symmetric key channel (identified by a secret encryption key) provides confidentiality and, can provide

authentication with the use of a MAC for integrity. For a symmetric key channel all authorized senders and
receivers must share the same key, and therefore all senders and receivers are in the set authorized to read
or write information on the cihannel.

An asymmetric key channel (iden 'jied by either its private or public key) provides authentication if a
message is encrypted with the private key, or confidentiality if a message is encrypted with the public key. A
single encryption operation cannot provide both propcrties (even though a single public/private key pair can
provide both). Typically there is a unique pair of keys for each principal. The principal keeps its private key
confidential and the public key is made generally available (online or through some directory service). This
and the following description of asymmetric key channels primarily applies to the RSA public key algorithm"
IRivest78•.

III an asymnietlic key channel used for authentication, the sender creates a "digital signature" of the
message by encrypting the MAC of the message using the sender's private key, and sends the signature
along with the original (plaint.ext.) message. Any recipient who knows the sender's public key can verify the
signature by recalcuiat-ing the MAG and comparing it. to the decrypted signature, to determine whether the
original message was signed by the sender. The sender is authenticated to the receiver because only the
sender knows the private key used to sign the MAC.

It is impractical for all entities in the distributed system to know the correct public keys of all other
entities with which they want to communicate. Entit.ies are typically identified using network addresses
or names expressed as character strings. A special kind of signed message, termed a certficate, is used
to unfomgeably associate the niame of aii entity with its public key. Certificates have a number of related
functions as well described below.

III an asymmetric key channel used for confidentiality, a sonder encrypts a message with a receiver's
public key which only the single receiver can decrypt with the private key. The sender's message is thus
confidential. Since anyone can encrypt a message with someone's public key this channel does not. provide
authentication of the sender. To provide both authentication and confidentiality, a message must be first
signed with the sender's private key and the result. eicrypted with the receiver's public key. In practice,
both steps are rarely applied to the same message, and in fact the architecture rarely needs to make use of
asymmentric key cryptography for confidentiality.

"Ihe most popular algorithm for symmetric key encryption is the Data Encryption Standard (DES).
However, the DES algorit.hni is not specified by the architecture and, for export reasons, ability to use other
a-lgorithms is a requirement. The preferred algorithm for asymmetric key cryptography, and the only known
algorithm with the properties required by the architecture, is RSA. As with DES, the architecture does not,
specify and will not depend on tile details of the RSA algorithm; another algorithm with similar properties,
if invented in the future, is permitted.

Access control does not apply to secure encryption channels: a secure encryption channel as defined in
the architecture is created when needed and is not a limited resource or object. to be protected. Access to
the channel is determined by those who possess the encryption keys. A physical channel (whether or not.
it. is used for security) is a limited resource to which access may need to be tontrolled. In such a case the
channel would be treated as an object, with an ACIL (see section 7) and perhaps mandatory access controls.

When two systems interact through a secure encryption channel (e-g_, two nodes on different LANs using
end-to,-end encryption across a wide area network), there may be many intermediate systems (gateways,
bridges or routers, etc.) in the path betweeii the end systems. These intermediate systems are needed to

308

/ ENGINE // ENGINIE,\

(C t c c ((I eat eJ

COMPUTER/ PROGRAM - (load)-o- SYSTEM PROGRAM -- ýIoa(ij~ I*SYS TEM ***

INITIAL STAT/ INITIAL STAT/

Figure 1: Comiputers, systems, programis and engires.

support communications for the applications in the end systems but need not be trusted to keep the channel
secure. Intermediaries in a secure physical channel, oil the other hand) must be trusted.

For some applications involving several systems there are a number of secure channels between pairs of
systems participating in the application. For example, consider a user on a workstation who submits a query
that gets forwarded to a remote DBMS which accesses a record in a file on a file server. In t-his example the
DBMS system is an endpoint of one secure channel (from the workstation) and an originating point for a
second secure channel (to the file server). Normally all three systems must be trusted by the user because
the I)BMS processes both the query and tile results being returned and there is no secure channel directly
from the user's workstation to the file server. On the other hand, if the file server encrypts a record that
it hands to the DBMS, and the DBMS simply forwards the record to the user's workstation for decryption,
tieni there is a secure channel between the file server and workstation end the user does noti need to trusi.
the DBMS to protect that record from disclosure.

In tihe context of communications it is simplest to think of sec-re channeis as secure transport iayer
connections providing confidentiality and integrity of the data: even though tratisport is not the only place
where there may be secure comnmunications. InI the context of authenticat.ion a secure chlannel is usually

something defined by a given encryption key that is used to pass signed messages.
At thir time, the architecture is not tied to any specific protocol suite. The detailed specifications of

protocols, to be prcpared eventually, will describe how to set. up secure channels using specific network
protocols.

5 Computers and loading

A computer is a system made up of a particular physical set of hardware components running sonic boot.
code. All connections between the computer and the rest of the wc.rld must be through secure chanmnels.

An engine is a hardware or software device created by a system that can be loaded with a program to
produce another system. The computer running its boot code provides an engine into which an operating
system can be loaded, thereby creating what we commonly refer to as a host or ",.ode. Another example of
an engine is a process provided by an operating system. When loaded with an application program, the
running process becomes a system. These relationships are illustrated in figure 1.

A specification is a description of a system's behavior (e.g., the specific behavior of a VAX 6250 comnput.er
or that of VMS 5.0, documented in some manual). While a specification is rarely written down precisely,
users of (or systems interacting with) a system that is "certified" to meet a givenl specification can be assured
that the system will behave as they expect. The architecture deals with the problems of cei t ifying a system
and determining whether that certification was done by someone you trust. Certifying a syzstemn does not
have anything to do with software correctnless--certifying that a system meets the "VMS 5.0 specification"
simuply means knowing that a specific program (the "VMS 5.0 boot image") was loaded into a specific type
of system (a "VAX computer") using specific sysgen parameters. It is assumed that the particular boot
image does what is intcnded-provi;g that the program in fact meets some written specification is outside
the scope of the architecture.

In general, software is certified by the syst-em loading the engine it. has created, by verifying that the

309

MAC of the software image is equal t.o the expected value for that software's specification. For example,
if the MAC of an image you have just loaded is equal to the MAC you expect for "VMS 5.0 boot. image"
then you can be confident that you have just loided a program that. will behave according to the "VMS 5.0
specification." The MACs of various images that may be loaded are contained in certificates.

Each system, including the computer hardware itself, has a secret, (the private portion of a private/public
cryptographic key pair), generated randomly when the system is installed or created, which it uses to
authenticate itself and to certify systems it creates. A system is responsible for prot, cting its secret from
disclosure to the created systems. Through chains of reasoning beginning with the computer and ending with--
an application system (for example) it is possible to certify any desired aspeci of a system or its behavior. In
contrast to software systems' secrets which are created each time the system is rebooted, computer secrets
are semi-permanent, stored in prograntinable read-only memory.

When a computer is asked to boot. some software, the boot hardware in the computer (usually iniple-
mented as software in read-only memory) calculates a MAC of the operating system that it, has loaded, and,
before permitting execution, verifies (by checking ceitificates provided to it, by system management) that
an operating system with the designated MAC is permitted to run on that computer. If verified, the boot
hardware generates a private/public key for use by the loaded operating system, signs, using its boot secret,
a certificate associating the MAC with the public key, deletes the boot secret from any place that operating
system can get to, and then begins execution of the loaded operating system. The operating system, in turn,
uses its new private key as a secret to sig, for other systenis (applications) that it loads, and so on. When
asked to authenticate itself to a remote system, the operating system presents as credentials its certificate
signed by the computer. In this manner, with minimal new mech anismns in the hardware, the computer
has protected itself from being loaded with malicious software, and other systems who trust the computer's
boot hardware can verify the identity of the loaded operating system. Of course, if the operating system is
compromised after it starts running nobody may find out.

6 Naming

A princtpal is an entity that can he granted access to objects or can make statements affecting access control
decisions. Principals are subjects in the TCSEC sense, but not all subjects are principals. For example, a
principal may spawn multiple process within a system, each one identified as its own subject to the operating
syzatem, but the architecture treats each of these subjects as if they were the original principal and makes
no attei'xpt to isolate them from each other. When a principal accesses an object the reference monitor for
the principal in control of the object must have some way of identifying the requesting principal, an d this
identification is in the form of a unique global identifier. These global identifiers are Digital Naming Service
(ONS) names.

Users and systems (nodes, servers, etc.) are named principals whie have DNS names. There -re also
principals such as smart cards, processes, and sessions that do not have DNS names and which always act. on
behalf of other (named) principals. The use of DNS is pervasive in the architecture, but the primary reason
for DNS names is so that users can identify principals and can enter their names on access control lists (see
section 7). Without DNS iiames, users would have to identify principals with unwieldy cryptographic keys.

DNS has it hierarchical tree structure, with a single root. at the top and directories at the branches. A
principal's name lies within some directory and time principal always knows (or can determine) its place in the
hierarchy from time root; tile series of directory names from the root. down to the principal is the principal's
DNS name. In figure 2, for example, the full DNS name of principal PS is TOP.MID-1.LOW.BO-T.P8. While
DNS names are human-readable, it is not expected that people will have to type a full DNS name very often.
The DNS structure and the services provided by DNS are very similar to the directory proposed by CCITT
and ISO ICCITT89aJ.

Principals, and even large sections of time hierarchy (subtrees), may be moved from one place ili the tree
to another as organizational and other associations change. This means that a principal's name (usually,
just the directories in a principal's name) can change, perhaps without the principal's awareness. When
a subtree is moved a symbolic link may he placed at the old location's parent directomy that points t.o the
new location of the subtree, thereby permitting principal- to be found using their old names (see figure 3).
Symbolic links serve a number of other purposes not related to security.

310

TO P MI P2 N MID'~-1 t)

0 PrlncJp_]

Fiur P: SP10c ikInDS

Because ~ ~ ~ ~ ~ P of Pyblclns5 rnia a eietfe b eea N aeol n fwihi h
truenam. infigre , th prncipl oigiallyknon b t irecnmetory I-.O .O.P nfgr

in te ressigmentof nmes gnd refnto of thmpe ofDirctr hierarchy.Wihmnrecpint IDs

used by the ecurity arcitecture fo pefrAce rathe than fo2eui] hnte loih o nocn

might suffer.n

311icia

7 Accs control

All iifoniint iont In) -,liikI ;i(ccess is coiN rolhd,ý is conit aitied Ini objects. All ohJec ts have occr.ýq etoe rol hs.tq

(A('Ls): list- Lit prmincipls (idleiit ied by D)NS namne) whio may have access to tilk, object. along with fIivth

a1ccess lights. Tlime ale ai smiall Iliitiber of archltectutrally, def'tjiwd acces rigts stcia ra it e"
et-c., and~ somle numbe11r oif systenil-definled rights. It is tilie resl)oiisibihit~y f the usyst-em (tHe reference nitoliltot)
Controllinig 1an object. to enforce (hle A(T. Aui operatinr, system, for example, enforc~es thle ACLs for thev Files
ill it., ftile syst elil. Thl~e pl-ilic ipa I that. cnlt rols anl object is not. listed~ onl t.he AOL.

AC l,s 111t1 contain ii anies of groupjs of principals. Groups are objects with DNS immies, and may be

creat-ed anl modn~ifiedl bV orlla- ies ot julst by systemi man agers. All groups mu ist. exist. as all explicit
list, of pril'. ipals -t--here. Is no archi-ecti ural support. for "implicit." giouips identi1fied through sonmc kind of
iianiiiig :onlvnt-'ion~l (for examiple, "all principals contained iii a given director-y') but. imiplemienttiung Such a

cap albility is1 not pr'ecin l HV. 11awcx'er, large gron ps may he colisti-ricte(l on t of sinaller groli ps: graiups mlay be
niested (may niame ot. her grou ps) to a it arbitrar ' depth. The ability to effheicitly support. both very3 smnall avid
very large groilps, with I tells of thouisands of ilenibers, is esserit-ial for practic al use of sonie of the sec riit-y

In ec lIta itisnils specified by Ilile arc it-ect Ire' ai11(schenmes hiave beeni developed thliat. pe'rmtit. D~NS t.o support

AC l~s may list, spec ific priiicipalIs thla t are cI cii ed access, even if thtose prinicipals, are cont~ained in groiipý
d-i at. are pernilit-ted acces-s. It. is also possible t~o deity a-ccess t-o groups titat. are subgroutps of other groups ott

the AC L. Certain at.he1r restric t~ec fornits of grou p denlialI are possible, bit, it- is fittipractical, iin a d isi ribut-ed
eillVirovlnTei~lt Whe~re groli p tiotli mevnbersh lip c aninot. be certified, t~o iniplenmetit denial t~o arbit-rary group,,.

lIt ad dition to list-ing the pritic ipals th at. inay ac cess all object, the ACL inay list tle systems t(o whtichi

access titay be delegat-ed (.see tile dliscussionl of delegat~ion ill Cect-ioll 10). 'Thi,- c apability menlcl tHi at ail object
liniglt. not. be' accessqible fromn "it utruist-ed" workstat~ions ev*en if the uiser has delegat~ed t~o tilat. workstaition.

AC Is may be implemented ini a numbter of ways on d ifferent. syst-ems, but., because of their user visibility,
it is import~ant- th at. ACO~s hIave similar senmantiics oin all syst ems. The VIMiS, syst.eiii-owiter-gi oup-worldl miask,
or Uniiix ow iier/gi-otip /ot-ller bits, are primitive forms of AC Ls, but. sue h: forms l1l1ist. be an1 guienlted~ (itot
ii ecssarily replaced wvit-l somiet.hinig else) to provide thle ticcessary sentialitt-ics out- lilledl abhove.

ACLs. are obi~ect. tHieitselves, atd hlave ACI~s that. specify who cait read or miodify thlemi. All AOL may
be it~s own ACLI, or there may be ot-her ACLs dedicat~ed to ACT, access. Figure 4 illust~rates one way at file's
AOL anid an AOL's AC L miay be u-elated. In t-his Figure tle AML for the AC L's AOL is, it-self.

4AC

I

ACIL

Jotiv read
Alice write

AC L

File Alpha

Figiire 4: A file's ACL and ari ACL'g ACL.

8 Auithiextivation

(In1 tile following "liscussionls We luse as anl example a prinicipal senidinig a t-eqiiest. t~o a system or service, Ill
fact., (.lie ternis I's ysteml", "servcr" or "service" are just. di ffereint. rita es for printcipals -t.he mtodel Joe, tiot.
d ist.itigu ilis between a1 Server avid1 aliy othler type of prinicipal.)

312

Ili order t-o mediatec atccess to anl objuct ii at.1 it (0111 rids, a scervel iiilist fltiL ??1n7(- fif t hat tI jlcde 1i1 ity
of t 11e I Pq11uselt~ is as (Il i III cd. " lit, (liv d 1 1cIiivs p]l'v Ili th 11is "sI I oii V alit11 l Itt i -I t ioni. " 'Flue); pS".% ori is 111 he

Most. c oln1fIn I ty pe of an11t 11iciit ic at ioi 1Ilii eclialill smutsed In sy st t'inlS tdy killYI)int I he1 cpIsswo I d doe's nok t 1)r1ov ide
aseciote chauin c. A!Itic thebeglining of a c omveisat.ion, a set o1 mlestzages . 'CIai e e e iai'il a

whereI- the'- Ostc . ahulishies that. it. is inl fact ueceiviii'hmnayine i
and~ a Fervei-,(:SiiI niessage~s foia sct~ivie snit)
key encryption cliaminl whose, onil possible seuidei is a g~iveni prinicipal. $imiilarly, t le prinicipal may wish to
Iiiut1tutally alit ictiticat-e t ht, server, anid t his is possible bee ause Ilthe ser-ver is also a prinicipal.

Ili order foi- a server to know thlat. it. is currcIt.Iy0) colmnil iunicat ill g with1 ai givenl principal, ;l scm-vetl lutist

be sure that. the zigned miessages, it. is receiving are not. replays of old meissages froml a previolus conlversat jolt

(possibly senlt. by a t~hird party). JodelaI w itlh t~iliiiliiiss, a cl lele rsos chieme i.s uised at. thle be gi nlii in

of earlch convers ati oll, where tile server sends a randml oimi nuber to tilie prinlcipll'1 alild tilt printiip'l let-lirlis tilie
miumber inl a signled message. Replay of a respotise to -lit o1ld ((Iiflciit.) cli aIlenlge is n1ot ac cept-ed. WX'ithIini t Iiis
signled, miessage is othler information thlat. permiit-s the two parties to conitinue to cOlininunlicat-e ill a manue11l.

t-hat. is safe from replays of past. conveisations.
Orice two ' rinc ipals Ii ave a utit emit-icat ecl each Ot-her using asymimetric key cryptography, one, of thlen,

typic ally will genera te a ran domn sec ret key and~ scnd It. t-o tle other. This secret, key, will be uised to
colnininnicat~e (using symmetric key crypt~ography) inl a mannier tb at. providle,, cont-inued autivitietic at-ionl and
con fident~ialit-y for fu t. ure messa;F~ges diuriuig tlie conversation. Symmiet~ric key crypt-rography is usuially uised for
lat~a ecinehaueay mtr key cryp~tographiy is t~oo slow.

A ii thienticat-ion call also bet initiated with symmetric key cryptography whiere a principal auit~lieniticat es
itself t.0 a tritsled on linie "key d ist-rihut.ioni cent~er" and t le 1;ey (list ribuit-ion cvie tim provides (lth, imifonnationl
necessary for t-liat. principal t~o thel anit.hent~icat~e it-self t-o a server. 'I lie indirect. an thlent~icat.ion tb rouigh a
trulsted third party is required bed inlse oitherwise the server wouldl hiave to bet told thet secret. key oif t-he

principal, leav ing the principal exposed to inasuclerad ing by tHie server.
N d~ u te ytm ht. nec'1 to aut.lient-ic alt themselves Ii ave secret. orI pri'a t.e krys, stored ill

nionvolat-ile menmory wit-hin them, andI] they nuplenien. ti-le R SA and 1)ES algel it Iil iii sinig Iai -rwarc or
soft.i-'are. It. is expec ted th at. soft~ware implement-at ion., of IIS A or D)ES (w itlhouit. spec ializ,,d hiardW aie) will

perform adecquat~ely for alit. bent-icat-ioii at. thle begin iiings of coni'ergat ionls, biltI. specialized hardware will bie
needed t-o calcitlate DE~S at. a speed adequat-e for dat-a exchange. Before such specializedI hardware biecomes
w idely avail able, the ault.heiit~ica~t-iol funlctionls canl he imiplemencited inl soft-ware A i~.lioiit prot-ect-ing the d at a
exch ange. Tbhis "auu t.hemilt- -at~e at. -essionl inlitiatioll onlty" ftinc tion provide.- sonmc measnre of secunrit~y inl certainl
applications eveni though thle archit-ectutre does no01 recogilii7e tle suibsequent. liiiprot~ect-cel data exchange as
a securit-y capabilit~y.'

Sjince users c an not. remembher B S A keys biuidreds of bits Ion g, anld Cann~ot. calculate a lgor-itlhuis ill their
hecads, tiser a~ut~hent~icat~iom, requires, a com1pu~ter for the c alcullat-ionis andI a port-able meanls of storinig thle uiser',
privat-e key. Technology is just. emlerging that. will provide both in tIhOe forml of at "smlart. Card". F2.,cli luzki
possesses a sinart c ard conlt-ainiiig thliat liset's private key, t-he ulser's sec ret. personial id entitficat~iol; Ii iiibir
(PIN), and a microprocessor t-hat. canl conptit-e thle B SA algoritli,'u. 2 Th1e, 11,er aulthlentica't~es hlimslelf to the(

workstat ionm by insert-ing t-he smiart. card int-o a reader, aiid enteri-ng tHie PIN ilit-o thle reader (if thle reader is
trust~ed) or int-o the card (if the card has a keypad). The smart. cardl refuses to operat~e if the correct. PIlN
1s iiot. eniteredl. T11e Frmart. card theil responlds t~o a ,i hallenge from thle workstat~ion so tOi at. the workst~atmioii
caii alitliemitic at-e the ideritit-y of tOle smliart. c ardl. The workst~at.ion assu nles tChat. Cthe uiser is inl co-it.r-ol of H-ie,
silmart card and I-hereby assli mes it. is c omniniiic ating w ifll thle user t~hrouigh tHie keyboard andc screeni

9 Certification

When alit access requiest. arrives at aserver onl a secure ciamiiel, that. clialiliel is uisually 0 namlliglioiosly
associat-ed wit-h tle piibbic key cf thle principal making tile requlest.' However, access to 4obIjektts is sjn'citied

_Tin somel iritertnatiowiat applic ations data ex-change czan be authenticated but tby law imist niot lie eiicrypted Auittheni ic atwi
of datas exchange requires the same high pierformance crypt ~graptiic hardiware as doe., etiuryptt'd dat a exchrtige,

2
T'iiere are smart cards that can do simple calculationls andI can store ItSA p~rivate keys, t'iit ii the card canui't do the

comoptete PSA catcutilatioum thet, the private key nuist be disclosed to s.'in ext ernat device for Hit, calcutat ion. A smart. card is
nmitc niore secuire if there is no function enabling the key to be read out

3
Ttuiq explanation is gre-atly siimpitled; the associatioin between n principal's public key and a given channiel mnay be. very

indirect, involving miany other secuire channels and detegat ions.

313

inl termis of I)NS niames til access coiit1i-nl lists, not, ill ierits oit public keys, so juist verilynig the jitillic key (if
the~ stAIidei of] a1 Fecure Chiannel is iulllflicieii. for at-cess, Control. co eforct: thei afccess (:iitl00I list. tile seiver
niuist. hiave -somv way to det~ermiine thle 1)N S n anie tha;t. corresponds to th at. puiblik koy. T'o as ist in tis
dlct~ertiniiat, ion, IrtvrctetngI inc ip a I pit oiv deus it.s D) N, S itaml t'p i or to the i-equiiest. , so t.ii(qe svei 'S prloblemi
is to verify that. the I)NS nanivt iii fact. belongs to that. prinicipal withI tITT' verified public key.

It. is possible, Iftt. not irav I ic-alI, for cacti sevevr t~o keepI , a table of D)NS nta ine-to.op itb li key eorrcspond ence
for all principals listed)ii it-s ACI~s. A miort, general .olut~ion involves, the list, oif ceitif~yirig atitlioriti-ic (CAs)
that 1rT t rlst-edl by sy.stenlis to provide' thtis verjtjciatjoii. A certifying aliith lit ity is- a prind~pa th at. possesses it~s
own private key, andl its coire.spoidnluig jihitkey is niade well kiowii t o t If(principals who choose to trillsi.

that C A. A C A w illiiig to c-ertify thliat. ;I iven Ii pblic ke~y belongs to a giveni DNS n ame Signs a certific ate
statinug thlat, association. CAs performii other ceit-iticat-ioius as well (e.g., (vrt~ifi-ing that. a given smart- card
public key belongs to- a uiser w ithi a given 1)N S namne, cert~ifyiing t-li at. a given M-IAC identifies a given software
imiage, and ct-rtifying thliat. a given image mnay, be loaded Onl a given compl pt er) , and C As or other principal"
miiay also certify other things (suchl as grol p iiielibiersl list-s). ill tIi.- is e(t ion we are conlcerned' only with
the certification of a pu huev key by a C A for use inl aui t~heiit-icat-ion.

C As do their certification as all offli ine prllocess, Well it) advanice of thte use of the certificates, usually
when a principal's plriv'ate aiid public- key are first. created. Thet mechlitaics of gveitrat-ing keys and becominiig
Certified are det-ails: olit.zide tile scope oif tdit arch itecctoire, hilt. HThe proc(ess ailcunlt.. to conivinc-ing a CA t.fat.
the identity of a principal (e.g., it.s I)N S niaime) corresponds to a given pii lic key, inl a mnanviter similar to
conviiicing a notary puiblic of the Correspondence bet-weeti ykOIII ielentity andI Your signat-tire. It. is va- for- a
principal t~o prove, through a response to a li alL.'ige front a CA, th iat. it. possesses thie privatev couiniterpart,
to all alleged public key, so the ac-t of tert.ificat~ion is oiie of Verifying that the priiicipal is inl fact. the onle

jianlied.

Certification does itot. require that. (lie CA either genterate olr kiiow the private key of (he priiicipal
bel errtifed, so a -rinc ip'a! does no eixpose ite -fIlay I.hct~if cevrtifiech by an ("'rxs~ot.~ A. A

coimpioimisedl C A only compromises thoseŽ whIo trust. it.., certificates."
Aiiy System Chat. knows aI CA's public- key, aid trusts the CA to vouchi for thle putblic key of the identified

principal, call verify the signature, oil a certificate and cali (let-eirninih that, thie public key Correspoiids t~o
(.lie given D)NS 0 int'. Certifica tes for authlenitic ationl art, ii sually stored inl a JN S st'rver, but. a copy' of
tile information (thIe niaiiie and piiblic key, or perhaps the whiole' certificate), may be locally cachied. While
CAs may lhe onlinie for convtenienice (c..g., toC listribuite iiewly sigit'd cert-ilicat-es), CAs need nlot and iii fact.
caiiiiot. work likte on11liit servers. C ertificat ion mutst. involve all otlline path to c-orroborate tlie itheiLtity Of the
principal.

fly lisinig signed'l certlificat.-es to deteteniiue piublic key's there liieed lit' noi oiliiit, "alithlient.icationi survt'i , and(
RiO cut't ralizt'd or- rt'plic-a ted data baste of putblIic ke'ys is icqu iiied (except. Lo Support revoc ation -set' scct-ioii
l11). I'hl(-e trt.ific ates are d istribu 11ted to the placesq WhIere' they' al-e iceded, andl INS provides a convenient.

xiieclialnisiil for Storing ct'rt ificat es locally.
There- is no one CA fthat, all principials are willinig lo~ trust for all authletnt~icat~ions. Eachi directory iii

1)NS hias anl associated C A (set' figulrte 5), an 111 evetral d irtectories inay' share' the' same C A. Principals iii a
directory' usuially trulst, the(directory's CA to ce'rt ify' oither principals itl that. dirw ory. I'llie fol)lowving list~s
tlie principals that. the CAs iii figure 5 are t-rust-ed t~o ct'rttify:

CA-TC ' ccrIt ifies P1. P2. P3. CA-BOT. CA-MIP 2
CA-Bo I cei-tifies P4, P5. PG. PT. P8, CA-TOP

CA-MID-? -er t ities- P9. P10. CA I OP

('As are als;o tl-I u.t ed bty t host, prinicipials t o ct'rt ify t lItt' ('As of di (tlTirt tit's iniiiediat ely aliove and below
t heml (biut tof cotirlst' it. is ii1litt'essar y for a CA t o c- It ify' It s,'f if thlat C A is alzso assticiatcvl W it It an adjacent.
d it cc t~orv.)

'I'ypit-ally, prinjcipials trust CAs chose ito theit Iin thIe hlitial thY. A pirincipal is less likely to truist C(As
fart her froml it. ill the hliitrax-chy, whlethtet thtoste CA., ire ahove, i~el,,w, or inl etntirely' diffe-itrt btaiicies5 of thit.
(ruet. If ai server at. onle point. ill thle hlitraicly wantls to atli I enticate aI priiicipal elsewhieie, aiid there is not-

"4
Wto'i a siei Jup- tep' tlig (,t' a c.'ttt't'ttit C'A ttl;tage:s fitl,' pfl,t iri:ds t- o'iI'- ,,t s ,'veit given lth- riglt to act ot)

t.'ct11atf 111v I eti' r,'ti d pvlitr I1 (i s Wt,,-, a tit,- se,'rv,' ,l,:11t.1gs a fs-, ile ,-s'o :cl ts t',l bv ttof a l'5cr) IThen titte ccrtttifld rrtincipa
ettay teý it,-Irectly r Ill po'ý.1!v

314

(15 *~ ~ 0 Certitiat itolmtilit

Figure 6: Certification nuthortldes In directories 4of ai DNS hilerarchy.

one CA thliat. can certify both, then tlie serve .r muiist. est-ablish a clai a of trust. through imultiple C As. Thtis
chajin involves all the O As in thyv p ath from thec server, up t~hr-oipli thle hierarchy t o the first. directory th at. is
C0o1111101i to both1 the server and theit principal ("least.t. commnloi ancestor"), a ild ~I't hen W doii o I lie' pi lic ipal.
For example, ini fig~ure 5, P7 call~ auithent-icate PS by trusting only CA-BOT. If P7 wanitq to authflenticate Plo,
then all three CAs in the figure must. be trusted becauist the least. commnon ancestor i,3 CA-T OP.

Thle authentication process assum11es that tile principal is identified to the server by a fall D)NS name, and
that. the server can determine the "least conmmon ancestor" anid correct. CA pathi by a simple conilparisoi. of
it-,; ownI ii ane With that. of (lie principal. (For example, the least. (otlilliti ltancest.or C A coninioti to TOP.MID-
I LOW.13OV.P! and TOP.MID-l-LOW.PS is CA-130l inl TOP.MID-1.1OW.) By usc oif a. synibothc link oil one
of the intermediate directories it. is possible to establish a shorter p atli by iiakini 1:i appear thiat. t~ht server
and principal lie in a commnnin suil~tree below their least. commlion a oncest or. A symbolic link a lone is just. a
poiniter for coneiiveniice of lookup, but. when atiglneiitedh with a ''cert-ificationl Cross link", the cert-ificaltioti

path reflects thle symhohi(link path. A certification c ross link permits a CA at. onle pojint. iii thie hicirarcliv
t~o directly cert-ify any other CA or principal, 0thereby elimfinating one or moie higher level CAs from tit"
dlefa tilt. cl~i ini of trust. A ctrossý liik is at cert-ificite signied b'y a C A that. providst. the p iil'ic key of the ('A
fo;i thle t.arget. d irectoiy (or priiic ipa1), and states that. thle ii an tetatislat~ioti specified inl the correspond~ing
symbolic litik iis correct.

lIn ft gi'e 6, the cross lin k at. the symibolic hl k MID itt directory L.0W peru tits P7 to avoid Ii av'ing (o
tirust. CA-TOP t~o cert~ify P10. Instecad, P7 autlhewitluatucs P10 by trusting CA BOT (to certify CA-MID-2),
and(CA-MID-2 (t~o certify P10). The, leist. ancestor CýA commnon t~o TOP.MID-L.LOW.BOT.P7 anld TOP.MID-
1.LOW.IMID.P1O is CA-BOT iii TOP.MID-l.LOW.

Tlhie htierarchic al iiat. Rite o-f the c ertific aticti atrchiit ectute dlescribled here is sitmilar t~o thiat utsed ill ISO's
ditrectory a uthenticat ion framework I(CC lT881'8]. Int IS O's ar chiter titre, however, uisers wh hi iave no(a priori
kniowled ge of the cert.ific at.ion htierarchIy 1m1st, potentially trust all C A, lier ause there is no explicit way to
ind~icate the "least. cotunioti aticestor'' or oilier liniitmations to the chaini of trust.. The architecture used lit-ri
is an out growth of work by Bit Irell, et. A,. I irrell8t6j.

10 Delegationl

WVhetl.i a Irattiltcae insl oawrs~rotth& sra.tli esame t~ime defq~tfgote o t he workqtmatioit
the right, to speak)tt behltaf of (ac(t as a si rtopat e for) tile iiser. I'lluis delega tioti is e-xpre-ssedl ill a Cert ific atv~
signted by thle uscer's Fniart. card at. loginl. lDelegIt ioul does4 tilt. Reuire ainy niodificationi (of ACLs. Wheni thle
%%orkstat-ioni accesses a iemonte service the worlkst atiotii presents t he- delegationl certificate to pti've that thle
usei authorized the surrorate. Nhot-e thIiat retmot~e acces~s I htoutgh a work.-tat ioti dloes not. reutiriie thle ru'iliute
syst eml t(I vt-ant hietutica't-e the Risei . (Thet stualt card lov's ttot play a1 role, itl ally sit Isequhelit ali thueilt ir~ttintus
Or de'legati~otis.) In1stead, tilie detlegattiotuct iia tells the remtuite 5ztstelli thIat. the Fituart caid tirutst~s the

Figuire 6: Symibolic link MID with certificattiot cropp link. CA DOI en fil" CA MID 2

workst-ation to acce itately reflect t he user's conlli auids. T1he reintut e syst ciii 1111 avWifli to also a til cliet icate

theI local workstation, however, urinR a cli alletige/iesponto'. Where Ilhere is a cascade of syst emls Involved,
e ach systemo delegat%:s to thle niext 5sstr m th li gh t to I((t oil its behltif (ot t he light to issle St at ement s onl
behalf of the usrthereby prIopagating t lie ability t~o act as a surrogatei' ft beoriginal usei.

Onice the user delegates right, to a systemii, thIiat svst cut canl act oil (lhe user's belhalf even aft cm tile
user logs oil(. TO limit. hle d atuage iil the case of a sitbsepitentt mit.lfa nc tion oi c omipromtise (f a -ystemn

a1 properly fit uct joning syst em t erminateCS tilet (Illegalio lhell i it is noL lou get ltuceded (e.g., at tilie enid of a1
sessioni) by destroy jug its: copy of any secret key gene! a' ed for purposes of thiiat delegation and by tiot iy inK
the part~ice With which they wvere cot~i',Ia ica! iin to tit) longer. honor t he dchl-gation.(Wv .1ýsliuitv li~,i (o1-A
tdivii syst~eits whI~ile they ate using thbent but tiot ticcessarily aft ci they logout.) At: a backutp, iii case of
syqt~enil tlialfut mietioti delegatiotns also t itue otti, thle t itniuti b~eitng set whteni tile delegation is mtad e. It is thle
responsibility of tilie system itiforc jug access to loitoir t he t imeotit and dielegat ion termnitiiatioti

A delegatioti to a ,ystlem implie. thie systemu may make ally st atemetiits at all otl belt alt of t(lie de legator.
While reCst-ricted delegation, Where the iiser spie ifies ottly) a subset of stat eltuemts such asa. list of specific
objects thIiat. mnay be referenced, seemis desirable, tilie ts .Iles of restrict ions 11t fiat ight he useful are hiighly 3
afplphatioli-(efpeldeit. and c atinot be specified b~y at securit y aic Itit ecture. h ist cad, we use tilie conicept olif user
roles for such restrict~ionis. A uiser auit ent icates htimtself Using a1 DNS name t hat is the niatti of one of s;everal
Possible r-oles, atid these toles are repreetnt ed as otte-tttcttih proutp.s in 1)INS, all ontitainiiig thle act ital user

niamue iii their tmemibershiip fist. Bly dehegatitng thle righfts of a, s,,.ccific tole t lie tiser delegates rights to acceF!s
otnly those ob~jeuts th lai. li,4t thle role ott t heir AC Ls.

Ii. Revocationl

The architectuIre provides: for a high degree of assutranuce t hat access, is only granited when atit liorized. hillt

Onice granted, revocatin~t of access is ttot. provided with t lie saute degiee of assuranice. Althoutgh revocation
is requtired and ý,uipportecd, thle revoc ation may nytot take place inl a gui arat eed amioun t of tlittle or befot e ally

specific event, aitd there is tio absoltit e assuratnce thftat it wifl ever take place (vxcept t hat tdiere isusually
sotie timlieout. or expiration thiat places ati u pper boun md onl t lie du rat ior)

There are several things thfat. ote calt itmagitne beinig revoked, all of Which uilt imtately affect Whet her a

pritncipal hias access to anl object.: access rights onl AtLs, group mtettbeisltip, cert ificates for am t liemt icatioti1,
certificates for delegatiotn, atnd auttheniticationi.

limmitediate revoc ationi is a difficuilt probleti bet atise it re-quires thIiat vithlie (1) syst emls not c ac he ally
iniformuation used to make access control dlecisiotis (puiblic kcys, gt oup mtemnbershtip, ACLI rights), or (2) t here
be a mtecliattisim that. ehiably In forms all syrest cutssintg thle access (omtrel Itnformtation Whmen a cli auige Ii as
beent tmade. lmmupLntiertimtg (1) has mit unacceptable effect ott p~erformttance, atid (2) is itttiractical simice ntobody
c anl keel) track of who is using t lie access comntrol inifotiimation.j 316

Instead of ininediate revocation, the airchtitectuore allows for "slow" revoc at ion, where noi appilc atioil-
hy-application decision is made as I.o when, after a requiest t~o revoke, thie revoc ationi takes place. Mos-t
likely revocation will be dectermitined by events: e.g., tilie niext tim~e a file is opened, tilie]text tillie a userl
logs in ~or when a delegation expires. D~elayed revocation should he imipleenteited in a way thlat, cauises uszers
no surprises. Users mnaintaininig AULs, for exa mlle, might be itifomtied thIiat revoc ationi Iias ito effect oil

processes that curlrenitly have thle file openl.
A system is permitted to parse ant ACT, li advalnce, inclutdinig exp~anding all gi ottps iintecd onl an ACL,

and to save that. information for subsequent a;tt empts by a principal to a-ccess the(object. P emovinig a1
principal from a group or fronm anl ACO will affect saute subsequent access but is itijikely to affect accessec,
inl progr ess. However, if (for example) the effect. cf tlis, advance compllutationt results in a 115cr's acces.z
request. beinlg satisfied next timie hie logs Ili, even though lhe li;a, since been reiioved fromi t lie(groulp, t licin
this inmplemenetation is not. perniissioie unless a way caii he found to counvilice usersF thlit such l'beiavior is
r easonable.

Certificates used for auithentication expire, bot. oit occasion a ce(rtificate tieeds to lie revoked ill advanlce
bec aluse a priitcipal'sý private key Ii as beeni coitipromnised , or lbeca usze t hi p orsonl cla -.I ge< ahfl iat ioii a11 (1 i cal 1i n

longer he trusted t~o access object s ott whose A('Ls- lie is listed. Cert ificates for auit lieitt cat ioni are st oretd inl a
few well-known places (miost likely, in DNS), and] all services that. use certificates will look for themi inl thefSe
well-known places. Rlevoking a certificate mieants dieletingt each copy of t ite cert-ificate froit t hese places. Tl'ls
dleletiotn is somewhat unreliable because DNS dir ectories are replicatedl, but if DNS is fmind inning normially
thle chaniges will propagate t-o tble copies iii a reasona ble amiount of tiltie. The certification stiruc ttie inl
IqO'.s directory authentication frainework IC:CITT881hI also depends on thle directory for thle "security" of
cert~ificate revocation.

A system mtay cache a cei,.iflcate (ot- tie informiationi in a certificate) but sholotd periodically Check thle
well-kitown p~laces to determittne whether the cachie is still Valid. Other t-edhit iqueF, such, as clieckitig thle
tiliit,e directory w nlaot. inad ified, can be used to to a ke t Tiis process miore effic ientt. A properly fmittct iojn i
system, will not accept it cert-ificate from anity source other tia,t i a IDN S sevrwhlomi it. trusts for i evo(at toni.

Ilit p irticular, thie a utIerittic atiott dialog does not. In clude tranism ittalI of auitthentit cationi certificates iii place
of those that shiould he obtainied froit DN S. lint (lie event of compromise cf at D NS serlver, or iniability for a
system to cont-act. a server, revocation will not work.

Authientication cannhot. be revokied. Onice a cert-ificate Itas Ueenit sed to aitt~liettticat~e a prinicipial, thl~at
authetntication is vilid for as long as Oie originial certificate was valid, or unltil the system chooses t~o st-op
using, the ail tteitticat~ion . S iii ce authent~icat-ion t ends to hiia ppenitat the begitnini igs of sessioti s wilien secuore
clianitnels are creat~ed, a titheit~icat ion is not. usefulI bovon d the cud of a typical sossioti, anid prcupellyfit uctiloti-
ittg applications thiat. expect. ser-sions to last. for (lays or weeks should probably reno titetict iee at. intervals
conititemisuratec withI tuhe interval at witicli they check D)N S directories for chianmge., ii certificates.

Like au t.heitticationi, delehgatioti tilties oit. linit c anntot lie rev'oked oince gratited. HIowever, d elega tioni
tinineou s, tied to th le lifetime of most, sessions, will lie far shit orer thialt t-he cert~ificate tiiteout~s oii whtichi
aut. ient. ic atiomi depends. Both noutheniticat itns and delegationisar e erased whben ito lou gei itecede (atL the
eiids of sessions).

Because delegation tinieoitts are relatively shtort., it is possible t-hat a delegation will have to he reriewedi
duriing a session befo~re it t-iities out.. A facility is provided whereby such a renewal cal be ittit-iat~ed iiy tue
first. sy stemn in tlihe delegation chain an6 propagated to other syst-emls in tHie chiaiin, provided titat. the user's
,muart card is still in place t~o sign a itew certificate.

12 Mandatory access controls

The goal of thle archit-ect-ure is ti- provide iii'itd atory (nIott-dimicre.iouii ar) ac ce.s cioiitrids ill all sy'st-ems
th at impleimeiit (iscietioliary access co Fiitos, b)itt, it is rea.lized iiiat somte systecms will niever bre used in

aL itand atory conitrol environmnitit arid so inii plieuueitat.ioii of iiatid atoty celt rois is olitiolial. Eveni if niot
aitforciiig mandatory Controi,-, systevms shoulld lie conmpatib'le with those th at d'o.

I)o.D-Ft.yle mandatory security as specified iii the TCSNC is stiploirt-ed through labielinig titecliattisiuts
controlled by cthe iitdividuial reference moinitors. Every object. atid subject. under direct. cotit-rol of a refereitce
mionitor hias one or more, access class ltb els, and] itatida~t.itv acc-ess to9 loc al object~s by lo(ii so ijektis is
enforced in the usual manner.

317

A request originating from a remote system contains an access class label specified by the remote reference

monitor, corresponding to the access class of the remote subject making the request. The local reference
monitor uses this label, along with additional information about the remote reference monitor, to determine
whether to allow the access. This additional information consists of certificates (obtained from DNS in a
manner similar to the authentication certificates) that specify the policy domain and set of access classes for
which the remote reference monitor is responsible. Access is granted only if the policy domain is appropriate
(this domain may include information about tihe level of assurance of the remote system) and if the access
class on the request is within the permitted set. The "cascading p,-oblem" discussed in the TNI [NCSC87]
cannot be fully prevented except by system configuration, because none of the systems participating in the
potential unauthorized write-down of information can be trusted to prevent it.

It is our intent to specify a commercial integrity architecture, perhaps based on the Clark and Wilson
model JWilson871, but work in that area remains to be done.

When both discretionary and mandatory access cortrols are applied to an access request, if either set
of controls would disallow the request, then access is denied. In contrast to discretionary acceos controls,
changes to mandatory access control attributes of principals and objects must take effect immediately. For
example, security violations could occur if a request to "downgrade" or "upgrade" an access class does not
inimediately abort any accesses in progress that might no longer be allowed. The difficulty of implementing
immediate revocation is mitigated by the fact that changes to mandatory attributes are rare, as noted above.

13 Problems not covered

The security architecture does not address all security concerns in computer systems. It concentrates on
security problems that are unique to or exacerbated by distributed systems, such as authentication, secure
communication, and global access control. Other problemns in developing useful distributed systems, whether

i ioto they have Iiu (to with security (such as giobai namiing, synchrnnization, distributed databases, and
assurance) are presumed to be addressed by other efforts, and a practical implementation of the security
architecture may require solutions to problems in these other areas.

14 Status

The security architecture is- intended for implementation across the entire Digital product line, including
all operating systems, applications and hardware components. Any product acting on behalf of multiple
users, or needing to take part in acccss control decisions, is affected by the architecture. When in place, the
architecture will discourage the implementation of ad hoc, duplicative, and inconsistent security mechanisms
in Digital software and hardware products. Of course, the security mechanisms will also be made available
t.o customers for use by their own developers.

At. this time of writing the details of the architecture (protocols, message formats, algorithms, etc.) are
under developnient--little implementation has begun. Most of the groundwork and formal logic has been
worked out, and functional specifications have been written.

References

Amies8.3] Stanmlcy I.. Amnes, Jr., Morile i asser, and Roger R. Schell, "Security Kernel Design arid Imple-
nienitation: An lnitrodcuct-ion," Computer, Vol. 16, No. 7, July 1983.

[Birrell86J Aidrew D. Birrell, Butler W. Lanipson, Roger M. Needhain, and Michael D. Schroeder, "A
Global Aut henticat ion Service without Global Trust," Proceedings of the 19861EEES ymposiurn
on S•curety and Prtvacy, IEEE Computer Society, 1986.

fCCITT88a] International Telegraph and Telephone Consultative Committee (CCITT), X.500, The Direc-
tory - Ovrvzurv of Concepts, Models and Servtcf:: (same as 1,0 9594).

ICCI'rT881,l CCITT, X.509, The D1r~ctort - Authenticatzon Framework (same as ISO 9594-8).

31.8

[I)OD851 Department of Defense, Trusted Computer System Evaluation Criteria, DOD 5200.28-STD,

December 1985.

11SO88b] International Standards Organization, ISO 7498-2, Security Archit ure.

[NCSC87j National Computer Security Center, Trusted Network Interpretati, i, Ft. George C. Meade,

MD, July 197S.

IRivest781 R. L. Rivest, A. Shamir, L. Adlemian, "A Method for Obtaining Digital Signatures and Public

Key Cryptosysteins," Communications of the ACM, Vol. 21, No. 2, 1978.

lWilson87j D D. Clark and D. R. Wilson, "A Comparison of Commercial and Military Computer Security

Policies," Proceeding.s of the 1987 IEEE Symposium on Security and Privacy, IEEE Computer

Society, 1987.

319

GUIDELINES FOR SPECIFYING
SECURITY GUARDS

William Neugent
The MITRE Corporation

7525 Colshire Drive
McLean VA 22102

Abstract: Security guards help to achieve trusted transfers
across security boundaries. This paper summarizes guard
policies, presents an overview of the trusted transfer process,
and recommends guidelines for specifying security guards.
Application and design considerations also are included. Key
points of the paper are that (1) well-defined security policies
and user requirements and a guard concept of operations are of
fundamental importance, (2) the trusted transfer process
includes functions performed by hosts or applications as well
as functions performed by guards, (3) the guidelines should not
be inflexibly applied to all guards, and (4) guards are not
desirable solutions but are last resorts, to be used only when
better solutions cannot be found.

1. Introduction*

A common requirement in both the Department of Defense (DOD) and
the commercial world is the need to transfer data across security
boundaries. Security guards help to achieve such transfers. With
increasing needs for interoperability between systems, there are
increasing requirements for security guards to control this
interaction.

Several early attempts to develop high technology guards met with
failure, in part due to lack of policy guidance on guards. In the
past two years, new security policies have begun to address
guards. This paper recommends more detailed guidelines to
supplement the new policies.

At an internal computer security seminar of MITRE field sites,
security guards were singled out as a topic of high importance and
interest to military field organizations and a topic on which
further guidance is needed. Subsequently, a second internal MITRE
seminar was held in which participants in many guard acquisition
efforts met to focus solely on guard requirements, approaches, and
issues. The guidelines in this paper include insights gained from
both seminars.

X This paper is derived from work performed under contract
F19628-89-C-0001 for the United States Army, Europe (USAREUR)
Office of the Deputy Chief of Staff for Operations, and from
internal MITRE efforts to coordinate the guidance provided to
several security guard development activities.

320

While these guidelines have no official standing, they have been
used within MITRE and might serve as a basis from which to develop
an official guard policy. The guidelines apply primarily to guards
used between system high or dedicated mode systems, but can also be
applied to guards Ysed between the different levels within a
multilevel system.

2. The Requirement

The generic requirement to be satisfied is the trusted transfer of
data across security boundaries. A security boundary exists
between two systems when the systems operate at different security
levels, e.g., Top Secret and Secret. Communication between two
such systems involves the transfer of data at a classification
level subsumed by both systems. For example, a Top Secret system
would only be able to send data classified Secret or below to a
SecrtL system.

The general security objectives in communicating across security
boundaries are to prevent leakage and penetration. The primary
concern normally is to defend against unauthorized disclosure of
"high-side" (e.g., Top Secret) data to "low-side" (e.g., Secret)
users. This might be caused by high-side errors, by malicious
high-side software, or by active penetration from the low side.
Other concerns include defending against modification or
destruction af sg-i- well as denial of service to
high-side users, both caused by actions originating on the low side
(e.g., worms, viruses).

Ideally, the communicating systems should be able to defend
themselves against these exposures. Unfortunately, most systems
are not considered sufficiently trustworthy to do so. Most
military automation systems operate in dedicated or system high
mode, in which the system is not tiusted to segregate work being
done at different security levels. In such operation, all
system users must have security clearances for the most highly
classified data on the system, and all output is protected as
though it contains the most highly classified and most
restrictively controlled data processed by the system, until the
output is reliably reviewed and its actual classification and
sensitivity verified. Policy disallows communication--without
reliable security control--between systems operating at different
security levels (except that some policies allow one-way,
receive-only links from low to high systems, e.g., wire service
links). Furthermore, without a reliable review mechanism, magnetic
media removed from the system must remain classified at the level
of the system.

Although the term "system high" is officially defined in
policy documents to be a distinct operating mode, the term normally
is used in the field to encompass both the dedicated and system
high modes.

L 321

Guards satisfy this trusted transfer requirement. Furthermore,
the requirement for guards will not disappear as more trustworthy
systems become available (e.g., systems that satisfy requirements
for classes B1 or higher in the DOD Trusted Computer System 2
Evaluation Criteria, hereafter referred to as the Orange Book)
The majority of systems still will continue to operate in dedicated
or system high mode (e.g., using class C2 or less trustworthy
technology). Even systems that operate in multilevel mode will
need guard functions to transfer data between system high objects
at different security levels (where typical objects include files,
messages, and reports that were either received from system high
systems or created during system high work sessions). The nature
of guards will change, but the need for guards will not.

3. Past Difficulties

While some guards have been successfully developed and used, others
have not fared so well. At least four major efforts to produce
guards for the military havy failed, in the sense that the guards
were not used operationally . Several guards that are being used
are used only with great reluctance, due to their extreme
awkwardness or the heavy burden they place on operation. Still
other guards are accepted only grudgingly: users believe that the
benefits justify the costs, but resent the costs nonetheless.
Several guards were used operationally and then deactivated, either
because they faled to prcva• t ... the dsclosure of sensitivt data or
because they prevented the flow of data that should have been
released. Finally, some guards are being used carelessly and
threaten to compromise the very data that the guards were installed
to protect.

On the surface, there are many explanations for these difficulties:

"o Some guards sought high degrees of technical security
(e.g., class Al), and were as a result complex, expensive,
and time-consuming to develop, and once developed were
inflexible and difficult to change.

"o Some guards introduced additional workstations, hosts, or
specialized hardware as well as complex software.

"o Some guards required substantial hardware or software
changes in the systems being supported.

"o Some guards imposed cumbersome operation and
administration.

One underlying reason for these difficulties was lack of sufficient
policy guidance. Because of this lack, some guard efforts
attempted too much, others attempted too little, and others were
misguided. In the past two years, however, a number of new
security policies have addressed guards. The following section
summarizes two of the new policies and also surfaces a policy
issue.

322

4. Current Policy

Before summarizing new guard policies, it is important to raise a
fundamental policy issue. Many policies exist that tell how to
downgrade, sanitize, or decompartment particular types of data or
that specify classification requirements for data on a particular
program. Sometimes these policies are simple and clear, but often
they are complex, ambiguous, inconsistent, or unavailable. It is
not possible to develop an effective guard without clear, thorough
policy on classification, downgrading, sanitization,
decompartmentation, and releasability. This issue cannot be
resolved in this paper, but must be addressed in any guard
application.

The most widely appliyable new policy impacting guards is that in
DOD Directive 5200.28 . DOD Directive 5200.28 states that, if a
system is not at least class B1, then downgrade of output from that
system requires manual review by an authorized person. The
implication is that, without the level of trust implicit in a class
BI or higher foundation, it is not permissible to rely on software
to downgrade data. In a statement applicable only to intelligence
systems, DOD Directive 5200.28 expands on this general policy by
saying that fully-automated software downgrading is allowed (1) if
the involved system is at least class B1, (2) if the output remains
classified (though at a lower level than the originating system),
and 13) if t ..e down.rade capabihlitv is approved in the
accreditation for that system.

While this policy is helpful, for the most part it does not
explicitly address guards and thus leaves most guard questions
unanswered. For example, there is no guidance in the DOD Directive
on what is required in performing human or automated review. There
is no guidance on what assurances are needed in a guard that is
separate and independent from the system it is supporting and that
resides on a processor dedicated to the guard function.

A policy that addresses guards more explicitly is the National
Telecommunications and Information Systems SecuritX Advisory
Memorandum (NTISSAM) on Office Automation Security . The policy
states that copying data to a medium classified at a lower level
than the system is an "extremely dangerous practice" and that
procedures established by the Information System Security Officer
(ISSO) should be followed. The policy further states that, in
establishing and using the procedures, responsible people must
consider and accept the risks. Appropriate procedures "in some
instances" are as follows:

o Format a new (i.e., never used) medium.

"o Copy the data to the medium.

"o Carefully examine the medium; check that no other data has
been copied; if feasible, print out the entire medium.

323

This policy is especially helpful and encompasses a large number of
systems in that it applies not only to standalone personal computer
systems but also to terminals connected to mainframes and to
workstations in a local area network (LAN). Unfortunately, it
applies only to the downgrade of data onto a physical medium.

Other new policies on guards also exist. Some are classified and
some apply only to particular agencies within the DOD. But people
responsible for defining guard requirements and specifying design
approaches still have been left much opportunity for error. The
remainder of this pape-" supplements the above policies by
clarifying the nature of guards and recommending guidelines for
specifying guards.

5. Functional Overview

One difficulty in discussing guards is that the term is used in
many different ways. For example, whereas some "guards" support
manual review and downgrade of data, other "guards" do little more
than validate a Cyclic Redundancy Check (CRC). One view is that a
"guard" performs only a checking function, not the actual
downgrading, sanitization, or decompartmentation. Rather than
choose a narrow definition of guards that is inconsistent with some
of these common usages, this paper uses a broad definition:

A quard is a process (or set of controls) that helps to
control trusted transfers across security boundaries.

The significant feature of this delinition is that it places guards
into the broader context of trusted transfers. While guards serve
a variety of roles in helping to achieve trusted transfers, the
trusted transfer process itself is more fundamental and more
complete. Indeed, according to some views of what a "guard" is,
many trusted transfers do not even require guards. For example,
there e accredited systems without "guards" in which system high
hosts Lre trusted to produce and verify output at less than system
high, where the data is well-structured and where no changes are
made to the data or its labels.

So, although this paper uses the term "guard," the scope of the
paper encompasses the trusted transfer process as a whole; some of
the functions discussed thus will be performed by hosts or
applications rather than by guards. Figure 1 is a functional
overview of the trusted transfer process.

The 1" •.iicr .:e grouped into two layers: application and
communication. The emphasis within application layer functions is
on examininq the data whereas the emphasis within communication
layer functions is on moving the data. The term "trusted" is not
used in an absolute sense, but has different meanings for different
systems (e.g., -- ýrmally the low side is untrusted relative to the
high side).

324

Application App1 Trusted' Trusted i_ Appli-Layer Lgcationi 1 Review Acceptance cation

Communication Trusted Trusted
Layer i Release i Receipt .

Figure 1. The Trusted Transfer Process.

The most significant trusted transfer functions are those residing
within the application layer: trusted review and trusted
acceptance. The trusted review function verifies the actual
classification of the data or downgrades, sanitizes, or
decompartments the data to lower the actual classification. The
trusted review function might also remove control or release
markings and caveats. The final result of this verification or
transfoa-ttion is to reduce the data classification from the

overall classification of the system or single-level object in
which the data resides. Subsequently, the trusted review function
officially authorizes release of the data to the low side. Note
that the topic o" changing data classification or sensitivity is
complex and is further discussed in sections 6.1.1 and 6.2.10.

The trusted acceptance function protects the receiving system or
application from penetration. Trusted review normally is
associated with high-to-low transfers and trusted acceptance with
low-to-high transfers, but in actuality both functions are
applicable regardless of the direction of data flow.

The communication layer functions are trusted release and trusted
receipt. Taken together, the trusted release and receipt functions
are responsible for transferring the data between the review and
acceptance functions, while preventing unauthorized data leakage
from one system to the other and ensuring communication integrity
(e.g., authentication; Frotection from modification, insertion,
deletion, and playback) . The trusted review function should
insert an integrity-check (e.g., a CRC) that is checked by the
trusted release function to ensure that the data has not been
changed subsequent to output from the trusted review function.

Few guards perform all of these trusted transfer functions. Most
focus on trusted review, e.g., the Message Flow Modulator (MFM),
the National Aeronautics and Space Administration (NASA) Restricted
Access Processor (RAP). Some guards provide only trusted receipt,
in the form of one-way communication paths, e.g., wire ser-vice
links and media transfers (both of which often do not require an

325

explicit "guard") and links in which a guard provides protocol
mediation to ensure one-way communication. One interesting example
of a one-way path is an operational military system in which (1)
the low-side system writes to a disk, (2) a switch is thrown that
prevents further low-side disk access, and (3) the high-side system
reads the disk (but cannot write to it).

Trusted acceptance usually is not explicitly identified as a guard
function and is entrusted to the receiving host. Where risks are
minimal, as with wire service links, little attention to trusted
acceptance is needed. Lately, however, increasing occurrences of
worms and viruses make it apparent that more attention must be
placed on the trusted acceptance function. Furthermore, some
guards (e.g., the United States Army Forces Command Security
Monitor' have used extensive filtering and format checking of
low-side input to prevent penetration of the high-side system.

One function not shown in figure 1 is administration of the trusted
transfer process. Software needs to be loaded and maintained.
Transfers need to be audited. Errors and problems need to be
brought to the attention of responsible people. Such
administrative activities are an important part of the process and
must be carefully planned.

Wherever there is to be a trusted transfer rhi'n-ih y must be
assigned for all of the trusted transfer functions, even though the
particular function might be trivial for a given application.
Often some or most of these responsibilities will be assigned to
hosts or applications rather than to guards as such. Note that,
even though a guard is being added, where hosts or applications
must fulfill some of the trusted transfer responsibilities, the
hosts or applications might have to be strengthened (or at least
tested more thoroughly) in order to achieve sufficient security.

6. Guidelines

This section presents guidelines for specifying security guards.
Although the term "guard" is used, the guidelines apply to all
components of the trusted transfer process, regardless of whether
they are encompassed within something explicitly referred to as a
guard. The guidelines are intended to apply to guards in which
there is an electrical connection between the high and low systems
rather than to guards in which media transfer is used.
Nevertheless, many of the features and assurances can and should be
applied to media transfers.

These guidelines interpret and supplement the Orangq Book and in
fact demonstrate the versatility of the Orange Book-. While the
Orange Book was not developed to address guards, much of its
contents are applicable.

Because so many different types of guards are possible, an
important assumption of these guidelines is that they not be
monolithically or inflexibly applied to all cases. Were these

326

guidelines to be transformed into official policy, users should be
able t submit written justification for exemption from specific
policy statements.

Another important assumption of these guidelines is that it is not
necessary for the guard itself to be a multilevel secure (MLS)
system in the pure sense of the Orange Book (i.e., a class BI or
higher system, with all of the B1 features and assurances). The
reason is that MLS features and assurances often just are not
applicable to what many guards do. That is, guards basically
implement a single trusted function and do not support direct users
and the sharing of data as general purpose systems do. In
addition, sometimes the guard's trust derives not from MLS
assurances but from the guard's independence and from configuration
management of the guard hardware and software. Of course, the more
trustworthy foundation provided by an MLS system is an excellent
base upon which to build guard functions, but until MLS systems are
comfortably within the state of the art, they can be a costly,
risky foundation.

Although the guidelines do not require guards to have a full MLS
foundation, the argument still might be made that the guidelines
ask too much, in light of existing operational guard precedents.
In some cases this may be true, but one purpose of the guidelines

s to chart . cr towards: crontinued improvement.

The remainder of this section expands upon the features and
assurances in the Orange Book. Note that the features might be
implemented in a distributed fashion, with different features or
even portions of one feature implemented in different computers.

6.1 Features

6.1.1 Trusted Review

Trusted review reauirements differ for human and automated review.
The following guidelines distinguish the two cases and also include
requirements that apply regardless of whether human or automated
review is used. Automated review is appropriate only if data
releasability can be reliably determined based on data structure
and content. That is, review criteria must be sufficiently
predictable to be automated. Where this is not the case, human
review is required. in any case, trusted review is only practical
if policy exists that explicitly establishes the rules for
downgrading, sanitization, decompartmentation, and classification.
The need for such policy is fundamental. Sometimes automated
review can be made feasible by working with policy authorities to
revise and simplify applicable security policies.

Where human review is used:

o The system supporting the human review function shall be
at least a class C2 system. This is necessary to obtain
proper authentication, accountability, and so forth for

327

the human reviewer. This requirement applies whether
human review is performed in the guard or is embedded
within the system being supported.

"o Reviewers shall be fully cleared and authorized for all
data that might be received by the guard. Encompassed
within the term "reviewers" should be two roles: "data
preparers," who prepare, assemble, or initially review the
data, and "release authorities," who perform the final
review and authorize release of the data. Normally there
will be many data preparers and only a few release
authorities. in all cases where human review is used, the
authority to release data shall be explicitly and
officially assigned. If the trusted review function
includes data transformation (e.g., removing or changing
data to lower the classification or sensitivity), then the
data preparer and release authority roles shall be
performed by different people.

"o Reviewers shall be qualified to recognize data that can be
released and shall be familiar with the most sensitive
types of data that cannot be released. To be "qualified
to recognize data" means to be very familiar with data
content, not just data structure. Where feasible, the
reviewer should be the data owner of the data to be
released. sometimes it is unrealistic to expect the
reviewer to intimately know all data that cannot be
released; in a shared system, that other data might not be
part of the reviewer's day-to-day work. Therefore, the
reviewer must not release any data with which he is not
familiar. The reviewer must be very familiar with
applicable classification guidance and releasability
policy.

"o Reviewers shall be trained to examine data content in
addition to data labels and shall be trained not to place
total reliance on data labels, especially where the labels
appear to understate data classification or sensitivity.
The reviewer shall not override or second guess labels
affixed by data originators, but shall contact the
originator where clarification or confirmation is needed.
A problem commonly encountered by reviewers is that data
originators often do not indicate releasability. This can
be a major problem when originators are the only people
authorized to determine releasability. Where feasible,
originators must be required to indicate releasability
when data is created.

"o All data (including system control data) to be released
shall be accessible to the reviewer. This does not mean
that the person must review all of the data, but that he
could if he so chose. Note that the human might review
text and an automated process review control (e.g.,
protocol) data. Where large amounts of data are involved,

328

the human should not be forced to review all of the data.
The human should, however, be forced by the guard (or at
least instructed by procedural guidelines) to review the
beginning and end of any file or data stream, to ensure
that the correct data is being transferred and that no
"straggler" data is attached. Human judgment should be
relied upon to choose which intermediate data samples to
review (e.g., to check for "interlaced" data), but the
human should be forced (or at least instructed by
procedural guidelines) to review at least a minimum
percentage of the data. One DOD policy requires that the
review encompass "a random sample comprising not less than
ten percent of all media ,torage locations (including
beyond end-of-file mark)"

Where automated review is used:

o If the automated review function is embedded within the
system being serviced, the system shall be at least a
class B1 system.

o There shall be a reliable means to determine
releasability. Candidate techniques include the
following:

.... .. % . . . ^,^ .. nc th by resence
- Where r•l•saiiity can be d.........d bythe r nc

in text of specific words, a text scan can be used.
either of the full text or of predetermined fields.
Careful planning is needed, however. One operational
guard used a text scan to filter out words that were
not allowed to pass. Unfortunately, sensitive
information managed to flow past the guard's checks
and the guard was deactivated. Another operational
guard used a text scan to identify words that were
allowed to pass. Unfortunately, much data that
should have been allowed to pass was filtered out.
This guard also was deactivated.

For highly-structured messages or for database
output, the review can validate the format of every
field and the relationships among fields, as well as
the value of selected, predetermined fields. Where
labels are present, they should be checked, but
releasability should not be totally dependent upon
this one check.

0 Review functions and data releasability criteria must be
approved by appropriate authorities (e.g., the originators
or owners of tne data at risk) and must comply with
applicable policies.

329

Regardless of whether human or automated review is used:

o There shall be some independent means to validate review
actions, so as to pose the risk of detection to someone
subverting the process. For human review, this validation
might be an automated review (e.g., to search for
unauthorized security labels). For automated review,
validation might be a human check. For example, there
might be an optional human review role that can be
activated or deactivated as required, e.g., the human
review role could be filled during initial operation,
during high-risk periods such as military exercises, and
during periods in which there are changes to or problems
with automated review.

o There shall be a capability to audit both the change in
classification or sensitivity of an object and the
transmission of that object to another system. It should
not be necessary for both the guard and the high-side
system to perform the audit--one record normally is
sufficient.

o All data being reviewed must be properly handled, e.g., no
extraneous data inserted, data sequence maintained.

o If the thrPat warranti, there shal! be some means to
ensure that reviewed data is not supporting covert
channels (above a certain bandwidth). Candidate
techniques include overwriting unused communication
protocol fields and displaying nonprintable characters by
using a unique displayable equivalent for each
nonprintable character.

6.1.2 Trusted Release

o Data shall be released only if the release has been
approved by the review process; if there is more than one
review process, reliable identification of the review
process shall be ensured.

o Communication integrity shall be ensured (e.g.,
authentication; protect on from modification, insertion,
deletion, and playback) . In some systems, untrust-.
components process the data after its output from t,.e
trusted review process and before its input to the trusted
release process. To ensure data integrity, an integrity
check (e.g., CRC) should be added to the review process
and checked by the release process. An additional check
used by some guards is to check the classification label
that was set by the trasted review process and "locked" by
the integrity check. Finally, the trusted release modules
of some guards perform still additional checks, e.g., to
verify that the releasing individual is authorized and
that the destination is authorized.

3330

o Some guards have strengthened the integrity check (see
above bullet) by encrypting the CRC; others have not. The
need for encryption to further protect the integrity lock
should be determined based on a vulnerability analysis and
on guidance provided by the accreditor(s). Note that CRC
encryption is an effective defense against system errors,
but not against attacks by malicious software.

6.1.3 Trusted Receipt

"o There shall be some means to prevent data leakage (from
the high system) during receipt. This might be achieved
via a pure receive-only circuit rather than by adding
software checks or by modifying communication protocols to
effectively achieve one-way transfer.

"o Communication integrity shall be ensured.

6.1,4 Trusted Acceptance

o Allowable data flow shall be restricted in such a way as
to prevent penetration and to prevent infection by worms
and viruses. Note that some of this protection is
available from discretionary dcess controls, virus
detectors, and other mechanisms used to control access
within system high systems.

- Executable software shall not be transferred from a
low to a high system.

- Usage of a high-side system by low-side users shall
not be allowed. Low-side users shall be allowed to
forward only data (not commands or queries) to a
high-side system.

o If the threat warrants, data content and structure can be
checked (1) for correctness and (2) to ensure that there
is no extraneous data.

6.2 Assurances

Many of the assurances in this section are at the class B3 level of
the Orange Book due to the increased configuration management,
security testing, covert channel analysis, trusted facility
management, and trusted recovery at the B3 level. Differences and
omissions from Orange Book assurances reflect differences between
guards and general purpose systems. The main differences are in
the areas of system architecture, formal policy medels, developer
clearances, and documentation. Where the Orange Book is referenced
without change, Orange Book terms must be interpreted to reflect
the trusted transfer process rather tban a general purpose system.
Section 7 discusses how these assurances might vary as the
classification differential of supported systems varies.

331

it must be emphasized that satisfying these requirements should be
much simpler than building a class B3 system. First of all, a
guard is a much simpler object than a general purpose system and
need not include class B3 features such as internal labeling and
mandatory access control based on labels. Secondly, guards are not
required to meet the difficult class B3 system architecture
requirements. Guard assurances normally are based more on multiple
independent checks than on single trusted checks. The primary
reason class B3 assurances are needed is to ensure effective
testing, management, and operation of the guard.

6.2.1 System Architecture

o The guard shall be protected from external interference or
tampering (e.g., by modification of its code or data
structures). Possible approaches include physical
separation of the guard (on a separate system or board),
use of a software integrity check, and use of MLS-based
separation. Guard modules shall be designed such that the
principle of least privilege is enforced. Note that use
of the guard for a physically separate, independent check
of a function serves to increase the level of trust
associated with that function, since two independent
checks are more trustworthy than a single check. This
concept has a solid basis in precedent in that it is a
variation of the idea underlying two-man control and
separation of duties.

o It is an objective to satisfy as many of the class B3
architecture requirements as feasible and applicable..
Nevertheless, different trusted transfer components often
reside in different systems and have different
architectural requirements associated with them.
Furthermore, the use of physically separate, independent
checks (see above bullet) often is more practical for
guards than the use of pure class B3 approaches, in which
individual functions are trustworthy unto themselves.

6.2.2 System Integritvy

o See Orange Book (class B3).

6.2.3 Covert Channel Pnalysis

o See Orange Book (class B3). The covert channel analysis
shall be supplemented with an analysis of the difficulty
of implanting malicious software to exploit the channels.
Where the classification differential between the
supported systems is small (and the security risks
accordingly low), this analysis can supplant the standard
covert channel analysis. Where covert channels are a
significant vulnerability, symptoms associated with their
use shall be identified and included in the Trusted
Facility Manual.

332

o Covert channel analysis activities normally should require
hours or days rather than months of effort, since the
likelihood of a covert channel being exploited is very
low. Channel defenses should not be allowed to have an
inordinate influence on guard design and operation.

6.2.4 Trusted Facilit Management

o See Orange Book (class B3).

6.2.5 Trusted Recovery

o See Orange Book (class B3).

6.2.6 Security Testing

o See Orange Book (class B3).

6.2.7 Design Specification and Verification

o See Orange Book (class B3). An exception from the Orange
Book is that the specific guard approach determines
whether there is a requirement for a formal security
policy model. (Where there is no requirement for a model,
there also is no requirement for (1) a formal proof that
the model is consistent with its axioms or (2) a
convincing argument that the descriptive top-level
specification is consistent with the model.) For example,
a formal model might not be needed in cases where trust is
dependent on physically separate, independent checks
rather than on individual "trusted" checks, especially
where the checks reside on commercial software that is of
class C2-level trustworthiness. That is, in these cases
the benefits of a model probably would not justify the
costs. Cases where a formal model would be of particular
benefit include cases in which a class B2 or higher
component is used to provide trusted separation in support
of trusted release and receipt.

6.2.8 Developer Clearances

o Software specific to a particular guard application shall
be developed by people cleared to the level of the most
highly classified and most sensitive data that might be
processed by the guard. Note that this allows uncleared
people to develop a generic guard arid also allows generic
guards to be used without modification, but requires that
adaptation for specific uses be done by cleared people.

6.2.9 Configuration Management

o See Orange Book (class B3).

333

6.2.10 Documentation

o User Requirements and Data Flow Analysis. Requirements
analysts, working with data owners and security
classification experts, shall perform a thorough analysis
of data flow to dete:-mine whether the systems involved can
be made to operate at the same security level, thereby
alleviating the need for a guard. This normally is a
preferable approach to use of a guard approach. If the
need for a guard cannot be alleviated, analysis shall be
performed to identify data types, classifications,
formats, throughput, and response times, as well as
applicable classification guidelines and downgrade,
sanitization, and decompartmentation policies. The
analysis also shall identify:

- All data that aggregates to higher classification
levels or greater sensitivity. On one guard effort,
careful aggregation analysis quadrupled the amount of
data that could not be released to the low side.

- All data that might not be reliably classified (e.g.,
due to difficulty in determining the proper
classification to assign).

- All data whose classification cannot be determined on
inspection (eog., telemetry data whose classification
depends on its source, not on data content).

- The impact of classification guidAelines or
releasability policy being changed, e.g., due to
changing technology, changing international affairs,
or tactical command decisions made during crises.
Some guards have included the capability to bypass
the guard (e.g., in a wartime crisis). This
capability should be very tightly controlled.

- Requirements for changing the security labels and
associited markings relating to categories, handling,
classification authorities, ownership, control
channels, and declassification statements.

- Whether "cascading" might occur. The "cascading
problem" is identified in the Trusted Network
Interpretation of the Orange Book . As applied to
guards, cascading occurs when data flows from a high
to a low system and then to a still lower system.
Where cascading occurs, the high-side accreditor(s)
must be aware of the threat and be satisfied that
low-side defenses are adequate.

o Risk Assessment. This is needed to determine whether the
guard provides adequate protection. The document shall

334

list all threats and identify how the guard defends
against them.

"o Concept of Operations. This is a high-level document that
shall be prepared and approved before guard development is
begun. This is needed to show not only what the guard
will do and how, but also what procedures and support will
be needed for guard operation, administration, and
maintenance. This is the key document in obtaining the
understanding and commitment of involved people. The
document is the basis upon which involved people decide
that the benefits of the trusted transfer outweigh
associated de\ 'opment and operational costs and that
costs are just ied in light of the risks. This document
must be acceptable to accreditors, data owners, data
users, system managers, security managers, program
managers, and offices responsible for hard copy transfers
between the involved organizations.

"o Memorandum of Agreement. This shall address accreditation
requirements of supported systems. The document should
include a description and classification of the data, the
clearance levels of the users, a designation of the
accreditor who shall resolve conflicts among involved
a...ed.itors, and a brief sr•ipie- nf +-hp ganrd. This
document is not required if all systens have the same
accr~ditor(s). (See DOD Directive 5200.28, paragraph
D.8.)

"o Security Features User's Guide. See Orange Book (class

B3).

"o Trusted Facility Manual. See Orange Book (class B3).

"o Test Documentation. See Orange Book (class B3).

"o Design Documentation. See Orange Book (class B3). The
exception from the Orange Book is that the specific guard
approach taken determines whether there is a requirement
for a foimal description of the security policy model (and
for other requirements deriving from the model).

7. Application in Different Environments

While the trusted transfer process is constant when viewed in
generic functional terms, in practice there are many different ways
in which trusted transfer is accomplished. Some of the differences
derive from different functions being performed and impact the
selection of guard features. These differences can vary widely and
are discussed no further in this paper except to reaffirm the
statement that the guidelines must not be monolithically or
inflexibly applied to all cases.

335

Other differences among guards derive from the varying
classification differentials of supported systems. For example,
one guard might support data downgrade from a sensitive but
unclassified system to an unclassified system, whereas another
guard supports data downgrade froin an intelligence system to an
unclassified system. These differences impact primarily on guard
assurances, and are discussed in this section.

Many of the assurances included in section 6 are at the class B3
level. According to DOD Directive 5200.28 (enclosure 4), class B3
systeTs can be used in environments where the "risk index" is
three . (The tern "risk index" is not strictly applicable to
guards, but is used here somewhat loosely to quantify
classification differentials.) Risk index is defined as the
difference between the minimum user clearance and the maximum data
classification. Examples of systems with a risk index of three are
systems with uncleared users and Secret data and systems with
Secret-cleared users and intelligence data.

This is not meant to imply that the generic guard specified in this
paper is equivalent to a class B3 system, because it's not. The
DOD Directive simply provides a starting point for determining how
much trust to place in a guard that includes many class B3
assurances. An additional factor to be considered is that many
guards, having been developed (or adapted) by cleared people and
being physically independent from supported systems, are therefore
better protected against malicious software and thus hIve some of
the characteristics of a "closed security environment" . Such
guards should be sufficiently trustworthy to support systems whose
classification levels are more disparate than could normally be
supported by class B3 technology. Another reason guards can
support greater classification differentials than the risk indices
might imply is that guards typically support only data flow between
systems, not full-capability usage of one system by users from
another system.

Where the differential in classification levels of the supported
systems is smaller (e.g., risk index equal to one or two), class B3
assurances might not be needed. Even where the classification
differential is small, however, care must be taken to retain
sufficient system architecture assurance, security testing,
configuration management, and documentation, since those are key to
guard trustworthiness. Note that in all cases the specific guard
mechanisms used must be approved by the responsible accreditor(s).

A final environmental consideration regarding classification
differential is that some applications simply are too sensitive to
risk errors that result in, for example, disclosure of highly
classified data to uncleared people. So some guards should be
entrusted to downgrade only to the Secret or Confidential levels.
(DOD Directive 5200.28 suggesty this for fully-automated guards
used with intelligence systems .)

336

Classification differential. is not the only criterion affecting
risk. Another important criterion (especially where human review
is involved) is the amount of data that must be transferred: the
greater the volume, the greater the risk. Where the volume is
high, ,uch effort should be spent to change the operating levels of
the systems so that a guard is not needed. Where the volume is
low, greater classification differentials can be supported.

8. Design Considerations

It would be a serious mistake if designers interpret this paper to
imply that guards are desirable or are simple to achieve and thus
casually insert guards into architectural plans. The fact remains
that guards are a last resort. The goal is to formulate an
architecture in which guards are not needed.

One decision that must be made in designing a guard is whether it
should be external to or embedded within the systein being
supported. The advantage of an embedded guard is that it avoids
the addition of an extra component that might add to the management
burden and represent a single point of failure. Advantages of
external guards (over embedded guards) are that they reduce the
risks of (1) corruption by the more complex, less trustworthy host
software, (2) penetration by users, and (3) communication headers
being used f covert c .. incc the guardcan create or
least review the headers).

Based on lessons learned from past successes and failures,
following are desired guard design features:

"o Do not require a full-time human reviewer.

"o Allow controlled release (1) of any type of data, (2) to
any compatible system, (3) at any classification level
(where authorized).

"o Avoid the use of additional hardware, except that which
can be housed (e.g., as a board) within existing
components.

"o Do not require changes to commercial software in systems
Leing supported.

"o Employ guard-specific software tha• can be developed
quickly and with minimal cost and risk.

"o Require minimal procedures to operate, maintain, and
administer.

"o Avoid creation of a single point of failure or a
communication bottleneck.

o In distributed processing environments, collocate guards
with the data owners of data to be released.

337

9. conclusion

Experiences with failed guards and with guards operating at high
cost or risk affirm the need for additional guidance. The
operational requirements for trusted transfers are too pervasive
and critical to ignore lessons learned from past difficulties.

This paper codifies into guidelines many of the lessons learned.
Discussion and guidance in this paper do not answer all questions,
but represent a first step. Application of these guidelines should
improve the effectiveness of trusted transfers and reduce the
likelihood of failure in guard development efforts. As these
guidelines are refined with use, they might provide a basis from
which to develop more detailed official policy.

Acknowledgments

The author is indebted to Mr. Len Busic of the Defense Intelligence
Agency for his comments and insights. The author also is grateful
for suggestions from Diana Akers, David L. Baldauf, Maureen H.
Cheheyl, Wade R. Gerhart, Mark J. Goldstein, H. Craig McKee, Brian
W. McKenney, Samuel I. Schaen, Peter S. Tasker, and John M. Vasak,
all of MITRE. Thanks also go to conference reviewer number 72.

References

11) DOD Directive 5200.28, "Security Requirements for Automated
Information Systems (AISs)," Deputy Secretary of Defense,
March 1988.

[2) DOD 5200.28-STD, Department of Defense Trusted Computer System
Evaluation Criteria, Deputy Secretary of Defense, December
1985.

[3] Neugent, W., "Security Guards: Issues and Approaches,"
IEEE Communications Magazine, Vol. 26, No. 8, August 1988.

[4] NTISSAM COMPUSEC/l-87, Advisory Memorandum on Office
Automation Security Guideline, National Telecommunications
and Information Systems Security Committee, National Security
Agency, January 1987.

[5] NCSC-TG-005, Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria, National Computer
Security Center, July 1987.

[5] JCS Pub 6-03.7, Security Policy for the Worldwide Military
Command and Control System (WWMCCS) Intercomputer Network,
The Joint Chiefs of Staff, April 1988.

[7] CSC-STD-003-85, Computer Security Requirements--Guidance
for Applving the Department of Defense Trusted Computer
System Evaluation Criteria in Specific Environments,
National Computer Security Center, June 1985.

338

SECURITY FOR EMBEDDED TACTICAL SYSTEMS

Howard L. Johnson
Information Intelligence Sciences, Inc.

15694 E. Chenango, Aurora, CO 80015

Chuck Arvin
CTA INCORPORATED

7150 Campus Drive, Suite 100, Colorado Springs, CO 80920

Ab, ract

We take an embedded system to be a computer that is a component of a larger system comprised of
other electromechanical components. It may be stationary. If deployable, it can be in garrison
(home environment), in storage, in shipment, deployed, in maintenance, or captured (in the hands
of the enemy). Each embedded system has its own unique characteristics, but those that might be
present and are important from a security standpoint are sensitivity, criticality (integrity and service
assurance), complexity (different component policies or build times), production in multiple units
with wide distribution, partial or total autonomy, operation in an unfriendly or hostile environment
(a computer that is part of a tactical DoD system) and response driven operations (such as real
time). This paper addresses security for embedded systems.

InkLsuction

The computer has served us for several decades as a monolithic system and is now called upon to
be integrated into other systems. An important example is a network controller. Saon the.
computer will become part of most vehicle systems, play a role in vital control functions, and be a
principal interface with the human through voice and image interpretation as well as image and
audio response. Many autonomous and semiautonomous electromechanical devices will house one
or several processors to interpret sensors, pilot, plan, control, map, navigate, and control end
effector (e.g., gunner) functions.

The security community has had great success in protecting information confidentiality. The word
"security" has a broader meaning including guarding against danger, making functionality certain,
and rendering loss or failure
impossible. There has been
significant work on ensuring
integrity and assured service,
but uniform guidance is
lacking. As Figure 1 s,''Ce
suggests, the science of E-....--T AA
security protection will
continue to expand. Current
modeling, specification, and
assurance in the presence of
intelligent hostile threat are
applicable to the expanding
protection problem. FgU,. 1. Epnd.g Security

339

An Embedded Systm_

An embedded component is Network
conceptually similar to a
network component (Figure A system composed of connected components
2). Manufacturing- . Network
protocols (MAP) continue to ,, Component
evolve to define the
communications interfaces -_S__-_.
between standard
components. One embedded (---.•
computer may cooperatively
act with several other
embedded computers as in a Embedded System
military aircraft. The A component that helps comprise a system
protection of data during
communications is difficult in / > d Embedded
networks since network • Component
connections must operate in a
hostile environment. In
comparison, the system
containing an embedded t--
component may operate in an
environment even more Figure 2. Complex System
threatening than the network.

Historical Treatment of Security in Tactical Systems

Tactical military systems and even civilian transportation systems have not traditionally considered
data system security. From a historical perspective, only sensitivity threat was considered
important. In the war zone, most classified infoimation was tactical and highly perishable. In a
fast moving situation there may be no time for the enemy to exploit it. Exchanging battle plans and
orders depended on communications security (COMSEC) and encryption prevented exploitation.
Everyone in a Tactical Operations Center was cleared to the highest level and was assumed to have
total need-to-know. Logging on and passwords were felt to be unnecessary. Explosive
destruction or capture were more likely and effective than a data system security attack. Spending
funds on defense of the latter was not warranted.

Threat of a Data System Attack

There has been recent growth in the use of computers in all types of systems performing complex
and vital functions. We see the development of functional and higher level application specific
languages that will allow "programming" capability in real-time with much the same opportunity
for a malicious threat as exists today with standard languages. The real and present opportunity
exists to divert or nullify a weapon system with a data system attack. The potential exists for
sophisticated terrorist attacks that use no explosives and hold no hostages, except the computers
themselves.

Read only memory (ROM) is not impenetrable and is easily changed by maintenance personnel.
Random access memory (RAM) is used in command and control systems for data acquisition and
processing, and depending on the computer, may be loaded with executable code. Dependence on
sensor systems and the ability to command remote systems affords many opportunities for
spoofing, jamming, confusion, overload and agility as potential attacks. A real time battle planning

340

and management function may well be the single most important capability existing in a tactical
environment. In the near future it may be embedded as part of a command post capability.
Implementation may be in software because of configuration management and control required for
such a large piece of code.

Because of modern day Time,

weapon system capabilities, ___ __ __ __ __ __ _ __ _ __ _ _ store Ship I Use Capture
the stakes are high and the Develop Maintain Burn.,n store ship o Ct
role of spoiler (destroying the 1
capability) more lucrative. Expo.t . Compromiso

There are many opportunities Trap Door •_eus-
for attack (Figure 3) not only Trap Door Maintenance

during development but .Ti-uogomb High Level Languages

during deployment and Malicious Cod, Programs nData

maintenance. We must begin
to solve the problem
effectively now, so that the Figure 3. Life Cycle
threat may never mature.

Sensitivity

The Orange Book [1] stands as the preeminent basis for fon-nal security policy. It has gained
intellectual and operational acceptance and absence of successful military sensitivity attacks can in
part be attributed to this National emphasis on data system security. Fmbedded systems are apt to
contain classified infoirmtioi juw be pirotected us-^ u aU:^, C IIiI ifonnatio, can ,,.,A,
targeting information, high resolution tenrain data, attack plans, characteristics of the system itself,
secret keys, or access control information related to individual users.

Encryption

The window of vulnerability of classified data can be reduced through encryption, leaving the
problems of covert channels, key management and key protection. Encryption reduces the need to
destroy data in a capti'red system if critical functionality is left in software which is encrypted when
not in use. Cryptanalysis is of concern if the algorithms are not of sufficient strength and usage is
not correctly engineered and verified. The key can be a function of time, the event, or the user,
where the key is not available except when appropriate. If it is desired to purposely plant false
information, release along with an improper cryptographic checksum is a secret way of telling the
friendly forces (with the key) that the information is not valid.

Transiet Classification

It is often necessary to reclassify or downgrade data unexpectedly. This is sometimes associated
with an event such as the DEFCON level. (DEFC .-.. , a national level of alert which includes
day-to-day, local crisis, conventional war, regional war, and general strategic nuclear war. The
higher the DEFCON level is, the more apt we are to use information that might reveal a secret
information source.) The idea of providing classification flexibility in a tactical situation is good,
but will almost always provide the perpetrator a way to avoid the security policy. Sanitization vales
can be used to qualify data for downgrade by removing or hiding (e.g., statistically) the
characteristics that caused the data to be classified. The process must be designed so that a manual
reviewer can keep up with speed requirements and so that neither a manual or automatic reviewer
can be spoofed. Careful design uses both manual and automatic support, perhaps even using an
expert system.

341

CLassi fid Actions

Often, output of an embedded system is not printed data but rather electronic data that control
electromechanical components of the host system. An embeddcd system that uses classified
information for decision making may reveal sensitive information through actions. Presence,
identification, and authentication of observers may be required. Communications with human
users might be through synthetic voice or graphic images. The information medium or another
medium must convey classification, but in either case, it must be conveyed indisputably and in
such a way to be taken and remembered in the proper context. Under a Trojan horse attack the
control of functions of an electromechanical system may provide a covert channel for leaking
classified information. TEMPEST sources may also be covert channels.

Audit Functions

There is a new real time role and functionality for the audit function. The first is that of not only
collecting key parameters, but comparing them against history, statistics, expected attack
parameters, or conditions that warrant surveillance. Secondly, audit data are fused with one
another to increase the amount and quality of information known concerning an anomoly and can
be used in real time as a detection mechanism. Detection of illegal entry may still allow time to take
action before a sensitivity attack is successful.

Criti._lity

It is the criticality of a military system to human life or National/military objectives that drives the
expenditure of funds to provide integrity and service assurance. Since we are concerned with the

Insider ,c.c..s...t . , .t.. alsoe p utvnicd by necnanisms conceiied... 'L n i Lonceived against
malicious threat. We are concerned with trust of individuals involved with the system and
recommend much the same clearance approach as for military classified infornation protection.
Integrity concerns such as program correctness, hardware reliability, data precision, and human
competence are equally important to critical systems, but are dealt with here only as a byproduct to
malicious attack prevention and must be considered as separate system design objectives.

In a critical system criteria 12] we have chosen the Biba model [3] and supplemental proven
mechanisms as a basis for criticality because the Biba conditions can be implemented 14] by little
more than replacing the Bell-La Padula model in the Orange Book. Thus the designer,
implementer, and user community can use their sensitivity background to understand criticality.
The Biba approach is cheaper to implement because of the sharing of common mechanisms with
sensitivity and the use of less expensive detection/correction mechanisms. Implementation reduces
the window of vulnerability by defining distinct security domains, restricting the data flow (via
Biba), restricting access to higher critical functions based on trust, need-to-miodify, and need-to-
execute. In sensitivity, the Bell-La Padula policy must be violated for Top Secret functions to
command lower classified elements. In this case we use manual or tightly controlled methods.
The same can be done for Biba in an integrity architecture. A Biba model weakness is that it does
not prevent Trojan horses from being introduced at the lowest level of criticality, and all software,
data and processes at the higher levels must be trusted. In a sensitivity Trojan horse attack, there
must be a leakage path. In a criticality attack, the existence of the Trojan horse suffices to do
damage. The advantage is that there is usually time for detection/recovery to occur.

A Clark-Wilson model [5] supports a three way policy between user, process and data (or
resource). A similar implementation can be achieved with a Biba model and a definition of what
programs under different users must do. Expert system auditing functions determine this
empirically by building a history and sensing deviations. Such capabilities can augment a design
requirements definition of what should happen and what should not happen. This is especially true

342

for availability, which if defined as a requirement under all conditions becomes an integrity
problem. Otherwise resource usage can be monitored with a recovery action initiated for abnormal
usage.

Relationship with Availability and Survivabilitv

As discussed in [4] and shown in
Figure 4, there is a close D
relationship between criticality •Recovery Mobility

(integrity and service assurance), pHerdening

reliability, and survivability.
There should be serious EXTRNA
consideration toward expanding Task

the risk model to encompass the DATA SYSTEM
three areas. The denial of service ,,nt7,i
detection mechanism will detect Avaielbiity,,
equipment failure and the •Reiablitv FR

probability of data system attack Maint
Fal Tolerance of

will depend on the potential Service
success in more forceful attacks. NATURAL HUMAN

An overall mechanism cost THREAT THREAT

savings and increased
effectiveness will result if the Figure 4, Design Relationships

combined objectives are
considered.

System Programmability

Programmability is an important factor in the ability to launch a data system attack; however, the
lack of ability to program does not preclude such an attack. A Trojan horse can be implanted
during the development cycle and maintenance capabilities almost always allow probing and
substituting functionality. A maintenance person could easily design and implant a Trojan horse
into most systems. Even in autonomous (e.g., robotic) systems, there may be many different
applications oriented languages to support the functionality. These could be Al, expert, robot
control, or special object oriented languages developed for the user interface.

Initialization. Shutdown. Quiescence

The NSA Blacker program incorporated the concept of a special initialization/shutdown module to
be used under security officer control that provides necessary identification, authentication, and
initialization data (encryption variables, and access control information) to ensure high integrity
transitions between secure and insecure system states. This includes planned, accidental or
malicious shutdown or when components are maliciously removed. A similar approach is
suggested for embedded systems, especially to place a system in a state of quiescence during
storage and transport and bringing it to life at deployment.

Captaphic Checksums

The window of vulnerability for a criticality attack can be reduced by use of cryptographic
checksums and a checking mechanism used sufficiently often to preclude the possibility of a
successful integrity or denial of service attack. The difficulties are regenerating checksums with
data change, key management and protection. Techniques and concepts that prevent replay and

343

deal withl potential noise are helpfil, and can be developed using public kcy cryptogrraphic
appi oachcs. Any checksum generated at a high level can be verified at any lcvel using public key
methods. This is key to critical system design.

D. "1.ion a1d Rccovry

Detection and recovery within a specified critical time is an alternative to prevention mechanisms
that may be significantly cheaper and more effective, Recovery' can be automated, have a man in
the loop or be a combination. It can include checkpoints to restore a previous system state. These
are an extension to the concept of audit. The trend, especially useful in denial of service attacks is
to seek abnormal behavior or departure from historically established norms. General or specific
user activity, functional activities, or resource usage can lead to a threshhold of non:al and
abnormal usage. Any normalcy rules can be included in the design, with adjustments to pieclude
false alarms or tighten the alarm criteria, Detection can often be a parallel furnction, not affecting
pcrformatnce.
Criticality Tovert Channels

Covert channels allowing criticality attacks are nonnormal paths through which malicious code may
be cntered and executed. input from sensors, maintenance functions, any external communications
potentially allow code to be inserted and activated.

Complexity

There are three aspects to complexity; interface complexity due to multiplicity of components and
non standard interfat'e definition; nplic, c.rnnlevity- whe.e different .. tonen:. .have A iffe rC a.I *tI • r,e VF .. . -J . -Is __

security policies creating the need for a policy between any communicating components; and
temporal complexity where components were built at different tinie:; for different reasons and
where requirements, threat, and mechanisms have evolved. N component elements can have an
N**2 connectivity problem and an N**3 communication path problem. A state transition model
does net work in a parallel and distributed environment without overconstraining the system.
Where different policies exist, the cascading problemn must be considered. Multiple security
models are difficult to interface and may be invalid. Reference [6] addresses these issues.

Produced in Multiple Units with.Widee Distribution

The Orange Book assumes the existence of a facilivy to house the system. There is often no facility
for emblNdded systems except the hostile world. 'to reduce the window of vulnerability, varying
levels of protection can exist for different components, but not with a great deal of thought as to the
resultant risk of thle combined system. Field assembly must be accomplished under special
conditions with specific procedures.

A piece of tactical equipment may exist in storage for a long peiiod of time before being called into
operatioial use. It may be occasionally deployed as a part of an exercise, but in either case has no
continual monitoring as in the case of other secure computer elements. Changes are often required
on a mass basis and must be accomplished under tie intended secure level of the use of the
equipment to avoid implant of a Trojan horse.

Tilere is a need for configuration management and secure delivery and placement. Classified or
highly critical electronics and programs may be controlled as separate items for last minute
insertion into the system before its use. it must be assured that an attack cannot be launched from
interfacing components.

344

Partial or Total Autonomy

A semiautonomous tactical system may be mobile and concealable, operate on the move, be
survivable, endurable and robust, be essentially quiet except for needed communication, and be
dispensible in an operations (since battle planning anticipates attrition). Operating components are
standardized with high reliability, assume little or no field maintenance and degrade gracefully. In
a gracefully degrading capability the system must quiesce when it becomes insecure.

Human Security Functions

Standard computer systems have a cooperative human to assist in security, unlike an autonomous
system or one that merely supports a human function (e.g., pilot). A human understands what is
classified and its manifestations. He/she considers the relationship of this information to his/ner
actions and assesses whe;n it is communicated and when it is not. Actions will then be based on
audience and environment. Whether communicating with words or actions there is an
identification, authentication, and labeling process required, that is, passing on to others the fact of
the classification.

Humans mask their actions if they think they are revealing classified information. They employ
deception strategies. An embedded system that operates autonomously must act under these same
considerations, at least to the extent that techr -)logy allows, or otherwise be. in a secure quiescent
state. A pilot once he receives his target location may approach it via a circuitous rout. A remotely
piloted vehicle must be programmed to do this same. An autonomous system has an automatic
audit function with self initiated action (e.g., alarm or shutdown with data erased or encrypted).

Trusted Path

Just as we presently define a trusted paih between users and the tmisted system base, there must be
a trusted path between the system and its sensors and effectors to help fight against jamming,
spoofing and rep!ay. There must be continuous knowledge by the components of who they are
connected to and that a proper and secure interface is maintained.

]nfriendly/Hostile Environment

A hostile environment is one outside a computer facility. The worst case is when the enemy has
unconstrained access and is assumed to have technological skills and extensive physical might.
Security may include strong packaging, and ruggedization for extreme conditions.

Relationship between Data Systems and Physical Security

There is a growing relationship between data system security and physical security. Computers
interpret sensor output, identification devices, and area surveillance. Encryption can be employed
in data storage instead of a guarded room. The concept of fusion can mean the joint interaction
between a guard and an identification device. Cryptographic checksums can help assess the
activities of a suspected intruder. Insider and outsider threats must be considered by the designer
when planning system protection mechanisms.

Security Authority

Traditi.onally security is the reponsibility of the military police or intelligence function. These roles
are usually not trained in the complexities of data system security and often necessary clearances
are not given. If security is going to be part of the tactical environment then an authority must exist
that reviews data and takes effective action. The activity required by a security authority should be
minimal during a battle or crisis situation since attention is turned elswwhcre. The authority must

345

report high within the command so there is an understanding for the relative importance, the
actions and tradeoffs. The design of the system must consider who the authority will be and what
can be expected in terms of attentiveness and response. How will a mobile or autonomous unit
communicate data to the security authority? A patch-in capability, a removable caruidge or even an
RF connection are all possibilities, coupled with security authentication and spoof detection.

Identification and Authentication

The future battlefield will be characterized by high attrition in personnel and equipment. New
replacements and allies might be placed in a position of assistance. We are perhaps on the
threshold of unique electronic dosiers for each individual based upon characteristics and features.
The database of identification information for all possibilities would be very large and unwieldy
unless massive compression, or massively large storage and search techniques can be employed.
Less satisfactory techniques, such as smart cards, passwords and keys, must be used in
combination to gain a.ly degree of assurance.

Continuous or almost continuous identification/authentication of either person or component is
critical, such as reautheritication through a continuous mutual dynamic key. In the case of humans
the monitoring of key stroke (including pressure and timing) or other predictable human interaction
(e.g., voice) can be used as an authenticator.

A battlefield situation cannot withstand delay resulting from a security problem. The capability
must exist for two person sponsorship or override by an unforgeable identifiable higher command
authority, especially one backed up by a coauthority. Ultimately the commander must be presented
with the evidence and be able to decide what is to happen in a battlefield situation and not be.
controllci by security mechanisms.

Capture and Duress

There must be a way in which a user is able to communicate a duress signal without revealing in
any way the fact that he has done so. The fact of withholding full capability must be reviewed by a
higher authority. A deception plan for duress must be avaiPable and put into place. Likewise a
captured system must be able to notify other systems of its captured state and its capability must be
altered and, if desirable, an alternate mode of operation employed. Sensitive unencrypted data
need to be destroyed and functionality needs to be disabled. The mechanisms must not present a
denial of service risk.

Response-Diven Operations

Many embedded systems are response-driven. Realtime systems must operate under the
constraints of a clock. Functionality is carefully engineered based on statistical or known input to
ensure that functions will be completed in time for the ,sage of output data. Other response driven
systems may not be as periodic or predictable, but on-time responses are vital. The approach is to
identify functionality, including security before doing a functional allocation, and identifying
response requirements. Fortunately, many security functions are not real tirrc and can be achieved
in parallel, as long as the long term computational requirement is less. This cuin be achieved
through parallel and pipelined design.

Sum.mary

Here we have addressed topics on the security of an embedded systems. We have encouraged the
expansion of historical treatment of security because of the suitability and applicability of the
formal approach to development that has been a part of secure systems technology. This

346

expansion takes security beyond the current responsibility of some agencies (e.g., NSA) and
into the realm of (e.g., military) operations.

This paper suggests a
hierarchy of require-
mcnt/criteria and guidance
documents shown in Figure Basi (TCStE (TCCSEC)

5. The Orange Book [1]
stands as the standard for
form al security policy. It General E . riv
must be augmented by a Applicability lxsY m -:st .II st SyatIe n1
Trusted Critical Computer
System Evaluation Criteria
(e.g. [2]) where either or both Application ., o .. i I F
may be applied in a , j,,,,mnt

development. In the future
these documents can be
combined into one applicable Fgu,, S. Scurity Guiane
to many different policies
(Biba, Bell-LaPadula, Clark-
Wilson).

At a second level should be interpretations with wide application. Part of the Draft Trusted
Database Management System Interpretation applies to database management while part is
appiicaboi to database 1,na,,•,ient systems. The forrner should be isolated to the secend level
interpretation with the latter adopted as an application interpretation. Other second level documents
should be written on Trusted Complex Systems (e.g., [6]) and on Trusted External Event Driven
Systems.

The third level documents can interpret the higher level documents for specific applications such as
networks (e.g., TNI [71), database management systems (e.g., TDI [8]), embedded systems (e.g.,
draft TESI [9]), and microprocessor systems. It also appears that threats could be addressed at this
level such as the virus threat, telecommunications threats, and the Trojan horse threat.
Graphics for this paper were by Donna Henry of CTA. The authors appreciate review comments

and discussion, especially from Trusted Information Systems, Inc.

R.eferences

[1 DoD 5200.28-STD, "Trusted Computer ';ystem Evaluation Criteria," December, 1985

[2] Johnson, H.J., "Trusted Critical System Supplement to the Trusted Computer System
Evaluation Criteria," DRAFT Information Intelligence Sciences, Inc., Delivered to Computer
Technology Associates, December, 1988

[3] Biba, K.J., "Integrity Considerations for Secure Computer Systems," ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, MA, April, 1977

[4] Johnson, I.L, "Security Protection Based on Mission Criticality, Proceedings Fourth
Aerospace Computer Security Applications Conference, IEEE, December 12-16, 1988,
pp.228-232

347

[5] Clark, D.D, and D.R. Wilson, "A Comparison of Commercial and Military Computer
Security Policies," Proceedings of the 1987 Symposium on Security and Privacy, Oakland,
CA 1986, April 1987, pp. 184-194

[6] Johnson, H.L., "Trusted Complex System Interpretation to the Trusted Computer System
Evaluation Criteria," DRAFT Information Intelligence Sciences, Inc., Delivered to Computer
Technology Associates, December, 1988

[7] NCSC-TG-005, "Trusted Network Interpretation," 31 July 1987

[81 National Computer Security Center, "Trusted DataBase Management System Interpretation,"
DRAFT, May, 1989

[9] Johnson, H.L., "Trusted Embedded System Interpretation to the Trusted Computer System
Evaluatib)n Criteria," DRAFT Information Intelligence Sciences, Inc., Delivered to Computer
Technology Associates, December, 1988

This work has been partially sponsored under CTA Contract Number F41621-88-05001 for the
U.S. Air Force, Hq. Electronic Security Cornmand/LGCCV, Kelly AFB, TX 78243. The
opinions are only those of the authors.

3418

A "HOW TO" GUIDE FOR COMPUTER VIRUS PROTECTION IN MS-DOS

M. H. Brothers

AT&T Bell Laboratories
Whippany, New Jersey 07981

The proliferation and casual administration of personal computers has
created a potential Achilles' heel in today's computer operations. The
following procedures cannot prevent or protect a computer from all
attacks in the future, but can serve as a guideline for safe computing
in the current environment.

Review of Terms

We first need a shared understanding of common terms required to discuss
virus detection, recovery, and prevention.

The Disk

The formatted disk has a number of physical tracks created for the
orderly storage of data. Each track is subdivided into sectors, with
logical numbering of both tracks and sectors. The boot track is
typically the first track on the disk, containing the start-up program
that is executed when the PC is first powered or restarted.

The next important section of the disk is the File Allocation Table, or
FAT, a secondary index that puizit- tu sbsequent clus.tCrs in an accessed
file.[4] ThQ first cluster, or beginning of the file, is listed in the
directory structure within the operating system. If the FAT were
disabled, all stored data that spans more than the first cluster would
be unreachable. The FAT consists of pointers, or entries, for each
cluister on the disk. The pointer could indicate:

1) The cluster is unused.
2) The cluster `s damaged, marked as a "bad cluster."
3) The next cluster in a given file, creating a linked list.
4) No more clusters associated with a specific file.

Both the boot track and the FAT are common attack points for destructive
software. The procedures outlined in this document aid in protecting
these crucial components from corruption.

Booting

Starting up a PC, or "booting," can be perf.rraed in two different modes.
In a "cold boot," the PC must be physically turned on. If the operating

system is resident on a hard disk, then just providing power starts the
boot sequence. lf the operatin3 system is resident on removable media,
then the media, in this example a floppy disk, must be placed in the
floppy drive before the machine is powered for the boot process to take
place.

The second way to start a PC is when the machine is already running.
The term used is a "warm boot," and can be performed in one of two ways.
For some PCs, simultaneously pressing the ALT-CONTROL-DELETE keys causes
the operating system to re-initialize. RESET will also re-initialize

Copyright © 1989 AT&T
All Rights Reserved.

349

the system, in addition to running the self-diagnostics and clearing the
volatile memory.

In booting, the DOS operating system uses two hidden files and three
visible files. Prior to any file, the boot record is activated. The
boot record, usually resident on side 0, track 0, sector 1 of the disk,
contains the basic information about the disk needed by the operating
system. From the boot record, the PC then seeks the first hidden file,
BIO.SYS (file names will vary with the operating system), a file that
assumes control of the PC from the operating system and continues the
loading sequence. The BIO.SYS loads MSDOS.SYS to introduce enough
intelligence to the PC to load COMMAND.COM, the first overt system file.
COMMAND.COM contains the command interpreter program that serves as the
interface between the person at the PC, the rest of the DOS operating
system, and the PC hardware. Through COMMAND.COM, the PC user can
access the internal DOS commands from any directory. These three files
must be present, in specific positions on the disk, to successfully boot
the PC.

The other two visible files, CONFIG.SYS and AUTOEXEC.BAT, perform other
duties for the operating system and the PC. CONFIG.SYS contains
instructions that configure the PC. The CONFIG.SYS can include setup
instructions for a RAM (Random Access Memory) disk, or instructions for
accessing remote disk drives on a LAN (Local Area Network); for
examples. In AUTOEXEC.BAT, the operating system has a special batch
file that instructs DOS to execute a series of commands once the PC has
finished booting. The AUTOEXEC.BAT file is usually created by the user
or the administrator who sets up the PC to the user's specifications.

All of the files just mentioned, because they are automatically accessed
by the operating system when booting, are primary targets of destructive
software.

Protection and Prevention Procedures

A computer under attack by a virus may manifest symptoms identical to a
hardware failure. Following these procedures will minimize the end
user's vulnerability to a computer virus and will also serve to minimize
the negative effects of a hardware failure.

Write-Protection

Always use write-protectirn on removable magnetic media, such as floppy
disks. Only remove the protection wher a specific write to the medium
is required. This practice will only protect the floppy disk when the
write-protect tab is in place. Removing or disengaging the write-
protect tab leaves the floppy disk vulnerable to an unauthorized write.
By using write-protection on your removable media, however, you have
introduced an early indicator of potentially unauthorized write attempts
originating from your environment, possibly from the software already
installed on the hard disk. Extra write-protect tabs are supplied with
new floppy disks by the manufacturer, or you can use any opaque tape.

Copyright © 1989 AT&T
All Rihts Reserved.l5

Write-protection for the hard disk is not a trivial matter at this time.
Access control packages for the DOS environment currently exist that can
partition the hard disk into open and write-protected sectors, or will
assign an access level to each resident file, whether data or
executable. Recognize, however, that the sector write-protection cal be
subverted by direct virus attack. Encryption of the hard disk can make
unauthorized file modification difficult. In theory, the entire
operating system of executables should be protected from unauthorized
writes, yet be capable of handling legitimate operating system updates.

Introducing New Software

Introducing new software is always a trying time. Having to worry about
hidden viruses in the software can prove to be too much of a burden for
the typical user. Here, then, are some guidelines to determine when to
be worried about newly acquired software.

Newly Acquired Software

Low Risk I High Risk
(Less Worry) (More Worry)

You've paiH fnr it (legal It's free.
liability).

Your software source is an old, Your software was downloaded
trusted supplier of your soft- from a public bulletin board
ware needs. Your supplier is (public domain software,
well-known, widely used, and even vaccines!). A new
has a good track record of sup- software package arrives by
plying quality products with surprise in the mail from an
good "after-the-sale" support. unrequested source. A copy

of a program is acquired
from your friend, your
neighbor, your relative, or
your co-worker.

Your newly acquired software is Your newly acquired software
a well-known package, commonly is unknown to you and your
used by many of your peers. peers. No performance track

record.

When downloading data from another computer, always download to a floppy
disk instead of to a hard disk. Use the DOS CHKDSK command to check for
hidden files.(J7) If the disk has a label, you can expect one hidden
file. Verify that the label is present by using the DIR command if a
hidden file is indicated. Whenever possible, share only source code,
not object code.

The following general guidelines can be used for introducing any new
software that doesn't fall under the "high risk" classification. [53 4]

Copyright © 1989 AT&T
All Rights Reserved.

351

Introducing New "Low Risk" Software

Floppy disk system Hard disk system
1. Write-protect system diskettes. 1. Perform a full back-up.

2. Use expendable diskettes. 2. Perform checksums on all resident
3. Scan for tell-tale messages in files.

text strings. Run the new program.
4. Run the checksum program again,

compare.

Use the following procedures, in the order listed, to minimize unwanted

surprises from "high risk" software:

1. Verify the authenticity of the software with the supposed source.
When ordering the software, discuss with the supplier some means of
incorporating a unique identification code in the documentation or
software program that can be checked for accuracy upon receipt.
Ask your software supplier for certification of virus-free code. [I]

In general, always use software from reliable sources. If you must
use public domain, shareware, or freeware programs, contact the
writer or distributor and compare the file date and file size
before using the program. [7]

2. Before running the software, do a complete system back-up and
verify that you can recover from the back-up before you load the
new suftwdrM.- The first line of defense against a software virus
will always be a full and adequate back-up. [4]

3. If the software is being generally distributed, wait one month
before loading it (a "soak" period) and watch the news networks for
chatter about bugs in the software.

4. Run the software on an isolated machine; drop all network lines,
either physically (preferable) or logically.

Always quarantine your test machine. Quarantined machines only use
quarantined disks, disks that are not shared with any other
machine. [4]

5. Make sure the program is running properly with no hidden activity.
One way to check for hidden activity is to load your software on an
expendable hard disk and then reboot the system from a write-
protected floppy system disk. Never put shareware or suspicious
programs in a hard disk's root directo.-y; most viruses can affect
only the directory from which they are executed. [5] If running the
software causes a write er-ror to the floppy system disk when no
write to the sy.tem disk was expected, furthor investigation is
needed. Not all virus programs cause write errors, but this is
still one of the most counon ways for a virus to fail in the
atttmpt to replicate itself.

Run the new program under a variety of system dates to check for a

date-triggered logic bomb. [I1 Try the follow'kng dates [S: one I
iita.Li ahead of the current dote, one year ahead of the cuy ent
date, the next Friday the thirteenth, April first, October 31st

Copyright ©O 1989 AT&T
All Rights Reserved.

3152

6. Again, allow a "soak" period of isolated activity with the new
software resident before reconnecting the networks. Watch for
unexpected write-errors, changes in the operating system, file size
changes, and generally anything unexpected or different from your
normal operation. Keep a manual log of file sizes and check
against current file sizes for unexplained "growth."

Limiting Machine and Media Access

1. Introduce password protection as access control to your computer.
For DOS-based desk-top computers, firmware-based access control is
currently the most difficult type of protection to compromise, but
a physical lock must also be introduced to protect the new circuit
board from modification or theft.

2. Lock up all removable media when the media is not in use. A small,
locked file box on top of your desk is not sufficient, due to the
box's portability; put the file box in a desk or cabinet drawer
that is also lockable.

Back-Ups

Back up your system on a regular basis, and make sure that you can
recover from the back-up media!

1. Three generations of complete system back ups are strongly
recommended for the individual user's computer. Each "generation"
is a complete back-up of tili data files, both on hard disk and
removable media. Application and system files need only the master
copy, a working copy (on either floppy or hard disk), and one
back-up copy to be considered secure. An additional back-up copy
of application or system files is needed when moditications or
updates are made to one of them. Carefully date all back-ups and
retain your back-up records for at least one year.[5)

2. All back-ups should be secured. When determining the risk for your
machine, consider the possibility of a general emergency barring
any employee from entering the entire building. Do you need to be
able to grab your back-ups from another site and rebuild your
system, or can you wait for your own building to be reopened?

3. In between full system back-ups, updates of critical files can be
stored on flexible media, properly marked to indicate the sequence
of retention. Full back-ups have to be planned by the user and
cannot be dictated as a standard time interval. Critical files
should be backed up whenever updated. critical systems should be
backed up whenever accessed, with full back-ups done daily if
accessed several times a day. At a minimum, your PC, if it
contains data files, should have a complete back-up done once a
month.

Many software packages exist to make the job of backing up easier.
You can consult PC Magazine, volume 6, number 8, dated April 28,
1987, for an evaluation of commercial packages.

Copyright © 1989 AT&T
All Rights Reserved.

353

Specialized Software

Many commercial vendors now offer "vaccine" programs, software designed
to limit your computer's exposure to virus programs. Most of these
vaccines work by thwarting known modes of penetration of your computer's
files by today's viruses. A few vaccines claim to use artificial
intelligence, enabling the vaccine to learn from new viruses that
attempt to invade the computer. Consider, however, that researchers
cannot isolate all of today's viruses for detection software. [1]

Consider the installation of a vaccine with great caution. Some hackers
have been known to offer a vaccine, especially on the public bulletin
boards, that turns out to be a virus itself, designed for harm. The
best defense against this contemporary threat is user awareness and safe
computing habits.

Software diagnostics will aid in the detection and prevention of
infection.[2] A simple checksum program could aid in the early detection
of changes to supposedly stable files. Checksum programs are usually
written as subroutines within diagnostic programs. in principle, the
algorithm will add the number value of each file byte along with a
weighting factor to create a single value representative of the entire
file. Comparisons of the file's checksum to past values will aid in the
detection of changes to the file. Cryptographic checksums should be

used., when possible.

Recycling Media

When recycling a floppy disk, always use the DOS FORMAT command to
reformat the disk; DO NOT simply erase all the files from the disk. [7]
Remember not to share disks for quarantined machines and don't accept
disks from unknown or untrusted sources. Reformat all empty disks given
to you, just as a precaution. Special software exists that can do a
thorough erase of computer storage media.

Sharing Files Safely

When transferring files on a floppy disk, place the output data on a
floppy that has no executable files, including system files. Arrange in
advance with the intended receiver of the data a handshake system to
verify the authenticity of the data received.

Detection Procedures

Detection procedures for software virus activity may unintentionally
identify TSR programs as suspicious. TSR, or Terminate and Stay
Resident, programs are pop-up programs that jump in and out of the front
process as needed. Most TSRs "hook into" an interrupt vector before
they go TSR. These hooks might interc pt and process key strokes, or
"hot keys," or they might hook and intercept direct disk writes

themselves.[4)

Unusual Activity

Viruses may affect the complexity characteristics and size of infected
programs and, as a result, become detectable or harmful. Il] Look for

Copyright Q 1989 AT&T

All Rights Reserved.

354

unusual activities to detect a virus, such as:[7] [5]

"* An unexpected attempt to write to a write-protected file.

"* An unexpected change in the size of one of your programs or a sudden
decrease in overall system free space.

"* A change in the last date of an executable file's access. The change
could be due to either a modification or an update to the file. Also
notice if se:veral executable programs have all suddenly changed the
date of last update to the same day.

"* Diagnostic errors, from your special utilities, like an unexpected
checksum discrepancy or a change in the image of the system interrupt
vectors.

"* A change in the normnal system behavior. Examples would be an
increase in the number of "lost" files, a change in the rate of media
errors, and overt symptoms of a virus attack. Overt symptoms can
include strange messages on the monitor ("Ha, Ha, Gotcha!"), a
change in your PC's mechanical operation (the cursor takes on a life
of its own), or numerous unexpected disk accesses.

"* The following is a good check-up routine for verifying the health of
your system. Please note that command syntax may vary with different
operating systems; consult your operating system user's guide.
Additionally, c-ny of the com•mands can bc piped to a print file or
piped through a MORE command to display the output, one screen at a
time.

-- Periodically use CHKDSK to check your DOS directory, watching for
changes in the numtber of hidden files.

CHKI)SK [d:] [filename] [/F] [/V]

- Maintain an up-to-sate hard copy of your directories and their
contents. Use the DOS TREE command to print the directory
structure. (A similar command from a special utility will also
work.)

TREE I MORE
Displays current directory files and subdirectories.

Use DOS DIR to print complete information about each subdirectory's
contents. Watch fcr unexpected changes in file size and for the
appearance of new files.

DIR I MORE
Displays directory in original form.

- Use the DCS SORT command oi its equivalent to sort each
subdirectory by date and time. Any date before 01/01/80 should be
suspected. Future dates, like 01/01/01, should be carefully
checked. Check any date that contains 00 or any time later than
23:59:59.

Copyright © 1989 AT&T

All Rights Reserved.

355

DIR I SORT /+24 I MORe
Sorts directory by month.

DIR j SORT /+31 I MORE
Sorts directory by year.

DIR I SORT /+33 I MORE
Sorts directory by time.

- Sort each subdirectory again, this time by file size. Watch for
unusually large files or files with a size of 0 bytes. Any
inexplicable size change in COM, EXE, BAT, or SYS files should
raise a warning flag.

DIR I SORT /+14 I MORE
Sorts directory by file size.

- Now do a subdirectory sort by file name. If one of your files is
called 123.EXE, for example, and you find a file with the same name
but the file extension of .COM, this could spell serious trouble.
A COM file executes first in the DOS hierarchy. Also check for odd
or unfamiliar file names.

DIR I SORT /+I I MORE
Sorts directory by file name.

- Finally, sort each subdircctory by file extension. You may not
have picked up suspicious-looking files or extensions, such as
DBASE.EVL or 123.WK8, the first time through.

DIR I SORT /+10 I MORE
Sorts directory by file extension.

You Suspect a Virus

If a virus is suspected, take the following actions:

1. Leave the machine running! Any evidence of intrusion or infection
may be lost if the machine is powered down. In the haste to restore
the system as quickly as possible, many clues are often overlooked
and even destroyed.[6] Turn off the machine only at the instruction
of your management, your security group, or your technical support.

2. If your desk-top computer is connected to any kind of network,
break the network connection. Break the network connection either
physically or logically. A physical break would mean pulling the
plug on all network connections and is the preferable procedure, if
your action would not bring down the entire network. In no case
should you continue to use your network facilities with a
potentially compromised machine.

3. Let people know about your suspicions. Alert your own management.

4. Use your regular trouble reporting procedure to notify technical
support of your problem. Your technical support may be official or
unofficial. On your support person's advice, do a complete back-up
of your fixed media to clean, formatted, removable media for later

Copyright Q 1989 AT&T
All Rights Reserved.

356

analysis. Do NOT use your suspected computer to format the needed

flexible media. The FORMAT.COM is an executable routine and could
have been compromised by the virus on your machine. If your disks
need to be formatted, use an uncompromised machine. Then, once the
back-up of the contaminated system has been completed, proceed with
the recovery procedures outlined below.

Although this set of procedures addresses the very real concern of
computer virus activity, do not assume that every computer failure
indicates the presence of a virus. In the event of a computer
malfunction, take reasonable steps to ensure the safety of other

machines, and proceed with an orderly analysis of the situation.

Recovery Procedures

Reboot

Reboot your machine from a write-protected, uncontaminated copy of your
system software (DOS). Referencing the drive containing the clean copy
of DOS, reformat the contaminated hard disk. In a multi-partitioned hard

disk with non-DOS partitions, a low-level format is recommended to

ensure the removal of any contamination. The FORMAT.COM routine must
reside on your trusted DOS source. The reformat followed by a complete
power down should wipe out any contaminant. The power down cleans the
volatile memory of any programming remnants.

Rebuild

Rebuild your hard disk from a trusted back-up. If you have the time and
inclination, you can work your way back through the most current back-
ups, loading each one in turn and checking for the identified
contamination. If the back-up appears to be contaminated, then you will
have to do a complete reformat again, from the tiusted DOS source, and
start building your system all over again. If you want to minimize your
time and effort, then go back to your original application software
back-ups, on write-protected media, and rebuild your system without any
data files, just like the day it was installed. In either approach, do
not reconnect to any network that you might have available until you are
sure that you have a clean machine.

Network Considerations

Shareware

In local area networks, LANs, avoid placing shareware in a common file
server directory. Such placement would make the shareware accessible to
any PC on the network. Only the network administrator should have the
ability to sign onto the file 5erver node.[5]

Virus Manifestation

If a virus were to manifest itself on a computer network, the
administrator may be able to identify its presence through a change in
the type or frequency of trouble reports.[3)

Copyright © 1989 AT&T
All Rights Reserved.

357

Network Guidelines

As with individual Computer systems, the ultimate defense position for
the computer networks is to perform back-ups. The following are
guidelines for keeping your network healthy, for any PC on a network. (3]

1. Write-protect the boot medium.

2. Limit network users' network access to an "as-needed" basis.

3. Maintain several generations of back-up tapes for the central file
server, if applicable. See Section II.D.

4. Do not use new programs, or updated versions of existf.ng programs,
unless they have been in public domain for at least four weeks.

5. Use diagnostic software to check programs for viruses.

References

[1] L. N. Adleman, "An Abstract Theory of Computer Viruses," University
of Southern California, 1988.

[2] "Anticiotes and Hype," Information Center, p. 41, 19P3.

[3] R. Bunzel, "Flu Season," Connect, pp. 40-42, Surru-er, 1988.

[.11 !1. 11. Cr-e-ruerg, "A Fiui ut riuteccion for You and Your compiter,"
2600 Manazine, Issue 4-7, pp. 28-38, Summer, 1988.

[5) M. Hahn, "Protecting Your PC Systems from Computer Viruses,"
Computer Security, NumbDer 87, pp. 1-2, May/June, 1988.

[6] H. J. Highland, "Random Biis & Bytes," C.omputer & Securit.y,
No. 7, pp. 3-11, 1988.

[7] "Protecting Against Computer Viruses: Know Your Enemy," Lotus,
pp. 17-18, July, 1988.

[8] L. Roshfeld, "Journey Through DGS, Part 1," Lotus, pp. 88-93,
October, 1987.

Copyright © 2989 AT&T
All Rights Reserved.

358

THE "FATHER CHRISTMAS WORM"

by

James L. Green
r.ational Space Science, Data Center

GoddarL! Space Flight Center
Greenbelt, MD 20771

and

Patricia L. Sissoni
SPAN Security Manager

Science Applications Research
Lanham, Maryland 2-0706

June 1989

Submitted to the 1 2th Natio~m: Computer Securit- Ccnference

Throe days before Chrlstmas ~,. a Ornpuisr worm výa resd rn - ver
large international DE~net network. The wo.-rn reproduced itself and was
rece.ved on an estirn--ted 6,000 compute,, oodes worldwide. However, only a
small percent,3e of these nodes actually executed the program. The
comnputer's that1 successfully ran the programrr would try to propagate the worm to
other computer nodes.

Thý? wormr was released unt(the DFCnet Internet from a computer at a
university in Switzeriand. Within 10 minutes after it was releas-ed, the wornm was
dletecte~d on the ISpaco Physics. Anallysis Netw, rKý cr SPAN, which is NASA's
largest space and Earth science network. Once the source program for the
worm was captured, a procedural cure, usingi existing functioniality of the
computer operating systems, was qUic-kly devised and distributed. A
combinai~on of existing computer security ineasures, iti quick and accurate
prucc;dures devised to stop copies 0f Pfm wormy from executing, and the network
itself, were used to rapidly provide the cure. These were the. main reasons why
the worm executed on su~ch a small percentage of nodes.

T he purpose behKrid the worm was to send an electron:1c mail message to all
users on tho cornr~uter systemn running the wiorm. The message. was a
Christmas greeting &nd was signed "Father Christmas." This paper presents an
overview of tlhe analysis oi the everits concerning the warm based on an
investigation that was made by the SPAN Security Teamr and provides some
insight into futu'e Securilv measures that will be taken to handle computer
worms anid viruses that ma-y hit similar nietworks in the future.

359

N T-RODLUCTION

The Space Physics Analysis Network, or SPAN [1], has been an extremely
reliable international scientific computer network that has become a major
element in NASA's quick reaction capability for supporting many major NASA
missions over an eight-year period [2]. Major features of SPAN are its ease of
use, efficiency, and availability to scientists conducting research in scintific
disciplincs such as astronomy, astrophysics, climate, Earth, ocean, planetary,
life, and solar terrestrial science.

Currently, SPAN ties together well over 2,800 computers at NASA centers,
other government agencies, private companies, and universities in the United
States, with extensions to the European Space Agency's E-SPAN network.
SPAN utilizes computer-to-computer communications (DECnet protocol)
aliowing mail, biriary file transfer, and remote log-on capability. The malority of
the computers connectcd to the network are VAX machines running the VMS
operating system. SPAN is managed by the National Space Science Data
Center (NSSDC), located at NASA's Goddard Space Fight Center (GSFC).

SPAN has interconnections with several national and international wide area
networks such as HEPNET, INFN, THEnet, DAN, GEONET, UARSnet, and
ASTRONET. All these networks cooperatively manage unique computer
DECnet addresses. The nodes from all these networks then form one
transparent woridwide network called the DECnet Internet. The combined total
number of cmputers reachable ever the DECnet Internet is about 12,000. To
the user, the DECnet Internet operates like one "easy-to-use" network. The
DECnet Internet, on one hand, has solved the pioblem of transparency
between computers regard!ess of what DECniet network they are connected to.
On the other hand, the DECnat Internet provides the connectivity to make one
network's security problem everyone's conce,'n.

On December 22, 1988, at approximately 17:00 EST (eastern standard time), a
computer worm was discovered on SPAN. This worm has been affectionately
called the "Father Christmas Worm." A computer worm is a program that is self-
contained and has the ability to propagate itself across a computer network to
any idle machine. Unlike a virus, a worm does not modify another program. In
the case of the Father Christmas Worm, virtually any computer on the DECnet
Internet could have received a copy of the program. However, an individual
computer may not have the system software config, ,rn that would enable it
to execute the program (because of the implement: certain security
precautions).

The purpose of this paper is to provide an overview analysis of the events
concerning the Father Christmas Worm, based on an investigation made by the
SPAN Security Team. From this investigation it has been determined that the
worm was released from a computer (node number 20597::) at a university in
Switzerland. Much of ihis analysis would riot have been possible without the
extensive help and assistance of the system manager of node 20597::.

360

The Father Christmas Worm was designed to travel quickly. Estimates are that
it was copied to over 6,000 computer nodes. However, it is believed to have
executed on only a fraction of those computers.

HOW THE WORM WORKED

The worm program was named HL.COM. The COM file type in VAX/VMS
signifies a command file and is usually written in the DEC command language
(DCL). DCL provides a user with access to operating- and network-level system
functions on a local or a remote host.

Figure 1 provides a graphic overview of how the worm propagated and
executed on other nodes. During execution of the worm, Node A transferred the
worm file (HI.COM) to Node B. Node B was determined by a section of code in
the worm program that randomly generated node numbers and then checked to
see if the node was reachable. Once the transfer of the program was complete
and Node B had the worm, Node A then would try to direct Node B to execute
the HI.COM program.

So long as the worm was executing, it would continue to search out randomly
reachable computers and try to propagate itself. On the DECnet Internet,
separate blocks of DECnei addresses are allocated to individual wide area
networks that are not confined to geographic regions. The use of randomly
generated node numbers by the worm program would ensure a worldwide
distribution across many networks, which would increase its survivability.

Node A would try to execute the worm on Node B by one of the following two
methods:

TASK Object 0 - If a system level program, called TASK Object 0, is installed
in a VAXNMS computer, it will accept and execute commands from another
computer. In other words, TASK Object 0 allows task-to-task jobs to be run
between two computer systems. In the case of the Father Christmas Worm,
nodes that were following the SPAN security guidelines had TASK Object 0
disabled and were not able to execute the HI.COM file. In addition, nodes that
had disabled TASK Object 0 would also not propagate the worm.

Username/Password Combination - Another way to direct a remote node to
execute a program (in this case HI.COM) is by providing a legitimate
username/password combination for verification by the remote node. The
Father Christmas Worm also tried a username/password combination of
DECNET/DECNET. This combination of username/password has strongly
been discouraged from use in documentation by the Digital Equipment
Corporation (DEC) and in the SPAN Security Policy and Guidelines document
[3].

In the example shown in Figure 1, Node B had TASK Object 0 installed. Node
A then directed Node B to load HI.COM in memory and, disguising it under the

361

process name MAIL 1 78DC, begin execution. The renaming of the process
from HI to MAIL_178-DC was done to hide the fact that a foreign program was
executing. Mail processes execute quite frequently on these computer nodes
and are easily missed by a system manager monitoring the system. Once
executing on Node B, the worm deleted the file I-I.COM that was stored on the
disk, once again covering its tracks. Next, the •,orm mailed Node B's welcome
banner to the remote node/account 20597::PHSOLIDE in Switzerland. This
action provided the initiator of the worm a record of the nodes that were able to
execute the worm program. However, there is no accurate record of the nodes
that received a copy of the worm but did not execute it.

The MAIL_178DC program also went through a series of time checks looking
for 1988-12-24-00:00 on the computer clock. If the actual time did not match the
Christmas Eve time, the worm randomly generated a new computer node
number (Node C in Figure 1). If Node C was operationally available over the
network, then the Node B worm networked the HI.COM fi!e from its memory to
the new Node C and asked Node C to execuLc' the program. The cycle then
started all over again.

If the system clock time on Node B (or any node executing the worm) was
greater than 1988-12-24-00:00, the worm created a listing of all the authorized
users on that system and sent a Christmas greeting to all those users. The
Christmas greeting message is shown Figure 2. It is signed by "Father
Christmas." After sending out the Ctiristmas mail message, the worm then
delted the user list it created and stopped execution.

WORM EVENTHIMELINE

On December 22, 1988, at 16:52 EST, the Father Christmas Worm was
released from node 20597:: onto the worldwide DECnet Internet. The worm
was first noticed at GSFC by John McMahon, systems manager of SPAN node
CSDR, at approximately 17:00 EST, some 10 minutes after it had been
released. After notifying SPAN management and the NASA Science Internet
Project Office (NSIPO), John also contacted GSFC security to register the
unauthorized access to U.S Government computers. The worm command
procedure HI.COM was captured at GSFC, as it had been at several other
locations throughout the network, and the task of analyzing it began.

The SPAN Security Team sent messages to all SPAN NASA center managers
warning them about the worm and what action to take to stop it. The SPAN
NASA center managers are responsible for distributing warnings to the remote
SPAN sites that are directly connected to them. Notice was also sent to
HEPNET and THEnet representatives.

NASA personnel at the Jet Propulsion Laboratory sent out a warning mail
message to 20597::SYSTEM on December 22, 1988, at 23:30 EST. The
warning stated that the running of an automated command procedure, like
HI.COM, was not permitted on SPAN. This message was received but not read,

362

since it was very early in the morning in Switzerland and 20597:: was running
unattended, which is quite common.

The PHSOLIDE account (where the worm started) was again logged into on
December 23, 1988. from 1:58-2:23 EST. Durin2 this time, all the mail
messages containing the system banners from the systems which successfully
executed the worm were read and deleted.

The DECnet Internet line linking 20597:: to the rest of the world was
disconnected on December 23, 1988, at approximately 03:41 EST. This link
was scheduled to go down for an upgrade to the circuit. The action had nothing
to do with the worm, but it did isolate an active worm on the large local area
network at the university in Switzerland, where it continued to propagate to the
local university nodes (see next section).

During the early course of trying to stop the worm, several network systems
personnel, on their own initiative, issued procedural patches or cures for the
worm. It is important to note that, unlike some virus situations, no vaccine
software was necessary; a tightening up of existing computer systems security
features is all that was needed to prevent a node from executing the Father
Christmas Worm. The patches distributed were easy to describe and were
issued by, for example, SPAN, HEPNET, DCA, and the San Diego
SLuercornp•iter (enter nprsonnei. The bahsic elements of all the orocedural
patches were:

a) Delete/Disable TASK Object 0
b) Stop Process MAIL_178DC
c) Delete all copies of HI.COM

Many of these patches went out on mailing distribution lists, such as VIRUS-L
over ARPANET (a TCP/,P network). The Father Christmas Worm itself was also
distributed to everyone on the VIRUS-L mailing list (by person or persons
unknown to us). By the end of December 23, the Father Christmas Worm was
virtually stopped on the DECnet Internet. In general, procedural patches were
reasonably good and provided necessary protection against the Father
Christmas Worm.

Within several days after the worm incident, the SPAN Security Team received
full cooperation from the systems manager of node 20597::. The systems
manager supplied the team with detailed logs and accou:iting records from his
system. In February, a detailed report about the Fathcr Cliristmas Worm was
completed by the SPAN Security Team and was turned over to the appropriate
authorities.

363

RESULTS OF THE INVESTIGATION

After carefully reviewing all of the log-in records to the PHSOLIDE account in
conjunction with the system manager of 20597::, it was concluded that a user
coming through a particular terminal server released the worm program. The
terminal server accesses could have come from one building on the campus or
from existing dial-in modems. The director of the university where node 20597::
is located has had every authorized user of the PHSOLIDE account (15 such
users) sign a non-involvement statement. This affidavit stated that these users
were not responsible for the creation of HIlCOM nor were they responsible for
the propagation of the worm onto the network. This action leads the SPAN
Security Team to the conclusion 'hat the account had been compromised by an
unknown individual. This conclusion is not too difficult to realize, since the
password on the account was the same as the username.

The accounting records also show that on December 23, from 1:58-2:23 EST,
the PHSOLIDE account was logged into again via the terminal server. Once
logged on, this user read and deleted all the computer system banners from the
nodes that returned this information to the 20957::PHSOLIDE account over the
eight-hour period after the worm was released. Even though the actual banners
had been deleted, the network transaction files revealed that 79 nodes sent
their banners to the Switzerland computer. Of the 79, only 27 of these nodes
were on SPAN.

Within an hour after the intruder collected the banners, then deleted them to
cover his tracks, the DECnet line linking this computer to the rest of the DECnet
Internet was disconnected for a scheduled maintenance. At this time the worm
was still running on node 20957:: and coitinued to randomly seiect new nodes
to propagate to. However, the only nodes available to this active worm were
connected to the local area network at the university. During the next eight
hours, of the 610 nodes on the local university network, the worm executed on
46 computers 90 times, with 15 computer nodes executing multiple versions of
the program.

CLEANUP ACTIVITIES

A follow-lip investigation by the SPAN Security Team several days after the
worm was released revealed that over three-quarters of the known nodes (79)
that previously executed the worm still had TASK Object 0 accessible as before.
If needed, TASK Object 0 performs an important function by easihy allowing the
sharing of peripherals in a local environment. It was obvious that the deletion
of TASK Object 0 from the operating system was not a permanent solution to a
potential security problem. Since then, the SPAN Security Team has provided
these nodes with several alternatives from which to chose. These procedures
are outlined in a new release of the SPAN Security Policy and Guidelines [3]
document.

364

At the university in Switzerland where the worm was initially released, a report
was written and distributed campus-wide to alert the systems managers oi the
security problems they needed to address. Below is a list of the things the
systems manager of node 20597:: insisted would be done campus-wide in
addition to their existing security procedures.

a) There would be no multi-user accounts
b) Passwords would be required for dial-in access (through modems)
c) There would be a restricted user list for dial-in access
d) Additional accounting information would be required for terminal server

access
e) Certain Username/Password combinations would not be allowed
f) A secure solution fcr providing TASK Object 0 program functionality

would be implemented

It is important to point out that, in addition to the above, the first and most
important practice in providing a rudimentary level of computer security rests
with users, by their choice of passwords. Strict password control should be of
prime importance for everyone on a computer system and its associated
networks. For SPAN nodes, a new software audit system ;s available that wii!
provide the system manager with tools to rapidly identify many other security
weaknesses in the system in addition to the ones described above (send mail to
NCF::Sisson for further details).

QONQLU Si'N S

The Father Christmas Worm has over 150 lines of non-trivial control language
code demonstrating a reasonable understanding of VAX/VMS and the DECnet
protocol implementation on DECnet networks. It is obvious from the analysis ol
this event that the individual who released thp Father Christmas Worm realiztEd
what he or she was doing and carefully returned again to the compromised
node to collect information (system banners) indicating the extent of the worm
on the DECnet Internet. It is also obviolis that the perpetrator expected a large
number of computers to receive and execute the worm, since the worm was
released during the Christmas holiday season when there would have been the
best chance of a worm executing on unattended VAX machines. In addition, it
is typically held by computer hacker groups who make a habit of compromising
the integrity of computer systems that computer systems managers, in general,
do not implement appropriate security procedures and, therefore, are asking for
unauthorized access to occur.

It is estimated that half of the 12,000 DEECnet Internet nodes received the worm,
but much less than 2 percent of those computers executed l-I.COM within the
first eight hours after the release of the worm. Within minutes after the worm
was released, a very quick user reaction across the DE~net internet occurred,
and the situation was immediately taken seriously. Once the source program
for the worm was captured, a proce~dura! cure. using existing functionality of the
computer operating systems, was quickly devised and distributed by severa!

365

A HI.COMj B NODE ;S

--"REACHABLE WITH
MAIL_178DC NETSERVER.LOG TASK 0

B I HI.COM C NODE I iS
A _V$7 REACHABLE

MAIL_178DC N t: TSLR V E R, L.G 0 1

MAIL BANNEfR[

NETSERVER.L.OG

TIME (1988-12-24-00:00) MAIL

TIME MESSAGE

Figure 1: An overview of the major processes of the "Father Christmas Worm."

In this exarrp!e, Nodes A and B are executing lhe worm program HI.COM. Although

Node C has a copy of the woarn, it does not execute the program nor does it participate
in the propagation o. lhe worrrn 't'-euse it has implemented certain security measures.

366

organizations that use the network. A combination of existing computer
security measures, the quick and accurate procedures devised to stop the worm
from executing, and the network itself were the main reasons the worm
executed on such a small percentage of nodes.

On Friday, January 13, 1989, a worm nearly identical to the Father Christmas
Worm entered the DEC internal network, called Easynet. The private Easynet
network contains more nodes than the DE~net Internet. However, as discussed

in a recent issue of Digital News [4], according to DEC the worm was spotted as
it entered the network, and tVa system manager "was able to segregate the
infected system before the worm could spread." It is believed that this incident
was quickly controlled because of the widespread exposure and experience
gained the previous month w;th the Father Christmas Worm.

Overall, the impact of the Father Christmas Worm was minimal in an operational
sense but extensive in the area of strengthening computer system security (an
ongoing activity). A process has been started to formalize procedures that will
deal with worms, viruses, and other violations that threaten the DECnet Internet
in the future. Key security personnel have been identified from each of the
major networks in the DECnet Internet, and their responsibilities are being
delineated.

"wtiat.ver may be te intention of the authors of computer worms and viruses, if
these threats are not met head on and dealt with rapidly, the ultimate result may
be that they destroy the productive working environment that an open network
provides.

REFERENCES

[1] J. L. Green, V. L. Thomas, B. Lopez-Swatford, and L.Z. Porter, Introduction
totbe Space Ph yiis Netwowrk (SPAN), Second Edition, NSSDC
Technical Report, January 1987.

[2] V. L. Thomas and J. L. Green, "SPAN - A revolutionary tool for scientific
research," Jorýgl allie NaL_T__hniqsIA .ation, p. 45, Winter
1989.

[3] P. Sisson, T. Butler, D. Peters, V. Thomas, and J. Green, 5PAN Security
P.a . a, NSSDC Technical Report, July 1989.

[4] S. Lawson, "Catching the worm," News Briefs, Piiiital News. January 23,
1989.

6 7

From: NODE::Father Christmas 24-DEC- 1988 00:00
To: You...
Subi: Christmas Card.

Hi,

How are ya ? I had a hard time preparing all the presents. It isn't quite an easy
job.. I'm getting more and more letters from the children every year and it's not
so easy to get the terrible Rambo-Guns, Tanks and Space Ships up here at the
Northpole. But now the good part is coming. Distributing all the presents with
my sleigh and the deers is real fun. When I slide down the chimneys I often find
a little present offered by the children, or even a little Brandy from the father.
(Yeah!) Anyhow the chimneys are getting tighter and tighter every year. I think
I'll have to put my diet on again. And after Christmas I've got my big holidays :-).

Now stop computing and have a good time at home I!1

Merry Christmas and a happy New Year

vour Father Christmas

Figure 2: The "Father Christmas Worm' electronic mail greeting. This message
would only be sent to the users on a system executing the worm if it remained
undetected until December 24, Christmas eve. After this mail message was
sent, the worm program vould stop executing.

368

An Epidemiology of Viruses & Netwcrk Worms

Cliff Stoll
Smithsonian Astrophysical Observatory
Harvard - S.,ithsonian Center for Astrophysics
60 Garden Street
Cambridge, MA 02138 12th National Computer Security Conf.
617/495-7157 Baltimore October 12, 1989
Cliff@cfa.harvard.edu

Copyright © 1989 Cliff Stoll.
All rights reserved.
Reproduction in whole or part prohibited without written perliission.

Abstract

By comparing worms that propagate over the networks, we can learn
about the threats to our computing communities. These worms take
advantage, of operating system features as well as holes. They provide an
adversary with both a denial of service weapon, as well as a means of
gathering information. They can be studied with techniques developed for
medical epidemics.

Introduction

In the past year, we've noticed several network security problems. What
can we learn from these? How common are they? How many systems can
an attack disable? How have people responded to these problems? Is our
only worry the denial of service? How vulnerable are our networks? This
paper addresses these questions.

IBM Christmas Tree Exec

On December 18, 1987 [4, 101, a program infected the IBM internal
network. The software itself was disguised as an electronic mail message,
under the name of "Christina Exce". In fact, it was an executable
command script, which, when executed by a user, mailed copies of itself
to others on the user's mailing list.

This took advantage of an operating system feature: the ability to execute
a command shell script which has been received in the mail. The header
line instructed the recipient not to unpack the program, but rather t.o

Copyright 0 1989 Cliff Stoll All rigbts reselvA 9

execute the mail message immediately. It relied upon manual execution
to replicate itself.

Although called a virus, this program was a manually propagated worm: a
program which is copied from one network node to another. Indeed,
since the program relied upon the gullibility of users, Bill Rubin of IBM
Watson Research Center, considers it a trojan horse [101.

Within a few hours, it had entered many hundreds of IBM mainframe
computers around the world. The load upon the individual systems was
sufficient to disable many computers until they were re-booted. On a large
mainframe, this can take an afternoon.

The program first arrived over Bitnet on December 9. 1987. The shell
script instructed the user to execute it to receive a graphic of a Christmas
tree on the screen. The first two screens of data were a drawing of a
Christmas tree followed by a message, "Browsing this file is no fun at all,
just type Christmas from CMS".

But when a user executed that command, the program searched through a
user's nicknames files (VM "Names" files), and mailed a copy of itself to
each user mentioned in that file. It did not erase itself after mailing itself
away -- if it had, it would have been more difficult to track down.

Propagation speed through two different networks

The Christmas Exec worm was first found on the Bitnet network. Within a
day, warnings were sent out to Bitnet sites. Gateways to Europe purged
copies and thought they had it under control. Unfortunately, a day or two
later, the program reached the IBM internal network, VNET.

The VNET outbreak was much worse than on Bitnet. Although Bitnet
covers many more sites, only a fraction of them use IBM hardware; all
nodes on VNET are IBM sites. Then too, VNET network is much faster --
56 KBaud, as opposed to Bitnet's 9.6 Kbaud. The program could spread
faster there. VNET users often had large Names files, which promoted
the worm's spread.

The B3itnet infection occurred early in the day -- systems managers could
react during the day to stop it. The Vnet infection. occurring late in the
day, occurred while nobody was watching. Finally, the VNEIT network, as
an internal network, is an internal network, and probably was trusted
more than a public network like Bitnet.

This Christina Exec was the first network-propagated security problem --
the predecessor to network worms. Worms are not the same as viruses.
A computer virus copies itself into another program. and lies dormant
until the infected program is executed. A virus cannot execute alone -- it

Copylight © 19 09 Chfl Stoll All iights rescnr-ý .0

niust be linked with a program. A worm, however, is a valid stand-alone
program. It copies itself from one computer to another, usually over a
network. Strictly speaking, a worm does not infect a disk copy of a
program -- it executes within a computer, and when the executing copy is
stopped, the computer is clean, unless re-infected from outside.

Of course, this taxonomy is simplistic. A malicious program may have
sections of code which are wornm-like or virus-like. And the Christmas
Exec used a trojan horse to invite users to execute it.

November Internet Worm

On November 2, 1988, a self-duplicating program was released into
computers attached to the Arpanet. This program has since been
disassembled by several groups [1, 2, 3] and well described in the June
1989 Communications of the ACM 1.

Several salient points about November's Internet Worm:
1) It used multiple attack mechanisms, taking advantage of:

a) two bugs in network interfaces
b) common passwords
c) entries in trusted hosts tables

2) It duplicated itself without manual intervention -- it was the first
autonomous network worm.

3) The worm was tailored to infect both Sun and Vax computers, but
could only run under the Unix operating system.

4) It was written to evade detection and understanding:
a) it erased its argument lists
b) it deleted the executing binary
c) strings and constants were hidden by a hex mask

5) Within it, but unexceuted, was code to send messages to another
networked computer.

This fifth point is important: as we shall see, other worms have been
modelled after this one, and sent messages to central collection points as
each new host is infected.

I These)apcrs iar-e models of worknatinshilp amid rigor; yet the authors are acadcmics
without support to study computer security.

Copyitght 0 1989 Cliii Stoll All tights reserved.
371

How many systems were infected?

Although the microbiology of the November worm is now well understood,
therc have been no published epidemiologies describing the extent of the
virus's spread. Reports of 6000 infected computers arc based on only a
guess.

To determine the extent of the worm's spread, I posted notices on the
Internet, rcquesting anecdotal reports from both infected and non-
infected sites. To insure widespread distribution of my requests, I posted
these requests to several Internet forums, including Risks, Virus-L and
TCP-II forums.

The response to these requests was heartening. I received about 200
rcports, of which 75 sites reported infected systems. Because of a lack of
standardized reporting procedure, each report had to be separately
analyzed to determine:

Ilow many computers were infected?
Itow long were the systems disabled?
When was fhe infection discovered?
Why were sonic noin-immune computers uninfected?

MAOs of the -%ositive" rer1-A~ dscie mlileinfeirt:ao-'
person inanaged clusters of workstations. When the worm disabled one
file-server, it disabled other workstations that depended on that server.
The anecdotal reports often did not differentiate between individual
computers being infected and multiple computers being disabled.

In October 1988, the Network Information Center's Domain Walking
program counted about 60.000 computers attached to the Internet. What
percentage of these were infected?

The 75 positive reports cited about 300 infected computers. Since many
sites did riot report, these reports alone do not determine how many
systems were actually hit. Hlowever, several sites sent detailed computer
generated logs, listing not only which computers attempted to infect their
system, but also the times of each connection.

These two sets of reports (the human generated ones and the computer
logs) are statistically independent measures of the same population.
Indeed, sonic systems show up in both sets. By analyzing the cross-
correlation between the two measures[7]. we can estimate the total
number of infected computers. We find that the worni entered about
2600 computers. with a 1-sigma error of 275.

This is a useful quantity -- and contrasts with media reports of 6000
infected computers. This initial report, estimated by Schiller at MIT III
was only an informal estimate. and was not based on a detailed sampling of

Copyright 0 1989 Cliff Stoll All igils reserv•d• 2

the thousands of computers on the Internet. Indeed, one of the most
noticeable effects of the November worm was the ioss of electronic
communications, as managers isolated their systems.

2600 infected computers corresponds to about 4% of the total Intcrnct
population. Past studis [181 show a similar rate of insecurity for
networked computers.

How fast did the Internet worm spread?

There's other information in the field reports we gathered. By combining
the times of first infection, we can graph the number of infected
computers as a function of time:

1.0k

S.75

.25E
0

.25

0 _ .. __LL

17:00 19:00 21:00 23:00 01:00 03:00 05:00
Time (EST), 2 November to 3 November 1988

The shape of this curve is important: the rising part of the S curve
corresponds to an exponential growth, as would be expected were the
program limited only by replication time. In this section, the slope of the
curve indicatcs the c-folding time of the worm. As the curve flattens off,
we see growth limited by available systems. A similar shape would be
expected in a biological population exposed to a contageous virus 116,17].

With few exceptions, most systems were unavailable for use while
infected; this shows an amazing ability to deny service to a wide expanse
of users.

Copyright (.) 1989 Clill Stohll All rights reserved.
373

Worm of December 1988

On December 23, 1988, a worm was spread in the NASA/SPAN -
DOE/IIEPNET networks [5]. These networks are crosslinked, and rely
upon the Decnet protocol. Almost all systems are Vaxes running the VMS
operating system -- a homogeneous population.

Previously, security problems have received wide publicity: In July 1987,
the Chaos Computer Club in Germany reported that they invaded several
hundred SPAN computers [6]. Unlike these previous attacks, which were
manual, the December Worm automatically attacked individual computers
on the SPAN network.

This worm, written as a VMS shell script, was not encrypted or obscured
-- its techniques were immediately apparent. It would enter a computer
through the Decnet Task object -- the software interface which lets
outsiders run tasks on the computer.

A VAX/VMS system manager can disable the network Task object, but the
operating systems were distributed with this object enabled. Probably a
third of the computers attached to the net(work had this object enabled,
and thus were vulnerable.

On a VAX/VMS compu-ter, the task object runs non-privileged programs;
in sioi i, ii allows a networked outsider minimal access to a system. Such
a port would seem to be a "safe" option, since you cannot delete someone
else's files from a job running through this interface. System
administrators probably felt that the minor risk of this option was well
worth the convenience to users.

The December Decnct worm was copied into a non-priv.ileged account
from an outside, networked computer. Once it entered a computer, this
worm copied the system greeting/banner page, and mailed it to a
computer in France. The worm then mailed a greeting to every user on
the system. and then attempted to randomnly infect other computers on
the network. Each attack took a couple minutes -- within twelve hours,
several hundred computers had been infected.

This worm implemented what the November Internet worm only hinted
at: it mailed information to a central collection site. Whoever was at thalt
computer could determine which systems were infected and (from the
greeting page) what was happening at each site.

Within a month, another worm was launched on a different, private
network. Remarkably similar to the December Decnet worm, this one
searched for any accounts which had guessable or crackable passwords.
Whenever such an account was disovered, the worm mailed the system
name, account name, and password to two collection points, in distant
parts of tile world.

CopyightD © 1989 Cliff Stoll All right. reser'ed.
374

From this, we see that network worms pose dangers beyond simply denial
of service. They can be efficient collectors of sensitive information. Even
from unprivileged accounts they can steal information and send it to
foreign systems, without knowledge of the system managers or users.

Analysis

What's common to these network worms? Each caused embarrassment to
the network administrators, even though some might argue that no
damage was done. Two of the worms (Internet and IBM) struck enough
computers to effectively disable the networked computers.

Each worm propagated through existing network interfaces. Minor
security problems in networking software and protocols can be exploited
by worm writers [11]. Some worm writers exploit features intended to
make life easier; for example, the finger daemon and Decnet task objects.
Alas, future networking software should give strangers less help and
privileges.

Even the worry of a worm attack can disable computers. On April 1,
1988, rimors spread of a logic bomb in Sun workstations. Again, on
February 14th, 1989, unfounded rumors were heard about a malicious
Valentine's Day greeting.

Diversity is important. Networks which have a single type of operating
system are much more vulnerable than heterogenious networks.
Bureaucracies will forever urge a single, standardized computing system,
yet a diversity of operating systems insures survival against viruses and
wo; ais. Universally adopting any one standard -- Unix, VMS, TCP/IP or
OSI -- will only make worms more destructive.

Can Worms be Good?

Workers at Xerox PARC 115] have developed ways to use distribute updates
to databases using techniques similar to network worms. Suppose you
have many small networked computers, each with an identical database.
We need to update each of these database every week or so, say with new
prices or stock information.

A central computer could call into each computer, and update each
database. Alternatively, each computer could send the new database to a
nearby networked node, after making sure that the nearby computer has
not yet been updated. The new data spreads through the network as an
epidemic. Such a database updating scheme is akin to a network worm;
the developers used epidemiolgical techniques 116, 171 to develop these
algorithms.

Copypight 0 1989 Cliff Stoll All rights resermed-
375

These (pidenieC algorithms are *inportant developments in the use of
networks and distributed databases. We can expect to see them
commercialized in the next few years.

However, such database updating techniques are a far cry from the
malicious worms described here. The protocols are agreed upon in
advance, the software is designed for the purpose, and the network traffic
load is small. They are "invited" into only limited numbers of computers,
and designed to ignore other computers. Research into epidemic
database techniques does not require experimenting with network worms
or viruses.

Directions for future work

Much computer security research is directed towards securing isolated,
multi-user computers[131. Security problems, however, seem to show up
on networked computers [12, 14]. In contrast to the Orange book,
computers -- especially personal comnputers and workstations -- are often
used by a single person. Communication is through networks, rather than
mediated through an operating sytem. The very model used to write the
Orange book is inappropriate and dated.

Viruses tend to be seen on personal computers, although Cohen's original
experiments were on mainframe Vaxes. Worms can run only on
networked systems. which today only extensively link large computers
together. In the future, we can expect personal computers to be more
widely networked, opening them up to such infections. Equally
worrisome: financial markets, such as stock exchanges and commodities
exchange markets, are being opened to networiv- [9], as are telephone
systcns.

Providing security in these environments is challenging. Simple user
authentication -- whether by password, passcard, or biometric -- is
inadequate. Programs themselves are difficult to assess for logic bombs
and viruscs.

We need ways to certify programs against tampering. Some methods to
prove that a program has not been tampered with include embedded
checksums and cryptographic certification. Holw can I distribute
software, with each user certain that it has not bren infected? Future
research must address these questions.

For too long, computer security has been directed towards the creation of
high-sccurity, bulletproof systems. Real world computers are
compromises in many ways; security is but one of these. We must find
non-intrusive ways to allow the power of networking while maintaining
the integrity of each computer.

Copyrlghl C 1989 Clill Stoll A.l rights reserve1

V6i

References

1. Eichin, M.W. and Roclilis, J.A., "With Microscope and 'Tveezers: An
analysis of the Internet Virus of November 1988". CACM 32, June, 1989.

2. Sceley, D. "A Tour of the Worm" in Usenix Winter 1989 Conference
Proceedings. San Diego, Page 287.

3. Spafford, E., "The Internct. Worm, Program: An Analysis" Computer

Communication Review Vol. 19, page 1, January 1989.

4. Internet Risks Forum, 7-22 IBM Christmas Tree Virus, December 1987.

5. LA Times "NASA Computers Infected" 26 December 1989.

6. Schmcmann. S. "West German Computer Hobbyists Rummage NASA Files",
NY Tirnes Sept 16, 1987.

7. Bc\'ington, Philip R. Data reduction and error analysis for the physical
sciences, New York: McGraw-llill, 1969.

8. Markoff, ,4. "Computer Snarl: A Back Door Ajar" NY Times Nov. 7. 1988.

9. Wall Street Journal Fel 3, 1989, "Chicago Commodities Exchange to
Network".

10. Rubin, Bill. "Report from the Front - The Christina Exec", Proceedings
Share '72 IBM Users Group Conference, Los Angeles, CA, Feb. 28, 1989.

11. Bellovin, S.M. "Security Problems in the TCP/IP Protocol Suite",
Computer Communication Review, Vol. 19, page 32, April 1989.

12. Stoll. C. "Stalking the Wily Hacker", CACM Vol. 31, pg 484, May 1988.

13. National Computer Security Center. Orange Book, CSC-STD-001-83

14. Stoil, C. The Cuckoo's Egg, Doubleday, NY. 1989.

15. Demers, Gealy. Greene, et. al. "Epidemic Algorithms for Replicated
Databse Maintenance", Xerox Palo Alto Research Center, February 7, 1989
(Also in Proceedings of the Sixth Annual ACM Symposium on Pripciples of
Distributed Computing, Vancouver, August 1987)

16. Bailey, N. "The Mathematical Theory of Infectious Diseases," 1975.

17. Fraunethal, J. Mathematcal Modeling in Epidemiology. 1980.

18. Stoll, C. How Secure are Computers in the USA, Computers and
Security, Jan. 1989.

Copyright © 1989 Cliff Stoll All rights rescn 1.7

An Assured Pipeline Integrity Scheme for Virus Protection

John Page
Mail Stop 5S3

Planning Research Corporation
1500 Planning Research Drive

McLean, VA 22102

ABSTRACT

Computer viruses pose a serious threat to the integrity of modern computer
systems, Current approaches to securing systems do not address the particular dangers
of the virus, particularly its ability to reproduce. Current integrity policies are analyzed
with respect lo cormiter viruses, and important requirements for a virus protection
scheme arc isolated. A virus protection integrity scheme based on the work of Boebert
and Kain is presented that limits the virus's abifity to reproduce and enforces virus
protection at all stages of the software development process. This scheme is then
applied to the software development process, and conclusions are drawn as to its
effectiveness.

I INTRODUCTION

* UgILhIIU ,II iil., 11, U II. ilLU1 al L. Ll ., .iILI)II (A a virus, ii
computer virus and other strains of malicious software present a threat to secure systems that has no
counterpart in the paper world. Combating the computer virus will require more than a simple patch to
accepted practices, but rather a realization that overly simplistic notions of data integrity are not sufficient
to regulate the behavior of executing code. What is needed, Cohen states [1], is a new awareness of data
integrity on theoretical, practical, and social levels. Such an awareness would result in attempts to model
system integrity in its own terms, rather than constraining it to mirror the terminology of data secrecy.
This paper furnishes an integrity scheme to meet Cohen's challenge, extending the concept of the
"assured pipeline," developed in [21, to prevent a virus from reproducing while restricting the behavior
of other forms of malicious software. This paper will attempt to synthesize many current tirends in data
integrity into a unified integrity scheme that will protect software at all stages of the software
development process.

2 THE VIRUS THREAT

The threat posed by the computer viruts is a multifaceted one, particularly because the distinction
between viruses and other forms of nial-cious software becomes blurred in practice. Much of zhis
confusion stems from the unclear notion of "infection." It has been argued that a virus is a hostile piece
of code in an executable that propagates itself v.y prepending itself to other executables when activated
131. This definition, however, would not account for source code viruses. Another interpretation, [4],
states that a virus need not "infect" any one program, but may, more abstractly, "infect" a host system
by multiplying within it and feeding off of its resources. ýVe may also talk of a virus "infecting" a
network. In each case, the granularity of "infection" is drastically different. Unfortunately, the creators
of viruses are not constrained by our definitions, so we are forced to look for more, general solutions to
the malicious software problem.

For the sake of argument, iet us start with a rather narrow definition of a virus, a definition
which will be broadened in the course of this paper. We can define a virus as a hostile segment of code
in an executable that, when executed, attempts to prepend itself to other executables. Such a virus, by

378

this definition, would be a form of Trojan horse in that it lies dormant until its host is activated and,
when activated, it usurps the authorization of an unwitting user, In addition, this virus may be presumed
to contain some form of logic bomb, programmed to launch an attack upon the system in response to a
predetenmined stimulus. This attack may bc a dcnial of service, whose prevention remains an intractable
problem. While these threats have already been recognized, the virus has an additional strength in its
ability to reproduce. This ability gives the virus an unprecedented degree of mobility as well as the
strength of numbers, which can be used as a means of attack (e.g., crashing a network through
unrestrained multiplication). The numerical advantage also serves as a deftense mechanism for the virus
code. Of course, these attributes arc also attributed to "worm" programs, further complicating the
distinction of what constitutes a "true virus."

It is impo-tant to realize that the virus, no matter what definition we choose, is a threat to the
integrity of a system, not the secrecy of any data that the system may contain. When a virus reproduces,
it modifies the objects of a system as opposed to observing them. As a result, a system which is secure
with respect to secrecy alone(does not offer any significant protection against an invading virus, since
secrecy labels in such a system reflect the gravity of observing a labeled object, as opposed to modifying
it. Cohen [5] notes the foliowing paradox which o:curs when one attempts to protect a given file under
such a system. Since the system would have to enforce some notion of the "no write down" rule, the
system would disallow any attempts to write from a high secrecy level to a lower one. Although this
would prevent a program executing at a higher level from infecting a lower one, the reverse would be
allowed. Therefore, the only way to protect a critical program from iliegal modification is to label it
lower than any subject or object in the system!

3 VIRUSES AN) INTI-GRIJ'Y MODELING

It follows from the preceding argument that any security model attempting to provide virus
protection must support a strong data integrity policy that restricts the modification of executables.
Before presenting the framework for such a policy, let us first survey some of the relevant issues in
integrity modeling. The current state of the art in integrity modeling is currently at a crossroads. The
pioneering efforts of Biba 16] (primarily his strict integrity policy model) enforced integrity via the same
lattice structure used in secrecy modeling. Recent authFrs, however, have argued that problems in
implementation motivate other approaches to integrity modeling 12] , 171. Two models to date have
provided an integrity policy specifically for irus 1 trotection. In this section, we will survey the integrity
issues relevant to computer viruses and isolate the requirements for aun effective virus integrity scheme.

3..._User Integrity vs Program Integrity

Should integrity be enforced in terms of users or programs'? Biba 161 advocated assigning
subject integrity labels to human users. 'T'his was motivated by his concern about the "human threat" to
data integrity, where corrupt data could be introduced into a system directly from a disgruntled user.
With this threat in mind, we are concerned witn the degree of trust associated with the user, and not with
the possibility that an integrity attack is being launched by the software the user is running. Therefore,
in the formulation of his integrity policies, Biba chose not to address the internal threat represented by a
computer virus or other forms of malicious software.

In the context of a computer virus, a purely user-based integrity scheme becomes meaningless,
since the user who executes a virus-infected program has no knowledge of its presence. It is -'le
executing program that rcpreserts the integrity threat, not the user. For this reason, Boebert and Kain
argue that integrity should be associated with programs rather than users 121. As we shall see, their
work offers a promising point of departurn for the creation of a virus integrity policy.

379

Both approachecs have their mecrits, since they respond to different threats. A robust integrity
Policy Must account for malicious users as wcll its programs. Such an integrity policy may be found in
the Clark-Wilson Integrity Model 171, which enforces integrity on the basis of thie triple (<User>,
<programi>, <data itemi>). In short, a protected item may only bc accessed by specified users in a

peiidmanner. Although this mnodel SUccCSStUlly cominbnes both user and program integrity, thc
fineness of granu~larity (and corresponding cost in overhecad) may not always be necessary. T'he virus
integrity scheme offered in this paper incorporates both user- and prograii-integrity schemes with a
somlewhat coarser level of granula~rity.

3.2 Linkage Protection

Two securit, models offer a miechanismi to prevent a virus from infecting execuitables: the
Po'0Zo-Gr'ay Virus Containment Model 131, and the Argus Security Model 181. Although the models
differ greatly in scope and intent, they both protect linked object code fromn unauthorized modification.
The Pozzo-G-ray model is not so much a formial model as it is a framework for implementing a virus
block. It describes howv a cryptographic checksum may be used to verify that -q executable has not been
modified after linkage. The role played by the chiecksumi in a typical software development process is
shown in Figure 1.1

-- 4 -- 4-4- -1I---ec,

bE) Eoz-Ga Viru Blc

accontailiy t beshared bewe bCroth~ a sr an~d the sotwareheis xctn.Te.dlbok h

empoweredtoa altr theypinker Stoft waile the i r fegntd Prevent a virus fromdsiting

Liner ifis owner. Al is model Oee of its most ntegrthy
f1atiues if its an, laity pr modesnthedin1 is incuded of oerhad) iat proe c esses exptcitl y. Theo ture siruson

acontabiity sche be offered ibethispaern orrae both ausondt e r sotare herosexacuintgri. shemno el lcs wthea•

dsignwate "Linkr"c fle.e The granul alsreieityrlso.aScrt athOfcr(S ,woi

emp wedto alterithe "Liner'l tts otf\' a fehaile. Thio aeur prevent s a virus from designting xeual:1hI,..

Tdisffergreal is bsc-dope tatd pinte(nt 13ey both protctlinked objec t c)oides asfulromnatexhorize onent odfiscaton. _

5.

380

Ain important theme unites the two imlodels. Since thle)y both restrict the type of pro1gram or
process w\V hich may modify cxecutablCs, they both cnfor-cc ia limnitcd type-based (as opposCd to
hlicrarclical) integrity policy. Thifs raises a crucial issue il viius protection: any viral integrity policy
will need to recog'nize types indcpwadcntl y of hiericchical la'bcls. Both modelIs, admittedly, sh1arc the
same weakinesscs. Tfhe first weakness lie:; in tile tinplea sant possibility that the linker itself is infected
with a virus. Although the Argus model offAers some safeguards in this respect, both modcl.s require us
to trLst" the linker programs. A fata moic serious shortcominlg exists in that both models obscrve a very
narrow definition of a viius. Suppose an invading virus were to attack the source colde, a shell program,
or intermediate output o1 the compiler? Such a virus would pass through linkage protection mechanisms
with ease. What is needed is an integrity' schema which would offer protection at all stages of the
software development process. This protection may be reallizcd by the adoption of an assurc'dpipelinc.

3.3 The Assured Pipeline

An assured pipeline is a subsystem divided into chronological stages. In each stage, the types of
objects that may be observed or modified is strictly limited. In addition, a process "entering the pipeline'
is constrained to traverse it in a, pre-defined order. The concept of the assured pipeline forms the central
tenet of Boebert and Kain's groundbreaking work on integrity 12 1, and forms the basis of the Type
Enforcement mechanisms for the H loneywell LOCK prototype 191. Its creation was driven by their
attempts to secure the integrity of at module which latbcllcd output data. They found that hierarchical
labeling of the intermediate data was powerless to constrain the proper flow of data and execution
control. (A sole reliance on hierarchical labels, in fact, would make it necessary to invoke a trusted
subject at every stage of the process!) Instead, they proposed the idea of anl assured pipeline based oil
the notion o execution ttdomains. By restricting the activity itl each domain, and by placing consiraints
onu the_" tran.sitiorts between domains, they xý crc able to safeguard labelled data from being intercepted
before it was output. The pipcine offers a pt)\vwlf ul 10echaiisn1 for establishing flow control. Even it a
call to the pipeline is initiated by a hostilh segment of code, the data and control flow within the pipeline
is still regulated. This measure may help to ward off more sophisticated virus attacks which attempt to
force a benign subroutine to perform the infection.

4 AN ASSURI'I) IP-ELINE- INT-GRITY SCI II-ME FOR VIRUS PROTEICTION

Any successful virus defense must address the preceding issues. Integrity enforcement must
govern both users and programs. Both processes and the programs they execute must be modeled
explicitly, as in the Argus model. Such a defense wotuld need to employ a type-based integrity policy
independently of any hierarchical one. 2 Finally, it must provide some mneasuLre of flow control to
restrain tile hostile invocation of benign code. A modified assured pipeline scheme will meet these
requiiremnents. The framework for such a scheme is presented in this section, in tile form of a set of
definitions and four properties.

This scheme is intended to be as model- and architecture-independent as possible. Therefore, the
granularity of enforcement presented in the following two sections is arbi:rary: readers are encouraged to
experiment with different configurations. Any' implementation would prove Much less costly with some
type of role or group strategy. This scheme recognizes the following definitions:

Users: "A luman users of a system.

2 -,,is Is motivated by tile inability ol hierarchical li ls to creatc an assured pipeline. Should there be a need for

hierarchical integrity enforcement (perhaps in a DIMS appt,'atiio), it is assumned that this would be implemented
separately. The reader is also advis;ed to investigate the Risk Management policy described in 131 before completely
abandoning the notion of hierarchical integrity etiforeentnt.

381

Data Objects: An "object" in the traditional security modeling paradigm. In most cases it will
only be necessary to enumerate the types of objects rathei than specific instances of a
given type.

Program: A routine, subroutine or program in execution by a process.]'he code representing
the program (source, object, etc.) is considered as an appropriately typed data object.

Process: The "recta-program" in execution which executes "programs" on the behalf of a given
user, maintaining the process control block for each executing program.

Integrity modes: The access modes of observe (0), modify (M) and observe/modify (O/M).

Domain: A set of pairs of the form (<data object>, <integrity mode>).

Execution Domain: A domain which is associated with a process in execution. Any program
executing under that process may only observe or modify data objects as specified by that
domar in.

User Domain: The set of execution domains which may be entered by processes running on the

behalf of a given user.

Execution Domain Table (EDT): The set of all execution domains in tabular form.

User Domain Table (UDT): The set of all user domains in tabular form. They may be defined
on a per-user basis, or by i,;er groups or rnles

Program Domain Set (PDS): A set of allowable execution domains associated with each
program.

Execution Modes: Any members of the set (Null, Run, Call<domain>), where <domain> is
one of the domains recognized by the system. The significance of these modes will be
made clear in section 5.1.

Domain Trapsition Table (DDT): A two-dimensional array indexed by the set of execution
domains, arnd whose entries are execution modes.

Before we go any further, let us reflect upon how these definitions interrelate. We start with the
assumption that a process is executing somewhere within the system. This process is associated with a
given user, and is currently runnling in a given execution domain. This process may or may not be
running a specific program. We now define the basic properties needed to provide the proper integrity
enforcement:

Process Integrity Property: A process executing within a given execution domain (or
program executing in the context of that process) may only observe or modify
a given data object if there is a corresponding entry in the Execution Domain
Table for that domain and object.

Program Integrity Property: A program may only execute in a given execution
domain if that domain is included in the program's Program Domain Set.

User Integrity Property: A process associated with a given user may only enter the
execution domains specified by the User Domain Table.

382

Tho discussion so far has ccntcrcd on processes exectting within a given exccutlio~n domain.
What happens when a process attclpts to move froll onie exeCution domain to another, or attcmpts to
access an object outside of its domain? We assume that a process attempts a domain transition if it
attecmpts to access an objcet in a manner not allowed by the current domain. In order to fulfil its task, the
process (or program acting underneath it) needs to select an execution domain where the access would be
allowed. The mechanics of this selection would depend on each particular implementation. The three
static propeitics previously described must hold in the new domain. In addition, the following transition
property must hold:

Domain Transition Property: A transition between domains for a process is legal
only if there is a corresponding entry in the Domain Transition Table.

If tlesc conditions are satisfied, then the process in question can now be considered to be executing in
the new domain.

This formulation addresses all of the integrity issues discussed in the previous section. It offers
integrity enforcement on bolh the user and program levels like that of the Clark-Wilson model. It
encourages the type-based integrity enforcement necessary to resist virus infections. It has the flow
control benefits of the assured pipeline. Finally, it not only protects executat-les, but resists virus
attacks at all stages of the software development process, as is shown in the next section.

5_ I'l IF. SOVI'WARIE. DI{VIV:I .0"MtF.NT PROCIE.Q.SS

We new apply this integrity scheme to the simplified software environment described in section
3. An application of this schcvii is achievc d by dcfining all of the necessatry donviins. The user
interface can be modeled internally by the set of allowable transitions between execution domnains. Each
of these domains may then be described in terms of the objects they regulate. Sets of execution domains
are then defined for all progranms (or classes of programns) recognized by the system. Finally, the role of
user domains in limiting viral activity c;ui he demionstrated.

5.1 1)omain Transitions

We start with a user's view of a simplified software development environment, mapping it onto a
set of execution domains. A user, currently executing commands from the command line interface,
wishes to edit source code, compile and link it, and , finally, load and execute it. We now express this
in the form of execution domains and the allowable transitions between them.

Command: The commanil line ii,terface. Transitions may be made directly to the Edit, the

Compiler, and thle Loader domains.

E'dit: A text editor, Transitions -may only occur between the editor and the Command domain.

Compiler: The process which takes source code as input and produces unlinked ob~ject code and
temporary files as output. This domain may only be entered from the Command domain.

Linker: The process which takes the compiler output as input, and in turn outputs an executable
load module. We add the additional restriction that the linker domain may only be
reached from the compiler domain. This restri:tion will prevent a hostile process from
attempting to link the object code with a malicious external subroutine. 3

3 This paper assumes the existence of somec •AkCn-passing pIooloC0 (outsidC the scope of this paper) to allow the linking
of separately compiled nmxlules. An albsence of sulch a protowol would lorcc complete recompilation.

383

Loalder: .I lie process whinch Copies tile loaId riiodtrle intjo terier UsC pioeess space ,1 icrexectrikIon.
11w 1A *iader mlay only) lie reachecd froim the Corurinlarid domain111

Lxee~tOr: lire don11iajir inl wh 11 hi lie newly' createdL prOgrailii 'S exee Ii ed. We a1illhi ir) "Iiyadd tI
reCstriction t11at tile Exeenrorc~l is onlly' to beC reached trromi the Ixadilr, and not fruinl tle
Coinrinatid domlainl.

1Tle resultin~g Cc11ig~ii igura rnIS not e xacrlv a1 "p ipchilc,' but thle mlore generalized graphi strutircti
rcpresen redI inl Fgigure 2, which otry thle user- jleric*;,C with tine soj'twvre deve~lopmentl subt)sysreini.
'Fli u1ser may Switch betweenl tile Corliwnanld a nil id it doiiia ins al Ills di seret ron, but neic her lie n1or. anly
soir wa mc lie Is exee irling imiay movwe fro tilcte lEdit doli iai ii to anly otherf dcrialil xii w it un first goinrg
thirough thle Corariian DiIomia in. The Coimpilecr anid Liinker Doumains f'Orii a ''iii ii -pipehle.'' Any
process entecri rig tile Compiler domlain imist pass through tire Linker domnain arid then return to tlire
Cormmrand don wia i. (It may.1 be aIs snmcd, For :nrzuiienr's sake, liar any) corapihat iOn errOrs arlc reporrecd to
thle u ser. by thle L.inrker.) Colrresp)Ondi ugly. thec Liniker domain may only he erniered hiorn lie 'orip li he
I)orairitl. A sirnlarI11 struLcILItIre alo xists for the Loade r aind IExc~xutor Poma ins. Any pr-ocess e nierruig
thlis struLctl' tireIIu.st trvreboth doiiiai ii s be to' cort C i1110 YmIt I 10 l t thi ('or111run,1 Dntl onaiii -

MWi

Figure~ 2: Domatin Flo f.orM Sofrx\ lrt Dcvx t 101)1W Eni un 111 meri
'lne necxt Step is Ito IIIC tIc Por1n11 TEtin i stori ITicle to imxlel thIls Lorld gigrrarlonl, It' tire pnx'ess,-

Wishes to relmain ill rhi S ame dc11,iii ai s preitsctisly, Iatnr is C ntc.rid inl liii 1:IC. t ilt ' If a ranchanlge is
attemapred, we need to rInteit Nuli I iit tlrani isit ion is riot al loswed, taid a Call dorairi> it it is allowed.
'Ihie IYIT for ouir examl app)1 ea)R rs Iin IFigure 3.

5.2 Datm Obrects anld Programs

Now thrar the interaction between executioni domnains is clear, we riced to examine each domainl
separately. This exmIMintionl take~s two forms. First, we riced to define dile dhiua objects which canl be
aecessed ili eac'h domain. Then we define rOme Programl Domuairi Sets which preCvent rua.liCioLus Code
within at programl from exeeurrrrig inl unauithorized domains. We only diseciss those dlata struretires which

4 Anni imlerestinrg pi nilem inairises wir[elrl a ina!licio us ruser or suirrout inC arremripts to hii rearci the in Iego I> o' or am li ter by
repeatredlIy app! yring a auth orited processagapin it ra. N cihrice rice iiot'bm a:id IKalil I IrOF thle Clark-Wit sonilinorteaieicu
it) jpioxide it soilutnon . A tekein txrpa cj i y set~ie n m slirehias t1c1:rr c' iKar-ger 110] seemis ro oiler rlime best so! nti ii to srwl hia
p robINe~ii. A tern x~rat capaci ty' imay also he aidded to jcrc v'it a mia liecious progrtam froom infinitiiely eye! rg Ni itii n a g i xci
don ainl, hr r thcis reache tiOcs ey'or ! ire se cc ofr thiis j icapr.

384

concern the software development process in this sctlion. In thc next section, where user domnains are
discussed. we will examilne the woftware developmnent process inl a much broadcr context.

Next Command Edit Compiler Linker Loader Executor
rCurren Doan Domain Domain Domain Domain Domain

Command CallCalal

Doan Rn Edit Compiler tiU Loader N ull
Edit Call

Domain Command Run Null Null Null Null

Compilar Nul NlI CallNllul
Domain N l Nul Rn Linker Nulul

LinKer Call
Domain Command Null Nul! Run Null Null

Loader ICall
Domain Null Null Null Null Run Eeuo

Executor Call Nul N ljul N l uDomain Command Nul N l Nl Nl u

lI.gure 3.)oimin 1r tnsitmon 1Tabl.

W~e now'~ define the folioss jug iy pis of ikla obj.t alo'lb withi sonic rcstrictions loii ho~w Ltic-

miay be observed and modified:

Sou-ce Code: TVext representation of a program.L We stipulate that it may be both observed and
miodified in the E~dit domiain, aný mnay also be observed in the Compiler domnain. We also
allow source code to be observed in the Command domain so that a source listing mnay be
printed.

Compiler Output: Unlinked object code and any temnporary files or struLCtures produced by the
compiler. Any data of this type may be modified in the Compiler domain and observed
in the Linker domain.

Load Module: Linked object code wvhich is ready to be copiLJ into a user's process space in
primary m-emnory. It miay only be niudified (or created) in the Linker domain and
observed in the Loa'. i domiain.

Executable Image: The imnage of the load Module which has been copied into the us~r's process
space. It may be modified in thec Loader domanin, and may be both observed and
miodified in the [Executior dlomain. ('This example allows self-modifying code. It may
easily bt forbidden by altering the 1LIXI entry for time Executor Domain.)

User Objects: This class of data ob -Jects coveris any data structures "belonging" to a general user
that have not beeni enumeratied above. We Stipulate that these objects may be observed
and modified in the Commnand domain or in the Executor (i.e., they may be accessed by
running programis).

fly correlating these data types with thMe set of execuition domains, it is possible to generate an Execution
Domialn Table as shown in Figure 4.

385

We shall address the definition of Program Domain Sets in less detail, since their use is relatively
straightforward. The PDS defined for a text editor, for instance, need only contain the F.dit domain.
This would not only prevent viral infections, but would limit any Trojan horse activity outside of the Edit
domain. The Compiler and Linker may appear in the form of one program allowed to run in both
domains, or two separate programs which run in isolated domains. An important issue in PDS
definition arises when the transitions between domains are initiated. If a program (as opposed to a
process) attempts to initiate a transition, it must have both the source and target domains in its PDS.

Type User Source Compi!er Load Executable

Domain Objects Code Output Module Image

Command
Domain O/M 0 N u Il N u ll N u Il

Edit
Domain Null O/M Null Null Null

Compile
Domain N u II 0 M N u II N u II

Linker

Domain N uIl N ull 0 MV N ull
Loader
Domain Nl Nu NI l 0

Executor 0K il 111 K11 ~Do,,ai,- L... "'". _.__ 1,. "JJ~ I

Figure 4: Execution Domain Table

5.3 User Domains

It is natural to assume that user-based integrity controls would not prove to be of any use in v- -us
control, since the virus operates beyond the knowledge of the user. This assumption, however, is
somewhat misleading. Although user-based integrity controls do not provide a sense of "absolute
protection," in the proper environment they may prove to be a valuable weapon in virus defense.
Consider a computer network for a large organization. While the majority of the network users run a
limited library of applications, oniy a small fraction would be actively involved in software development
and maintenance. Few users would be expected to modify executable code. A sensible user integrity
policy could prevent infections from users not authorized to modify programs, thus narrowing the
number of users who could spread a virus infection.

A typical organization with such a polkvI is summarized in Figure 5. This table specifies which

domains may be entered for each user. Although all users will, need to use the editor, only E. Poe is
expected to compile and link program code. Since he is the only user expected to create or modify
software, a virus triggered by other users will not be able to reproduce. (In this example, Mr. Poe is
portrayed as a "superuser." It would be prudent in a serious implementation to divide Mr. Poe's
omnipotence into several user roles.) The precise definition of domains causes some difficulties,
however. Although all uscrs should be allowed to run routines from the library, we wish to make sure
that only Mr. Poe is allowed to modify these routines. The only way to model this is by creating
separate domains for both Mr. Poe and the other users. The domain for Mr. Poe, "Library," alows him
to both observe (i.e., "execute") and modify library routines. Other users, however, are limited to the
"Library User" domain, which only allow,, the observation of library routines. This type of domain
definition can be used to create and define user roles, constraining the programs which may be used by

386

each role. Note, however, that a user-based integrity scheme will be of little use in a development
environment where most users create and modify software.

User Department Allowable Domains

Word Command, Editor, Loader, Executor, Proposals,
W. Irving Processing Library User, Personnel

N. Hawthorne Accounting Command, Editor, Loader, Executor, Payroll,
Library User, Accounts Payable

Software Command, Editor, Compiler, Linker, Loader,
E. Poe Development Executor, Library, System

Library User

H. Melville Word Command, Editor, Loader, Executor, Proposals,
Processing Library User, Personnel

Command, Editor, Loader, Executor, Proposals,E. Oickenson Marketing Library User, Personnel, Resumes, Briefings

Figure 5: Sample User Domain Table

6 COMMENTS AND CAVEATS

How effective would such a scheme prove against a virus attack? It is at least as effective as the
Pozzo-Gray and Argus models in only allowing a linker to modify (or create) executables. The approach
presented has two distinct advantages over these models. First, it can control the circumstances under
which the linker is called. Second, it offers similar protection throughout the development process,
instead of at one point. Unlike the Boebert and Kain schema, it factors in a degree of user
accountability, and draws a distinction between programs and processes. The Program Domain Sets can
regulate the behavior of a program, which not only limits the spread of viruses but also the types of
attacks a virus may launch against a system. Even if the bulk of the program has been modified, the
program is still restricted to its original set of domains.

Some cautionary words are in order. First, a system is only as secure as its labelling. The tables
and domain sets must be protected in order for such an approach to prove feasible. Access to execution
domains which would perTnit a process to modify domain tables and sets would need to be restricted as
much as possible. However, the scheme provided here does make it possible to define a SWO role for a
trusted user, and the domain tables and sets can be nteated as any other form of data object.

Second, this approach assumes a somewhat "conventional" (albeit highly structured)
environment. It would be of little use in a symbolic programming environment. This scheme as it is,
does not address parallel architectures or interpreted programming environments. Finally, although it is
influenced by the Hloneywell LOCK (formally SAT) architecture[2], some interpretation would be
needed to apply it to a specific architecture. The dcmands it places on configuration management will be
quite high. The price is not too excessive, however, when one considers the alternative.

387

7 CONCLUSION

The problems raised by the computer virus and other forms of malicious software have
highlighted the need to address integrity as something other than a poor relation to data secrecy. The
integrity needs of a functioning computer system cannot be satisfied by modeling integrity after the paper
world of classified documents, for documents in a safe do not multiply out of control, nor do they
control the behavior and contents of other documents. A new paradigm is needed, one that explicitly
recognizes the integrity needs of a computer system. It is hoped that the scheme offered here, a
synthesis of many previous integrity modeling concepts, may serve as a stepping stone towards a more
unified, comprehensive view of data integrity for computer systems.

REFERENCES

[1] Cohen, F. "On the Implications of Computer Viruses and Methods of Defense," .C(omputers and
Security, Vol 7, No. 2. Netherlands, 1988.

[21 Boebert, W. E. and Kain, R. Y., "A Practical Alternative to Htierarchical Integrity Policies,"
Proceedings of the 8th National Computer Security Conference. Fort George G. Mead, MD,
1985.

[3] Pozzo, M. and Gray, T, "A Model for the Containment of Computer Viruses," Proceedingsofthe AIAAJ ASIS / DODCI 2nd Aeros/ace (.iUm uter SecUrit'- Conference, December 1986.

[4] Eichin, M., and Rochlis, J. "With Microscope and Tweezers: An Analysis of the Internet Virus
of November 1988." Proceecdings: 1989 'iEEE Symposium oSecuritv and Privacv,
Washington, D.C., 1989.

[5] Cohen, F. "Computer Viruses: Theory and Erperiments," Proceedings of t.e 7th DOD/NBS
Computer Security Conference, 1984.

[6] Biba, K. J., Integrity Considerations for Secure Computer S ESD-TR-76--3",2., Mitre
Corporation, Bedford, MA, 1977.

[71 Clark, D. D. and Wilson, D. R. "A Comparison of Commercial and Military Computer Security
Policies," Proceedings: 1987 I EEE Symposium on Security and Privacy., Washington, D C.,
1987.

18] Adkins, M. "The Argus 'ecurity Model," Proceedings of.the 12th National C!omputi.t__Sz c t_
Conference, Fort George Meade, MD, 1989.

[9] Boebert, W. E. "Constructing An INFOSEC System Using LOCK Technology," The Lock
Demonstrtation, Distributed at the 11 th National Computer Security Conference 1988.

[10] Karger, P. "Implementing Commercial Data Integrity with Secure Capabilities," Proceedings:
1988 IEEE Syniposium on Secturity and Privacy, Washington D.C., 1988.

388

COMPUTER CRIME AND ESPIONAGE: SIMILARITIES AND LESSONS LEARNED

Lloyd F. Reese
Department of Veterans Affairs

810 Vermont Avenue N.W.
Washington, D.C. 20420

The insider threat (both accidental and intentional actions) continues to be
the greatest threat to computer systems. This paper will address only

intentional actions which probably constitute as great a threat to computer
systems as fire.

When making presentations, I often start with asking a question. Is
computer security a technical problem or a people problem? I usually get
answers indicating that it could be either a people problem or some
combination of both. With computer crime and espionage, it's more likely
that I would get "it's a people problem" for a response. We now have
identified the first similarity between the two, i.e., they both require
people.

What dbout other similarities? They both involve some negative imnpact on an
organization. In the case of computer crime, it may be the loss of funes,
other resources, data integrity, or denial of service. In the case of
espionage, the loss is information which may be quite crucial to national
security. In both cases, a person or persons subverted the controls that
were supposed to protect something of value.

In espionage cases the classic explanation for motivation is summed up by
the acronym MICE: money, ideology, compromise, and ego. In recent
espionage cases, little money was received by the perpetrators other than
the Walker-Whitworth case which may have involved the payment of
$1.5 million over several years. This case was primarily an ego trip for
John Walker. The money was just a way to keep score [2,101].

Lonnie Moore at the DOE Lawrence Livermore National Laboratory conducted a
study of recent espionage cases which he presented at the 1988 DOE Computer
Security Conference. Moore found that the typical perpetrator was a male,
about 39 years old, in a low status job with lots of responsibility and
access to sensitive information. Greed was a primary motive in some cases,
but relationships with a lover, spouse, or friend were a critical factor in
one-third of the cases. Ego is a major issue: a person With a bruised ego
represents a threat. Ideology was seldom a factor and compromise was
unimportant. In Moore's research, the important factors were ego and
relationships, with money a distant third [51.

389

In computer crime cases, money is certainly a motivator. The U.S.
Department of Health and Human Services report of 1984-85 involved

interviews with 46 perpetrators of fraud. The study attempted to understand
why the perpetrators got involved with fraudulent activity. They were
employees with federal, state, and local government or private agencies
administering federal programs. They were young, good employees, and most
had above-average performance. Only 20 percent had prior criminal records.
Most were in positions where they could cause checks to be issued. The
average loss was $45,000, but 20% were over $100,000. Seventy-five percent
say they stole money in response to situational stress (7,i). One-third of
this group indicated that they were also unhappy employees and that made it
easier to commit the crime [7,11-12].

The report suggested debriefing perpetrators, better personnel security
procedures, and improving system controls and awareness, but did not suggest
employee assistance programs or training managers. By contrast, Moore
suggested "crisis intervention" to help an individual with a problem. He
also suggests the need for management to be good and fair [5].

From the preceding discussion, we know that people are tempted by money,
influenced by relationships and situational stress in their personal lives,
as well as unhappiness at work. To develop a countervailing program, we
must next look at what we can and cannot control.

Clearly, we must have systems that process funds, and store sensitive or
classified information. However, we can make sure that proper controls are
in place and that they work. By contrast, we can do little about an
individual's relationships. We can tell employees to exercise care in
contact with foreign nationals or individuals with questionable backgrounds
and intentions. Yet, it is quite difficult to control employees' associates
after the workday has ended. We can help people deal with situational

stress in their personal lives and we can also encourage good and fair
management practices as well as other environmental factors that contribute
to a pleasant work environment.

Let's look at situational stress. Have any of us every had any of the
following happen: divorce, death of parent/spouse/child, illness of
parent/spouse/child, financial difficulties, or alcohol/drug dependency.
These life events that can place considerable stress on anyone. How do we
react to these situations? That varies considerably from one person to
another Some of us handle each within the usual norm. Some of us deal
with themTI more quickly and some take longer. Sometimes we work out things

by ourselves and sometimes we need help. When it takes longer than usual
and a situation requires help, do we get it? If so how? Do we do so on our
own or only with the helpful intervention of family, friends, or -ork
associates?

390

It is important that supervisors and manngers stay in touch with what's
going on in the lives of their employees and be especially observant if they
know the employee is having a difficult time in his/her personal life. When
that personal difficultly impacts job performance, the supervisor can
intervene and insist that the employee get help. Long before it becomes a
serious on the job problem, the supervisor can suggest to an employee that
certain services are available if the employee thinks they would be useful.
When job performance is impacted, the supervisor can insist that the
employee consult with the Employee Assistance Program (EAP).

The question then arises, how much confidence do we have in such programs?
What type of credibility do they have with employees? I was concerned about
the EAP program at my office. I decided to consult with the doctor at the
health unit who serves as the initial counselor and referral for most
employees with problems. I found that she and the nurses were running a
mini-crisis center. I was impressed! However, some EAP pcograms are
associated with drug and alcohol abuse only; others may be seen as for blue
collar employees only.

It's important to learn how well your program is working. Can it serve as a
place for the employee with situation stress to obtain help so he/she will
not allow that stress to have a signnficant impact on the organization?

In addition to programs that deal with individual problems, it is also
important for orgrnizations to review internal environmental factors that
can contribute to computer crime. What are some internal environmental
factors that can contribute to computer crime? These include the work
environment, reward systems, level of interpersonal trust, level of ethics,
level of stress (pressure for performance), and level of internal controls.
While organizations spend considerable attention on internal and accounting
controls as well as defensive measures such as physical security,
considerable less thought is give to the enhancement of the work
environment, the reward system, levels of trust, ethics, and stress. There
is no question that the latter factors are more difficult to assess as
risks, but it is dangerous to ignore them [3,25-30].

How do most employees form their opinion of whether or not an organization
is a good place to work? For the most part they base this conclusion on
what they experience and what they hear from other employees. Clearly, what
they see and hear from management is a significant influencing factor. If
management is caring and operates in an open environment, the employees are
more likely to have a positive feeling about the organization and less
likely to want to take actions against it. If on the other hand, management
is less benevolent, employees may be more likely to take advantage of the
organization.

391

What can we do if the internal environment of our organization is less than

ideal? Probably not a lot, but it's worth trying to improve it by working
with management and employee organizations. Many of you have used
self-assessment questionnaires to determine the status of security and
controls in your organization. You can encourage the use of self-assessment
questionnaires to measure organizational climate as well. Once the areas
needing improvement have been identified, a plan can be developed to improve
the work environment.

The management style of a given manager is much more difficult to address.
However, if a certain manager has a high turnover rate, a higher complaint
rate than other units, or the work is not getting done, it may be worth
assessing this individual's management style. Even when negative
documentation is brought to the attention of higher management, they usually
have a difficult time dealing with it.

To illustrate some of the similarities between computer crime and espionage,
there are two cases I wish to review. The computer crime case is Donald
Gene Burleson, former employee of USPA & IRA Co., a Fort Worth securities
trading firm, convicted in September 1988 of planting a vtrus that destroyed
168,000 sales commission records of his former employer. The espionage case
is Edward Lee Howard, the former Central Intelligence Agency (CIA) employee,
who flunked four polygraph tests prior to assignment to Moscow, and was
fired by the agency. ln 1984, he revealed the CIA operation in Moscow to
the KGB. Both cases involve employees with personal problems which were
known to the employers. When their employers fired them, the results were
rather serious for both organizations.

Burleson was described as someone who denounced authority, believed federal
income taxes were unconstitutional, and claimed he had not paid any since
1970. He complained that his salary was too low and had heated arguments
with his superiors. A former co-worker stated, "he was so fanatical about
everything...he could do anything with a computer" [4,64]. Burleson's
virus, by destroying the commission records, Iheld up the pay chucks of
employees. According to the assistant district attorney who prosecuted him,

'Burleson was working on the virus every time he got mad--he was having
conflicts with supervisors and people at work.'" Three days after
the company fired him, he was able to e;.ter the building at
3 a.m. and " 'manually activated his program with a second virus set to go
off the next month--in case they found tne first one, the other would go off
later.'" While he tried to erase his tracks, he was not completely
successful. He also mentioned his actions to a friend, another
programmer [6].

Howard was a former Peace Corps volunteer and had wor-ed for the Agency for
International Development. After completing his initial CIA training, he
was to be assigned to Moscow. The agency routinely polygraphs employees
before such an assignment [8,75]. His polygraph, repeated four times,
indicated he was being deceptive on two issues: theft and alcohol use. (He

392

had previously admitted to a theft, but it was under the threshold used by
the agency at that time, lie admitted to repeated illegal drug use and there
weie indications that the agency was aware of his alcohol abuse.)
Management had three options: fire him, assign him to a less sensitive
Washington position where he could be monitored, or send him to Mosco'.,.
Management chose to ask for his resignation without explanation. Although
the agency provided some "out placement" assistance, noward took it hard as
this was really the first failure of his life as he saw it at age 31
[8,81-87]. Within months after the firing, he initiated contact with the

KGB, and two years later, ultimately fled to Moscow, while under FBI
surveillance [8,224].

In both cases we have employees with personal problems which are known to
their employers, given considerable access to sensitive systems or
information, who ultimately turned against their organizations and in
Howard's case against his country. In both cases, they should not have
gotten as far as they did. Their organizations should have determined that
they were not suitable for the positions of trust they occupied, When the
securities firm determined that Burleson bad to be separated, it could have
made certain he had no access to the building or computer system. In the
CIA case, the alternative of a Washington assignment seems to have been a
more judicious decision. This alternative might have averted the disclosure
which compromised tbh agpncy's operation in Moscow and resulted in the death
of at least one agent, a Soviet citizen [8,249].

In addition to revenge against their former organizations, what rewards and
penalties did they get? Burleson received no financial gain. He was fined
$12,000 as a result of a civil suit brought by the former employer. He
could be sentenced to up to 10 years in prison for the criminal actions [6].

Howard is believed to have received $150,000 from the KGB which was
deposited in a Swiss bank account [8,221]. His penalty so far has been
self-imposed exile from the U. S. If he ever returns to this country. is
tried, and convicted, he would probably receive a life sentence [8,231].

In summary, what are the similarities between computer crime and espionage?
They both require people and they both have negative impacts on the
organizations effected. They both occur because someone subverted the
controls that were intended to protect something of value.

Are we locked into the acronym MICE (money, ideology, compromise, and ego)
to explain the motivation for espionage? No, relationships and ego may be
the most important issues. For computer crime, is it always the money?
Money is often a strong motivation, but there may be other reasons resulting
from personal problems or unhappiness at work. We need to make certain that
our EAP programs are working properly. We also need to review our
organizations' internal environmental factors and the management styles or
our managers. At the same time, we must make sure the controls are working.

393

References

[1) Allen, Thomas B ., and Polmar, Norman. Merchants of Treason: Americas
_Secrrets for Sale. Now York: Delacorte Press, 1980.

[2] Baker, Lara. "Threats to DOE Computers: A Perspective" in _$qmMAr y__of

Papers t0 be Presenl a h Department of Energy .omputer Security
Group QLnference. GI'. 1988.

[3] Bologna, Jack. "Computer Crime: The Who, Where, When, Why, and How:
Part 2, Data Processing and Communications Security, Spring 1986, pgs. 25-30.

[4] "Is your Computer Secure". Business Week, August 1, 1988, Pgs. 64-70.

[5] Moore, Lonnie. "Espionage and Computers". Presentation at U. S.
Department of Energy Eleventh Computer Security Group Conference, Kansas
City, MO, May 2-5, 1988.

[6] "Virus Conviction Makes News" DATAPRO Reports on Information Seruritv

Vol.4, No. .1, November 1988. Pgs. IS-99-801-1ii thru 112.

[71 U. S. Department of Health and Human Services, Office of the Inspector
General. ComipuuE Related Fraud in Government Agencies - Perpetr r_
interviews. Washington: G.O, I Y•.

(8] Wise, David. The Spy Who.Got Away. New York: Random House. 1988.

* The views expressed are those of the author and do not necessarily

represent the Department of Veterans Affairs. *

394

BIOGRAPHY

Lloyd F. Reese is Chief of the ADP Security Division within the Office of
Information Systems and Telecommunications at the Veterans Administration.
The division is responsible for developing an effective ADP Security program
within OIS&T and for developing policy and guidelines for a VA-wide
program. Mr. Reese is a member of the Information Systems Security
Association and currently the Vice-President for the National Capital Area
Chapter. He is also a member of the American Society for Industrial
Security. Since 1985 he has served on the ASIS Wa hington, D.C. Chapter's
subcommittee on Terrorist Activities which has presented a seminar on
counter-terrorism each year. He teaches computer security courses for the
USDA Graduate School. He holds a master degree in both justice and public
administration from The American University.

395

A Summary of Computer Misuse Techniques

I eter G. Neumanm and Donn 13. Parker

SRI International
Menlo Park CA 94025-3493

12th National Computer Security Conference
Baltimore, Maryland 10-13 October 1989

Abstract

We consider here general classes of computer misuse, including intentional security abuses and accidental
misuses. The classification approach is intended to provide a basis for methodological threat analysis that
assesses the significance of vulnerabilities in specific systems and networks. It is intended to increase the
understanding of exploitable abuse techniques, and thereby to aid in reducing both the number of
vulnerabilities and their seriousness.

Introduction

Security of computer systems and networks has developed without sufficient attention to actual loss
experience. This becomes apparent in examining the literature on security policy and safeguards, where little
is stated about specific abuses that must be defended against. Authors of security literature usually have not
investigated loss experience, much less interviewed abusers. Experience indicates that computer mnisusers do
not attack where controls and system security policy are strongest, but rather where vulnerabilities exist.
Experience also suggests that varying certain characteristics of the user environment can increase die work and
danger for the inisusers.

We classify techniques involved in computer system misuse based on about 3,000 cases collected since 1970.
The main purpose of the study is to provide a detailed resource for people involved in computer security, such
as trusted system developers, testers, evaluators, certifiers, and researchers, including those working with
formal models, specification, and verification. We hope that greater awareness and understanding of the
techniques described herein will lead to systems that can be used more securely, with fewer opportunities for
misuse.

Analysis suggests that the three coninionly cited abuse categories (improper disclosure, modification, and
denial of service, often related to losses of confidentiality, integrity, and availability, respectively) are greatly
oversimplified. (Destruction is also often cited, although it is a combination of improper modification and
denial of service.) Many abuses actually involve combinations of these categories, such as Trojan-horse and
playback attacks. Others transcend these categories, for example, misrepresentation, impersonation, inferences
that permit the derivation of data not even represented internally, and failure to act appropriately. In addition,
misuse of conferred authority is often not addressed. In order to overcome this deceptive simplification, we
consider nine classes of abuse and various types of abuse techniques that illustrate those classes.

This paper assumes a basic familiarity with computer security. Our terminology is generally consistent with
the National Computer Security Center glossary (Glossary [881), and we have chosen to avoid a proliferation
of definitions by referring readers lo that document.

lCopyright 1989 Peter G. Neumann and Dlnn B. Parker
396

Sourccs of Computer System Misuse

As lote d in Neumann I [$], there are three basic gaps that computer misuses can exploit:

((I) Pic technological gap between what a computer systemi is actually Capjable o 'cnf 'cing ,t'ad
what it is c.Pectcd to enfioce (e.g., its policies for data confidcntiality, tKara integrity, system
integrity, and availability). This gap includes deficiencies in both hardware and software (for
systems and coin111uications) as well as in their administration, configuration, and operation. For
example, discretionary access controls such as user/group/world are intCnded to limit acccss, but
are incapable of enforcing copy protection. Furthermore, flawed operating systems may permit
violations of the intended policy.

* (2) The sociotechnical gap between computer policies and social policies such as computer-
related crime laws, privacy laws, and codes of ethics. This gap arises when the socially expected
norms are not consistent with computer policies. For example, issues of intent are not addressed
by computer security policies, but are relevant to social policies.

* (3) The social gap between social poiicies and actual human behavior. This gap arises when
people do not act according to expectations. For exampie, authorized users may easily diverge
from the desired social policies.

The technological gap c=a be narrowed by properly administered computer systems and networks that are
meaningfully secure (e.g., that in part observe the criteria of the Orange Book and Red Book -- TCSI3C 185]
and TCSEC-TNI 1871, respectively -- and the many U.S. National Institute of Standards and Technology
federal infornation processing standards on security), at least to the extent of protecting against known
vu!•.erabifities. The sociotechnical gap can be narrowed by well-defined and socially enforceable social
policies, although computer enforcement still depends on narrowing the technological gap. The social gap can
be narrowed to some extent by narrowing the first two gaps, with some additional help from educational
processes. Malicious misuse of computer systems can never be prevented completely, particularly when
perpetrated by authorized users. Ultimately the burden must rest on better computer systems and networks as
well as better management and, to the extent possible, on the self-imposed discipline of information managers
and computer users.

The primary focus here is on violations that exploit the technological gap. Approaches to avoidance,
prevention, deterrence, detection, and recovery (whether in real time or after the fact) are fundamental to
closing that gap, and these are also discussed. Reducing the other two gaps is also important, though treated
here only superficially.

Classes of Teclmiques for Computer System Misuse

Computer misuse techniques are here classified according to Figure 1. For visual simplicity, the figure is
approximated as a simple tree. However, it actually represents a system of descriptors rather than a taxonomy
in the usual sense, in that a given misuse nv," involve multiple techniques within several classes.

The order of categorization depicted is roughly from the physical world to the hardware to the software, and
from unauthorized use to misuse of authority. The first class includes external misuses that can take place
without any access to the computer system. The second class concerns hardware misuse, and generally
requires some involvement with the computer system itself: two examples in this class are eavesdropping and
interference (usually electronic or electromagnetic, but optical and other forms are also possible). 'Te third
class includes masquerading in a variety of forms. The fourth includes the establishment of deferred misuse,
for example, the creation and enabling of a Trojan horse (as opposed to subsequent misuse that accompanies
the actual execution of the Trojan-horse program -- which may show up in other classes at a later time). The
fifth class involves bypass of authorization, possibly enabling a user to appear to be authorized -- or not to
appear at all (e.g., invisible to the audit trails). The remaining classes involve -active and passive misuse of
resources, inaction that might result in misuse, and finally misuse that helps in cam', ing out additional misuses

397

1. External / \ Computer system access
nmsuse A

2. flardware / \ Compute: system use
misuse

/ \ Apparently authorized use
3. Masquerading / \ (even if clandestine)

4. Setting up sub- / \ Direct use
sequent misuse A

/ \ Use apparently conforming
5. Bypassing intended / \ with intended controls

controls A

6. Active misuse / \ Active use
of resources A

7. Passive misuse / \ Apparently normal use
of resources A

8. Misuse resulting / \ Apparently proper use
from inaction

9. Use as an aid / \ Proper use
to other misuses

Figure 1: Classes of Competer Mkisuse Techn-_iniqu

(such as preparation for an attack on another system, or use of a computer in a criminal enterprise).

The main downward sloping right-hand diagonal line in Figure 1 indicates typical steps and modes of intended
use of computer systems. The leftward branches a!l involve misuse, while the rightward branches represent
potentially acceptable use -- until a leftward branch is taken. (Each labeled mode of usage along the main
diagonal intended-usage line is generally the antithesis of tie corresponding leftward misuse branch.) Every
leftward branch represents a class of vulnerabilities thzt must be defended against, that is. detected, avoided,
and/or recovered from. The means for prevention, deterrence, avoidance, detection, and recovery typically
differ from one branch to the next.

To reiterate, the tree in Figure 1 relates to the classification of technique types. Actual misuse often involves
multiple misuse types, with one misuse enabling another. For exanmple, the West German Chaos Computer
Club members who attacked NASA systems on the SPAN network used (at least) techniques of external
misuse, masquerading, Trojan-horse attacks used to capture passwords, bypass of intended controls, failure of
system administrators to act prudently, and both active and passive misuse of resources. (References to this
case and to most of the other cases mentioned here are given in Neumann 1J9].)

Types of Computer Misuse

Representative misuse techriques are sketched below for each class. While the basic classification system is
thought to be fairly comprehensive, new techniques and subcases are likely to be discovered as technology
advances. On the other hand, most of the attack methods being used today are merely variants of techniques
that have been known for years. Indeed, actual loss experience shows that system and network problems that
facilitate attacks are reincarnated in new systems and networks, al:hough the details may change somewhat.

1. External misuse -- Generally nontechinological and unobserved, physically separate from
computer and communication facilities: physical scavenging (e.g., collection of waste paper or

398

other externally accessible computer media such as discards), visual spying (e.g., remote
observation of typed keystrokes or screen images), and deception (e.g., misrepresentation)
external to the computer systems and telecommunications. These techniques have no directly
observable effects on the systems and are usually undetectable through coMnputer security
systems; however, they may lead to subsequent technological attacks, and thus are vital to the
identification of security vulnerabilities.

2. Hardware misuse --

" (a) Passive hardware misuse, with no (inmmediate) side effects on hardware or software
behavior: electronic or other eavesdropping and logical scavenging. Eavesdropping may
be carried out remotely (e.g., by picking up emanations) or locally (e.g., by planting a
spy-tap device in a terrinail, mainframe, or other hardware). Logical scavenging may
involve examination of discarded computer media.

" (b) Active hardware nmisuse, with side effects: theft of computing equipment and physical
storage media; physical attacks on equipment and media; hardware modifications such as
internally planted Trojan-horse hardware devices; interruption of or tampering with power
supplies or cooling; and interference (electromagnetic, optical, or other). These activities
have direct effects on the cornputer systems (e.g., internal state chan, es or denials of
service)

3. Masquerading -- Impersonation; playback and spoofing attacks; piggybacking on other users;
and telephone-network weaving to hide dial-up origin (as in Stoll 187]). "these activities may be
indistinguishable from legitimate activity.

4. Setting up subsequent misuses -- Planting and arming software Trojan horses with techniques
such as logic bomnbs arid time bombs, ietier bonibsm. xaliciuus, W,'Oii•, ,u viruses. ,he

L~ '_ , U ll nptil'. td

up of these so-called "pest" programs may actually employ misuses of other classes such as
bypasses or misuse of authority, or may be planted via completely nomial use, as in a letter
bomb. The subsequent execution of the deferred misuses may also rely on further misuse
techniqocs. Alternatively, it may simply involve the occurrence of some logical event (e.g., a
particular date and time, or a logical condition), or rely on the curiosity, nalVet6, or normal
benavior of the victim. Indeed, because a Trojan horse typically executes with the privileges of
its victim(s), its execution may require no further privileges. For example, a Trojan horse
program might find itself authorized to delete all the victim's files. A Trojan horse letter bomb
(with hidden control characters and escape sequences squirreled away in the text) might be
harmless unless explicitly read interpretively or otherwise executed; however, if the system
permits the transit of such characters, the letter bomb would be able to exploit that flaw and be
executed unbeknownst to the victim.

5. Bypass of intended controls -- Circumvention of existing controls or improper acquisition of
oJherwise denied authority, presumably with the intent to subsequently misuse the acquired
access rights. Common cases of unauthorized access result from system and usage flaws (e.g.,
trapdoors that permit devious access paths) such as improper domain initialization, improper
encapsulation. inadequate infornation hiding, incomplete deallocation (e.g., storage or access
control residues), incomplete interrupt or error handling, naming proble•s such as search-path
anomalies and inconsistent aliases, and lack of adequate validation. Tailgating may occur
accidentally when a user is randomly attached to an improperly deactivated resource such as a
port through which a process is still logged in with its oi-ginal user no longer attached.
Unintended access may also result from other trapdoor attacks, logical scavenging (e.g., reading
a scratch tape before writing upon it), and asynchronous attacks (e.g., incomplete atomic
transactions, and discrepancies between time of check and time cf use). For example, trapdoors
in the implementation of encryption can permit unanticipated access to unencrypted information.
Password attacks are a particularly insidious subclass and may involve, for example, guessing of
common passwords (dictionary words, initials, proper namnes); capture of unencrypted passwords
in transit (via local or global net, or by UNIX /dev/liem). whether or not they arc stored in
encrypted form; derivation of passwords (exhaustively, algorithmically, by inference, by pre-

399

encryptive dictionary attacks as in Morri and Thompson 179], quitting during login with a
wrong password and discovering oneself logged in; discovery of unintentional universal
passwords (e.g., Young and McHugh [871); editing an inadequately protected password file to
inscii a bogus user identifier and password; and inserting a trapdoor into the login program by
Trojan horsing the compiler (Thompson [84]). The variations within tlii. class are aniazingly
rich.

6. Active misuse of resources -- Misuse of (apparently) conferred authority that alters the system or
its data. Examples include misuse of administrative privilegcs or superuser privilcges; changing
access controls to enable other misuses of authority; hannful data alteration and false data entry;
denials of service (including saturation, delay, or prolongation of service); and the somewhat
exotic salami attacks in which round-off is collected (for personal or corporate gain). Note that
in Classes 6 and 7 the apparently conferred authority may have been obtained surreptitiously, but
otherwise appears as legitimate use.

7. Passive misuse of resources -- Misuse of (apparently) conferred reading authority, such as
browsing (without specific targets), searching (for specific patterns), access to data aggregates
that are rnore sensitive than the individual items, drawing inferences (e.g., as in traffic analysis),
and exploitation of covert channels (storage or timing channels). These events have no
appreciable effect on the objects used or on the state of the system (except of course for the
execution of computer instructions and the resulting audit data). They need not involve
unauthorized use of services and storage. Note that certain events that superficially might appear
to be passive misuse may in fact result in active misuse -- for example, through time-dependent
side effects.

8. Alisuse resulting from inaction -- Failure to avert a potential problem in a timely fashion, or an
error of omission, for examnpl. This lass miiht hit conidedr•d as 'a liit.g c... of passive
misuse; however, it seems qual, . *vely different and thus is . "stinguished as a separate class.
An accidental example arose in the Air Force's public resale of magnetic tapes without their first
having erased the contents. Intentional misuse would result from someone detecting but not
reporting a serious security flaw, e.g., saving that knowledge for a possible subsequent abuse.

9. Use as an indirect aid in committing other misuse --

" (a) As a tool in planning, developing, controlling, or carrying out computer-system misuse,
such as seeking matches in the encrypted password file by preencrypting dictionaries and
likely passwords (the eventual attack is noted in Class 5 above); searching with an
autodialer for answering modems; seeking to determine flaws in a system design and
implementation for future exploitation by conducting black-box ("Gedanken")
experiments without any internal knowledge; factoring very large integers to break public-
key encryption schemes; or analyzing database query responses for inferences. Activities
of this subclass may subsequently lead to computer misuses of other classes. Note that
each of these activities could be aimed at attacking a computer system other than the one
on which the hidirect misuse is carried out. Each of these activities may seem suspicious,
but is not necessarily yet an overt abuse. A particularly subtle example of this class might
be called anticipatory anomaly detection training, by which a user slowly alters his
"'nomral" legitimate behavior pattems in the hope that an adaptive anomaly detectioa
system will train itself to accept behavior and so miss an actual attack. (Class 4 bears some
resemblance to Class 9(a); however, the Class 4 activities may have a direct effect on the
target system, while the Class 9(a) activities may not yet imply a compromise.)

" (b) As a tool in planning, developing, controlling, or engaging in criminal enterprise (e.g.,
managing an illegal drug business, or committing financial fraud), or performing unethucal
acts (e.g., misuse of company resources for private purposes).

Many of the intentional computer abuses have accidental counterparts. For example, eavesdropping,
interference, piggybacking, tailgating, false data entry, and inaction all may occur accidentally without specific
malicious intent; the discovery of their feasibility might then inspire subsequent intentional abuse. Thus, we

400

make an informal distinction here between "abuse" and "misuse", using abuse to refer to intentional acts,
and misuse to refer more generally to accidental or intentional acts. The classification addresses both
intentional abuses of computers and corresponding accidental misuses, primarily from the vantage point of
security; however, we note that there are other accidental forms of misuse that are not represented here -- for
example, some that compromise human safety or the functional corcectness of the application.

An informal distinction is also made between unauthorized use (Classes 1 through 5 above, more or less) and
misuse of conferred authority (Classes 6 through 9). Note, however, that a masquerader or penetrator may
become essentially indistinguishable from a legitimate user, having gained what appears to be authorized
access. Furthermore, the activities of Class 4 may be either unauthorized or within authority, but nevertheless
malevolent. In many cases it may not be particularly helpful to try to distinguish between a penetrator and a
legitimate user, particularly when either user could be misusing authority -- however it was conferred.

Anderson [80] has previously characterized categories of threats, roughly comparable to the present
classification as follows: external abuse (Classes I and 2), masquerading (Class 3), clandestine activities
(Classes 4 and 5), and misfeasance (performing an authorized action in an improper way -- Classes 6 through
9). We have thus seemingly sz:bdivided three of his categories and provided specific types within classes.
However, there seems to be considerable intrinsic ambiguity even in the most carefully constructed definitions.
For example, authorization is not always clearcut; glaring system flaws may beg the question of what is proper
use, particularly for those flaws identified as "features". Once having penetrated a system, a masquerader
appears as if authorized. Furthermore, as noted above, the Class 4 techniques typically may involve
clandestine activity and misfeasance, and of course may also employ techniques of other classes in the
execution of further abuses. Thus we expect that the classification approach given here will riot be the last
word. (An earlier discussion of various types of system vulnerabilities within what corresponds roughly to
Class 5 is found in Neumann [78], inspired by earlier work at the USC Information Sciences Institute by
Bisbc, Cwsit,"igwo"h, .t al., wh.o sought to build tools that src.hed for specific tvnes €Af flaws.
Classes of abuse are also considered in Denning and Neumann 1851, with respect to anomaly detecuon.)

This study draws on extensive experience with computer abuse over twenty years. One of the authors has
been collecting computer abuse cases at SRI since 1970, and has been involved in the identification, study, and
reporting of abusive techniques (e.g., Parker [72], [76], 1831) including work for the criminal justice
community (Parker [89]). The other author has collected many cases of computer misuse, including those in
which security, reliability, human safety, or financial well-being were seriously at stake. (See Neumann [89]
and the on-line ACM Forum on Risks to the Public in the Use of Computers and Related Systems.)

Collaborative Misuse

Most of the abuses noted above can result from the actions of just one person. Others may require some
collusion. In general, intentional collusion can arise with different individuals and different techniques. Note
that successful Trojan horses may require the unwitting collaboration of the victims, but abuse by only one
user.

Through the use of various compartnientation techniques and multiperson authorizations, it is possible to
hinder the abilities of single individuals to perform certain abuses. In addition, periodically changing the
application of these controls makes the field of attack more unpredictable and somewhat more difficult for the
attackers. For example, the principle of separation of duties (both statically and dynamically) requires
different user roles for different purposes; the principle of least privilege requires allocating only the needed
privileges for any given role (including withholding privileges altogether when appropriate). Suppose.
however, that separation of duties is practiced carefully thr-oughout (e.g., in the design, implementation,
configuration, maintenance, operation, and use of the systems and networks). As a consequence, certain
abuses would then require collaboration to succeed. Indeed, as we progress to better computer systems and
better administrative practices that enforce separation of duties, the necessity for -- and the likelihood of --
misusers resorting to collaborative abuses can be expected to increase accordingly.

401

Effects of Computer Misuse

Misuse may include varicus forms of unauthorized reading, writing, copying, deleting, and executing --
including logical theft of computational resources. It may be detectable or undetectable. It may result in
deaths and injuries, compromises to national security and global survival, loss of personal privacy or
constitutional rights, financial fraud, or destruction of property, to name, just a few critical areas. Misuse may
also involve loss of real-time control, rigging of computer-controlled elections, loss of safety in medical
applications, or loss of security in scientific or business computing and conmmnications -- including electronic
mail. Attempts to enumerate all of the possible effects would be futile, although many examples are included
in Neumann [89], Parker [72], Parker [76]. and Parker [831.

From the victim's perspective, consequential losses usually result from direct losses caused by misuse. In
many cases the consequential losses exceed the direct loss, although the attacker may have intended to inflict
direct losses rather than consequendal losses. Consequential losses include the costs associated with recovery
of resources and system availability; correction or replacement of security controls and removal of security
flaws; insurance claim efforts and increased cost of insurance; loss of credibility and public image (e.g.,
refiected as a loss of credit rating or customers); special audits; litigation; removal and replacement of
perpetrators; and staff thie spent in discussions and wheel-spinning.

Motivations for Computer Misuse

While there are many pwuposes and motives behind computer-related abuses, a detailed sociological or
psychological classification is beyond the scope of this study. Nevertheless, it is useful to illustrate the
diversity of motives. Typical intentional purposes include espionage (corporate, national, and hiternational),
thiancial gain, fraud, theft, piracy, violation of contractual agreements, intellectual challenge, revenge, threats,
blacha-,iii, and exiortion. Typical causes of unintentional misuse include curiosity, boredom, laziness,
ignorance, misguided intent, incompetence, and inattentiveness, among others.

Contrary to the popular belief tat computer crime is motivated by greed and high living, criminological
studies and SRI interviews of over 100 computer criminals (Cressey [71], Parker [76], and Parker [891)
suggest that primary motivations include the following, sometines in combination: (1) the need to resolve
intense personal problems such as job-related difficulties, mental instabiiity, debt, drug addiction, loneliness,
jealousy, and desire for revenge; (2) peer pressures and other challenges, for example, among malevolent
hackers; (3) idealism or extreme advocacy, for example, by espionage agents and terrorists; and (4) financial
gain. Cases I and 2 apply largely to amateur white-collar criminals and misguided individuals, while case 4 is
more applicable to career criminals and insiders; case 3 seems to represent a mixture of people. Computer
abuse per se is often a secondary consideration. However, the opportunities for personal financial gain are
considerable today, particularly among authorized users and a few masqueraders, and thus the need for better
security controls and administration is very pressing.

Skills and KIowledge Required

Each of the previously noted techniques requires an associated range of skills and knowledge for its execution.
For example, the discovery of a trapdoor may require considerable sophistication., while its exploitation may
be relatively easy. The technical skill levels required for sonic types of abuse are sumnnarized below in
general terms (see Parker and Dewey [78]). Skills may also include programning ability, hardware
knowledge, comnmunications expertise, and interpersonal suavity. Sonic technical knowledge of the target
systems is frequently required. The level of skills and knowledge required may be approximately associated
with the abuse techniques, as follows:

* Few, if any, technical skills or knowledge required: misrepresentation; visual spying; physical
scavenging and thieving; physical attacks on equipment; random interference; false data entry;
external collusion.

402

"* Some technical skills and knowledge required in some cases: browsing and searching; logical
scavenging; inferring, aggregating, traffic or activity monitoring; selective interference;
eavesdropping; leaking data; impersonating; playback attacks; piggybacking; misusing authority;
improper reading, writing or copying; integrity violations; denying use; letter bombing; trap door
cxploitation; network weaving; internal collusion.

"* Greater technical skills and knowledge generally required (at least in new ottacks, but not so
much in copycat cases): system alterations; exploitations such as Trojan horses, logic bombs, time
bombs, wonns and virises; incremental attacks; asynchronous attacks; hardware modifications.

In general, it is dangerous to -ssunie that the requisite skills and knowledge are not available. In particular,
former employees and disgruntled or dishonest current employees usually have abundant skills and
knowledge. This again illustrates the importance of varying certain control parameters so that although
abusers may know the existence of the controls they may not know the current settings. In menu-driven and
self-prompting systems, however, any lack of knowledge can often be quickly overcome. Deterministic digital
technology can be analyzed, even without documentation.

Resources Required

The resources required for computer misuse vary widely, depending on the techniques used and the skills of
the perpetrator. Surprisingly few additional resources may be needed in some cases -- for example, for the
disgruntled employee. In other cases, extensive resources may be employed -- as in the example of
collaborative efforts to factor 100-digit numbers, which in one case required about 40 MIP-years of computing
distributed across many different machines (in a few weeks!). As noted above, use of uhe target computer may
not be necessary. Documentation (manuals, object code, source code) may help in some cases, and may be
unnecessary in others. Possession of personal computers and modems is useful in some cases. In general, it is
dangerous to assumne that adequate resources are not available to would-be perpetrators. Equipment can be
stolen; software can be down-loaded from pirate bulletin boards or acquired without authorization; telephone
services can be obtained through toll fraud.

Avoidance, Prevention, Detection, and Recovery

Efforts should be made to narrow each of the three gaps discussed above. As noted above, our primary
emphasis here is on the technological gap, which can be reduced dramatically by computer systems with better
security and better system administration.

Each of the classes in Figure 1 has its own set of countermeasures for coping with misuse, and its own
tradeoffs. For example, external abuse and passive hardware abuse may be very difficult to detect; thus. if
they represent a sufficient threat, additional effort may be needed to prevent them. Where such threats are
perceived, defensive methods may include proper disposal of discarded media and shielding to prevent
emanations. Active hardware abuse such as intentional or accidental interference may be relatively easier to
detect, but also requires considerable foresight to prevent. The remainder of the classes require computer
system software and administrative countermeasures appropriate to the individual threats, although there is
considerable commonality within each class -- as in defending against Trojan horses, viruses, and other pest
programs.

Avoidance of Misuse

Avoidance is a security function that is often overlooked; because it is so obvious, security practitioners falsely
assumre that others have already considered it. Avoidance can be applied quite simply: e.g., remove the threats
from assets subject to loss, to make the misuse techniques more difficult to use; remove the assets from the
threats to make access impossible or impractical; redefine the security problem to give both responsibility and
authority to parties better qualified or better motivated to deal with it.

403

Prevention or Deterrence of Misuse

With respect to computer operating systems and application software, enforcement of mandatory security (e.g.,
Bell and La Padula [76]) and some form of multilevel integrity (such as Biba [75]) can reduce the potential for
misuse considerably, even in unclassified applications (see Lipner [182]). Observance of the criteria of the
Orange Book (TCSEC [85]) and Red Book (TCSEC-TNI [871) also can contribute significantly to security.
The principle of separation of duties and the principle of least privilege are fundamental (e.g., see Clark and
Wilson [87]), and can hinder both single-person misuse and collusion. In addition, multiperson authorizations
may be desirable where collusion is expected to be a problem -- requiring not only separation of duties but also
explicit mechanisms for joint authorization.

The consistent use of good software engineering practice coupled with well-conceived programming
languages (e.g., modular systems, strong typing, use of abstraction and encapsulation of data types, separate
compilation, run-time checking, and systematic exception handling) can contribute significantly to the
security, reliability, and safety of applications as well as systems. In particular, many characteristic security
flaws car be avoided altogether, or significantly mi-hniized, particularly those in Class 5 (bypass of controls)
as discussed in Neumann [781. For example, the Internet worm atta ' exploited trapdoors in me debug option
of sendmail and in the gets program called by fingerd in BSD-derived versions of UNIX 2 (see Spafford [89],
Rochlis and Eichin [89], Seeley [89]). Both of these trapdoors could have been avoided by the judicious use
of software engineering, particularly with some bounds-checking and application of the principle of least
privilege.

One goal is to make the established security policy as close as possible to the actual intent as to what should be
accessible, thereby narrowing the technological gap. Another goal is to make the misusers' targeted
environments as unpredictable as possible -- witho.t confising rnal users. Thus, .ome variabi.lty c-n
provide both deterrent and preventive effects. Narrowing the sociotechnical gap requires better laws and codes
of ethics, but ultimately the social gap suggests that the socictechnical gap cannot be closed without more
realistically enforceable security policies that permit the narrowing of the technological gap. Because some
hostile users must be assumed to exist, laws and codes of ethics for computer use are of limited value.
Ultimately, the burden in critical systems rests on nan-owing the technological gap to combat both untrusted
users and trusted abusers, and also on the use of audit-trail analyses seeking to identify both penetrators and
authorized-but-untrustworthy users who cannot be controlled directly.

Detection and Identification of Misuse

The systematic analysis of well-supported Fudit trails appears to be a rapidly growing and very promising field
of endeavor. (Lunt [88] provides a survey of various systems currently in use or under development.) Real-
time identification of likely computer misuse -- including misuses of authority -- will be of enormous
importance in the future. Although it is too early to assess the effectiveness of today s systems, both statistical
and expert-system rule-based approaches are being explored. (Initial efforts in credit card applications have
been relatively useful.)

Real-time anomaly detection is potentially applicable for many of the abuse classes, particularly Classes 2
through 7, as well as in some types within Class 8. Activities of Class 9 would be detectable only when
performed on systems being monitored. (Detection of attempts to compromise the anomaly detection
mechanisms themselves would of course be of particular interest!)

To the extent that accidental misuse may appear similar in nature to intentional abuse, detection of accidental
misuse should also be of interest to audit-trail analysts. The anomaly detection approach is applicable to a
wide variety of computer misuses, not just to violations of security (such as technological gap compronises of
confidentiality, integrity, and availability), but also to illegal, unethical, or simply questionable activities, e.g.,
to monitoring second- and third-gap activities. In some cases it may also be used to detect or even to block
accidental misuses. Interviews with perpetrators reveal that two great fears are unexpected detection of misuse

2BSD is an acronym for Berkeley Software Distribution; UNIX is a registered trademark of AT&T Bell Labomtories.
404

activities and loss of anonymity (see Parker [83), [891). Detection capabilities are extremely important in both

of these cases.

Recovery from the Effects of Misuse

Whether the results of misuse are successful, partially successful, or abortive (from the viewpoint of thc,
perpetrator), recovery must be an integral part of the security process. In general, it should be the first function
applied in order to minimize further loss occurring before other functions have been applied. Efforts have
often been restricted to physical disaster recovery; however, the epidemic of computer Trojan horse and virus
attacks has demonstrated the importance of recovery from misuse techniques that in the final analysis are not
totally amenable to technological means of prevention or detection.

The generally accepted disaster recovery or business resumption planning efforts in systems operation must be
extended to deal with logical disasters as well as physical disasters. One of the increasingly popular ways of
doing this is to create a technological crisis team that can cope effectively with the misuse techniques
discussed here. Clearly the gamut of rmsuse techniques must be considered.

Usefulness of This Classification Approach

The ultimate goal here is to achieve better security against all realistic threats that can be effectively addressed.
Analysis of the abuse cases shows that both accidental and intentional perpetrators tend to cause losses where
controls are absent or weak. It is renerally less fruitful for the rational, intentional misuser to attack where
defenses are strongest; therefore, security requires continually searching for and correcting significant
vuhierabilities -- ideally, before they are discovered by the would-be attackers. In general, it is desirable to
apply well-known controls to protect from well-known threats, according to a standard of due care; the
remaining vulnerabilities should be addressed according to the greatest potential exposure to perpetrations, in
terms of would-be perpetrators with the necessary skills, knowledge, access, resources, and motives. It is
important to remember that defensive measures must withstand misuse by rational, willful attackers, irrational
perpetrators, and accidental misuse; must meet a standard of due care; and be cost-effective with respect to the
threats they address.

It is generally of limited value to attempt to quantify risks in terms of probabilities of attack, because of the
extent and complexity of the combinations of niisnse techniques, the lack of independence among different
variables, the impossibility of predicting perverse human behavior on a small-scale basis in limited
populations, and other uncertainties such as consequential losses. Nevertheless, it is worth noting that among
the collected cases of misuse considered, the most prevalent classes were (in order of decre ising frequency)
active misuse of authority (by far the most common), masquerading, bypassing of intended controls, setting up
subsequent misuses, hardware misuse, passive misuse of authority, and external misuse. The remaining two
classes (8 and 9) were much less evident (although their presence is at the same time harder to detect). Note
that many cases involved multiple classes of techniques.

We hope that our effort will be a significant aid in the identification of material and intangible vulnerabilities,
and will thereby help to increase security coverage by providing a comprehensive methodological approach to
measuring the effectiveness of the policies, systems, security controls, and practices with respect to abuse
techniques.

Conclusions

Because abuses may exploit various combinations of techniques, it is important to visualize the set of
techniques discussed here in the context of complete abusive events. We have considered here most types of
computer system and network misuses that have been exploited. Most of them can also be expected in the
future. As compute' technology becomes more widely demystified, the knowledge of how to perform attacks
will become increasingly widespread. It is thus vital that considerable effort be expended to narrow each of

405

thc three gaps noted above as sources of vulnerabilities. However, the intrinsic limitations on technology and
predicting human behavior must be taken into account, along with the social implications of computer security
(e.g., Denning et al. [871).

There is a significant danger in not being aware of -- and not eliminating or narrowing -- vulnerabilities that
are known only to selected subcultures within the computing community. For example, various computer and
communications vendors were not seriously victimnfied internally by the Internet wonn -- partially because
each had recognized the vulnerabilities and had developed code modifications or administrative practices to
limit the consequences. Unfortunately, this constructive knowledge was not propagated to their customers. A
variety of factors could have been involved -- e.g., vendors may have been reluctant to publicize or emphasize
the vulnerabilities for fear of attack and, even if they had distributed fixes, their customers might have had
little motivation to install those changes (particularly when only object code was available) unless alerted to
the specific dangers -- which would have alerted would-be attackers as well. This type of dichotomy will
continue to exist.

There is a long-standing argument about the extent to which knowledge about abuse techniques should be
made available. On the one hand, there are many system vulnerabilities that can be exploited; thus, there is a
risk that dissemination of such details could stimulate potential perpetrators to engage in harmful acts. On the
other hand, experience shows that ignorance of these techniques by potential victims is even more harmful,
because clever perpetrators generally can gain the knowledge they need -- whereas security administrators and
systems people often cannot do so as easily, or are not trained to anticipate the diverse techniques and
characteristicr of perpetrators. Publication of knowledge about vulnerabilities and attack methods is likely to
have a bene, .,.al net effect by telling security specialists and potential victims what to expect, provided that it
is accompanied by readily implementable countermeasures. Overall, better understanding of the
vulnerabilities, better computer system.q and networks, and Netter use and ad.ministration must go hand in hand.

References

Anderson [80], J.P. Anderson, "Computer Security Threat Monitoring and Surveillance", James P. Anderson
Co., Fort Washington, Pennsylvania, April 1980.

Bell and La P , !76], D.E. Bell and L.J. La Padula, "Secure Computer System: Unified Exposition and
Multics Interpre, 1", ESD-TR-75-306, MITRE Corp., Bedford, Massachusetts, March 1976.

Biba [75], K.J. F "integrity Considerations for Secure Computer Systems", Report MTR 3153, MITRE
Corp., Bedford, Massachusetts., June 1975.

Clark and Wilson [87' D. Clark and D. Wilson, "A Comparison of Commercial and Military Computer
Security Policies", Ft. 1987 IEEE Symposium on Security and Privacy, Oakland, California, April 1987,
pp. 184-194.

Cressey [71], D.R. Ci, ,sey, "Other People's Money -- A Study in the Social Psychology of Embezzlement",
Wadsworth Publishing, Belmont CA, 1971.

Denning and Neumann [85], D.E. Denning and P.G. Neumann, "Requirements and Model for IDES -- a
Real-Time Intrusion-Detection Expert System", August 1985, Computer Science Laboratory, SRI
Intemational, Menlo Park, California.

Denning et al. 187], D.E. Denning, P.G. Neumann and D.B. Parker, "Social Aspects of Computer Security",
10th National Computer Security Conference, NBS, Gaithersburg, Maryland, September 1987.

Glossary' 1881, National Computer Security Center, "Glossary of Computer Security Ternis", NCSC-TG-004,
Version-l, 21 0 'ober 1988.

Lipner [82], S.B. Lipner, "Non-Discretionary Controls for Commercial Applications", Proc. 1982 IEEE
Symposium on Security and Privacy, 26-28 April 1982, pp. 2-10.

Lunt [88], T. Lunt, "Automated Audit Trail Analysis and Intrusion Detection: A Survey", 11th National

406

Computer Security Conference, Baltimore, Maryland, 1988.

Neumann [781, P.G. Neumann, "Computer Security Evaluation", AFIPS Conference Proceedings (National
Computer Conference), AFPS Press, January 1978, pp. 1087-1095. (Reprinted in Rein Turn, cd., Advances
in Computer Security, Volume 1, Artech House, 1981.) (The article contains references to earlier work by
Bisbee, Carlstedt, Hollingworth, et a!., at ISI.)

Neumann [88], P.G. Neumann, "The Computer-Related Risk of the Year: Computer Abuse", 3rd Annual
Conference on Computer Assurance (COMPASS '88), National Bureau of Standards, 28-30 June 1988, pp.
8-12 (IEEE 88CH2628-6).

Neuroann [89], P.G. Neumann, "RISKS: Cumulative Index of Software Engineering Notes -- Illustrative
Risks to the Public in the Use of Computer Systems and Related Technology", ACM Software Engineering
Notes 14 1, January 1989, pp. 22-26. (This index includes highlights from the on-line ACM Forum on Risks
to the Public in the Use of Computers and Related Systems.)

Morris and Thompson [79], R. Morris and K. Thompson, "UNIX Password Security: A Case History",
Comm. ACM 22 11, Novernber 1979, pp. 594-597.

Parker [72], D.B. Parker, "Computer Abuse", Stanford Research Institute report, 1972.

Parker [76], D.B. Parker, "Crime by Computer", Charles Scribner's Sons, New York, 1976.

Parker [83], D.B. Parker, "Fighting Computer Crime", Charles Scribner's Sons, New York, 1983.

Parker [891, D.B. Parker, "Criminal Justice Resource Manual on Computer Crime", National Institute of
Justice, U.S. Government Printing Office, WashiLgton DC, 1989.

Parker and Dewey [78], D.B. Parker a__nnd R. Dewey, "A Guide to EDP and EFT Security Based on
Occupations", Federal Deposit Insurance Corp. Division of Management Systems. Washington DC, 1978.

Rochlis and Eichin [89], J.A. Rochlis and M.W. Eichin, "With Microscope and Tweezers: The Wonn from
MIT's Perspective", Comm. ACM 32 6, June 1989, pp. 689-698.

Seeley [89], Donn Seeley, "Password Cracking: A Game of Wits", Comm. ACM 32 6, June 1989, pp.
700-703.

Spafford [89], Eugene H. Spafford, "The Internet Wonn: Crisis and Aftermath", Comm. ACM 32 6, June
1989, pp. 678-687.

Stoll [88], Clifford Stoll, "Stalking the Wily Hacker", Comm. ACM 31 5, May 1988, pp. 484-497.

TCSEC [85], "Department of Defense Trusted Computer System Evaluation Criteria", DOD 5200.28-STD,
December 1985 ("Orange Book", "TCSEC").

TCSEC-TNI [87], "Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria",
NCSC-TG-005 Version-i, 31 July 1987 ("Red Book", "TNI").

Thompson 184], K. Thompson, "Reflections on Trusting Trust" (1983 Turing Award Lecture),
Communications of the ACM 27 8, August 1984, pp. 761-763.

Young and McHugh [87], W.D. Young and J. McHugh, "Coding for a Believable Specification to
Implementation Mapping", Proc. 1987 Symp'osium on Security and Privacy, IEEE Computer Society,
Oakland, California, April 1987, pp. 140-148.

407

T RiA-C K

INTEGRATION OF SECURITY INTO THE ACQUISITION LIFE CYCLE

William Norvell, Ph.D.
Hughes Aircraft Company

P.O. Box 92919
Los Angeles, CA 90009

Abstract

The insecurity of many deployed systems ar-gues the need to
examine and improve the two Department of Defense (DoD) processes by
which secure systems are defined, developed, and deployed. One
process - accreditation - is driven by regulations and becomes, in
practice but not by intent, the process of meeting regulations; the
other process - acquisition - scarcely involves attention to
security considerations. In general, these processes are conducted
in parallel and independently of each other. The net result is that
while some security results from the accomplishment of the
accreditation and acquisition processes, many security requirements
are not met.

The solution is to integrate accreditation activities into the
acquisition process and to ensure that all security requirements are
spccifld inL the functioznal baseline fur design and test. This
solution forces security requirements, like any other set of system
requirements, to be collectively treated "top-down" and addressed in
each phase of the acquisition life cycle - concept exploration
through operations support.

Deployed Systems Ar,• Not Always Secure

Recent history offers several tragic examples of systems that
did not meet security requirements.

Security Com2romise. On May 19, 1979, John A. Walker was
arrested attemping to pass 129 classified documents to Aleksey
Tkachenko, a Soviet embassy official. For 20 years his gang had
delivered to the KGB the Navy's sensitive submarine secrets. [1]
Today, the Soviet Akula (Russian for shark) is the best submarine in
the world and is grudgingly referred to as the "Walker-class"
submarine. [2]

Security Integrity. On July 3, 1988, the Aegis system on the
u.S.s. V7nc-- ennes could not distinguish the difference between a 62
foot F-14 Tomcat and a 177 foot Airbus on a regularly scheduled
flight from Bandar Abbas to Dubai. The Iran Air Airbus was on
course in a prescribed 20-mile wide air corridor, 27 minutes late,
and the pilot's last words on civilian radio frequency were, "I am
at one--two-zero [12,000 feet], climbing to one-four-zero [14,000
feet]." [3)

Security Denial of Service. On May 4, 1982, during the Falkland
Islands conflict, a software bug in the frigate Sheffield's air

408

defense system jammed the radar and could not pick up an incoming
Exocet missile when the Sheffield's captain, Sam Salt, was on a
communications hookup to naval headquarters. The unfortunately
timed call allowed the craft to take a direct hit. [4]

The DoD processes that define, develop, and deploy systems to

meet security requirements must be improved.

Accreditation Is a Regulation-Meeting Process

The first process, accreditation, is defined in DoD Directive
5200.28, Security Requirements for Automated Information Systems
(AISs) [5], and is implemented in three key military regulations:

1) AFR 205-16, Air Force Automatic Data Processing (ADP)
Security Policy, Procedures, and Responsibilities [63

2) AR 380-380, Army Automated Systems Security [7]
3) OPNAVINST 5239.1A, Navy ADP Security Program [8]

Each regulation specifies accreditation activities, illustrated
in Table 1, that culminate in obtaining the approval of a Designated
Approving Authority (DAA) to process sensitive information in that
authority's operational environment.

Talle I. OPNAVINST 5239.iA Accreditatio-I Support . cumcntatIen

ADP Security Officer and System Previous System and Network
Security Officer Information Accreditations

ADP Equipment Identification Security Directives Compliance
and Location Security Test and Evaluation

Interconnection Line Diagrams (ST&E) Test Plans
Data Percentages versus Level ST&E Test Reports
and Type TEMPEST Accreditation

Operating System Description Physical Accreditation
Application Software Description Contingency Plan
Security Mode of Operation Contingency Plan Test Results
ADP Security Operating Procedures Activity ADP Security Plan
Risk Assessment Other Documentation as Required
Countermeasure Descriptions by the ADP Security Officer

Government directives requi-e that these activities be
"considered throughout the life cycle of an AIS from the beginning
of concept development until replacement." [5] But, in practice,
accreditation is normally performed by the Government in an
environment independent of system development. It becomes, even if
not by the intent of Directive 5200.28 and military regulations, a
document-producing process dedicated to convincing the DAA that the
system should be accredited. That is regrettable, because the
results of most accreditation activities could contribute directly
to the definition, development, and deployment of a secure system.

409

The Three Mile Island nuclear accident is an appropriate
example of the independence of the accreditation and the acquisition
processes. Plant management's probabilistic risk assessment, with
its event and fault trees, was ignored by operations personnel; but
the assessment described quite precisely the scenarios that led to
the radiation leakage. [9]

The Acquisition Life Cycle Does Not Properly Address Security

Security issues are rarely addressed in the second process,
acquisition, illustrated in Table 2. There are but nine references
to security and three references to threats in the eight key DoD

Table 2. The Acquisition Life Cycle Rarely Addresses Security

MAJOR PRODUCTS, REVIEWS, AUDITS, AND REFERENCES TO SECURITY

Conceptual Mission-Need Statement - Discuss Threats
System Concept Paper - Describe Threats
Operational Concept Document - No Security
Other Conceptual Studies - No Security
Test and Evaluation Master Plan - No Security
System Engineering Management Plan - No Security
System Requirements Review - No uecurity

Definition Decision Coordinating Paper - Describe Threats
System/Segment Specification - Specify Security
Design and Compromise Requirements

Interface Requirement Specification - No Security
Software Development Plan - Specify Plan for

Implementing Security Requirements
Configuration Management - No Security
System Dasign Review - Optional Review of Security

Management
Software Specification Review - No Security

--
DeveloRment Development Specifications - No Security

Product Specifications - No Security
Software Quality Assurance - No Security
Preliminary Design Review - Review Software Security
Critical Design Review - Review Hardware Security
Design

Test Readiness Review - No Security
Functional Configuration Audit - No Security

Test Development Test and Evaluation Results - No Security
Operational Test and Evaluation Results - No Security
Physical Configuration Audit - No Security
Formal Qualification Review - No Security

Operation Engineering Change Reviews - No Security

410

directives, instructions, and implementing standards. Most are
inadequate and do little to force the Government and development
ccntractors to properly address security during system definition
and development. Exceptions are the two recent Data Item
Descriptions (DIDs) for the System/Segment Specification and the
Software Development Plan which were released with DoD-STD-2167A,
Defense System Software Development. [10, 11, 12]

Major DoD Policy Directives Do Not Mention Security

DoDD 5000.1 and DoDD 5000.3, Defense Acquisition Programs and
Test and Evaluation, do nct address security. DoDI 5000.2, Major
System Acquisition Procedures, addresses only Defense Intelligence
Agency (DIA) validated threat discussions and threat descriptions
required for three documents: the Mission-Need Statement (MNS), Clie
System Concept Paper (SCP), and the Decision Coordinating Paper
(DCP). There is no reference to security in the Test and Evaluation
Master Plan (TEMP). [13, 14, 15]

Key DoD and Military Standards Scarcely Address Security

The system engineering standard, MIL-STD-499A, does not refer
to security. There is no reference to security in the sections
devoted to program planning and control, the System Engineering
Management Plan (SEMP), and the acquisition process. [16]

In the software engineering standard, DoD-STD.2167A, security
is mentioned: "the contractor shall coiniply with the security
requirements specified in the contract" and "project characteristics
may include security considerations in the operational environment."
The DID for the System/Segment Specification states that one must
"specify security requirements basic to the design of the system
and security requirements necessary to prevent the compromise of
sensitive information or materials." The DID for the Software
Development Plan states that one "shall describe the contractor's
plans for implementing the security requirements of the contract."
[10, 11, 12]

In the original version of DoD-STD-2167 there is a DID for the
Operational Concept Document (OCD). The purpose of the OCD is to
"represent a consensus among development, support, and user
agencies, and contractors on the operational concept of the system
system being developed." The OCD does not mention security. [17]

The software quality assurance standard, DoD-STD-2168, does not
refer to security. [18]

The system, software, and hardware review and audit standard,
MIL-STD-1521B, addresses security only in relation to three reviews
and audits. Security is cited as an example of a system engineering
management activity that might be reviewed at the System Design
Review; software security is identified as a Preliminary Design
Review item ("an identification of unique security requirements and
a description of the techniques to be used for implementing and

411

maintaining security within the Computer Software Configuration Item
Ehall be provided"); and the hardware detailed security engineering
design is cited as a Critical Design Review item. [19]

In the specification standard, MIL-STD-490A, security markings
are mentioned: "Specifications containing classified information
shall be marked and handled in accordance with current security
regulations as specified in the DoD 5220.22-M." [20 and 21]

Confusion for the System Developer

In general, the first process, accreditation, is independent -
not tied to system definition, development, and test. Thus, the
results of the risk assessments, ST&E, contingency planning, and
other accreditation activities, see Table 1, do not influence
definition of the system's functional baseline or influence
subsequent development and product specifications. In the second
process, acquisition, security requirements are not collectively
addressed and are barely mentioned in relation to acquisition life
cycle activities and the associated documentation.

The result is confusion for the system developer, and as a
consequence a "bottom-up," or by-regulations implementation of
security (involving, e.g., the use of Orange Book certified software
from the Evaluated Products List, certified hardware from the
Preferred Products List, cryptographic equipment from the Endorsed
Cryptographic Products List, and shielded enclosures in accordance
with NACSEM 5204) rather than a "top-down," or by-requirements
implementation. After deployment the same systems fail, not because
they do not meet regulations but because they fail to meet
unspecified operational requirements. [22, 23, 24]

The system developer should therfore appreciate the limitations
of regulations:

1) Security regulations do not do the obvious. Computer
Security (COMPUSEC) regulations address security classTfication and
compartmentation and usually do not address security loss of
integrity, security destruction, and security denial of service.
Communication Security (COMSEC) regulations do not address the
damage caused by the high altitude nuclear explosion electromagnetic
pulse (EMP) effect on unprotected electronic components. TEMPEST
regulations do not address audio frequency compromise below 1 kHz.
[24)

2) Security requlations address only known threats. There are
security regulations for known threats with known security counter--
measures. There are few security countermeasures and almost no
security regulations for the newer and more sophisticated attacks,
such as Trojan horses, trap doors, viruses, hardware spoofs, and
password grabbers. (25]

3) Security regulations degrade performance. Table 3 lists a
few of f-h-e hey security regulations and guidelines that drive the

412

Table 3. Key Security Regulations and Guidelines

AFR 205-16 DoD 5220.22-M NACSI 4009
AR 380-380 DoD 5220.22-R NACSI 5004
CSC-STD-003-05 DoDD 5200.28 NACSI 5005
DCID 1/16 EO 12356 NACSIM 5203
DIAM 50-3 FIBS PUB 31 OMB Circular A-71
DIAM 50-4 FIBS PUB 87 OPNAVINST 5239.1A
DoD 5200.1-R NACSEM 5201 NCSC-TG-005
DoD 5200.28-M NACSEM 5204
DoD 5200.26-STD NACSEM 7002

development of secure systems. There are major human overheads in
procedural and administrative controls as well as COMPUSEC and
COMSEC overheads. The latter include memory, disk, and processing
system resources and associated decrease of system response due to
identification, authentication, audit, erasure of residue storage,
etc. "A totally secure system cannot operate," states Donn B.
Parker, a computer security expert at SRI International. [25)

4) Security regulations are not security requirements. In
general, security regulations address only security classification
and compartmentation. Also, security requirements differ as a
function of a system's operational environment. it is u.ikely that
any system has security requirements that correspond one-to-one with
each of the 27 Trusted Computer Security Evaluation Criteria (TCSEC)
for a given Orange Book division and class. For example, there are
not the same discretionary access control, identification and
authentication, and audit requirements for a guarded vault as there
are for an aircraft or for an unmanned space platform. [22]

Integrate Security into the Acquisition Life Cycle

The solution to the problems reviewed is to integrate
accreditation activities into the acquisition process and to ensure
that all security requirements are specified in the functional
baseline for design and test. This solution forces security
requirements, like any other set of system requirements, to be
collectively treated "top-down" and addressed in each phase of
the acquisition life cycle - concept exploration through operations
support.

AFR 205-16 contains a representative example of accreditation
activities that can contribute directly to the realization of
acquisition objectives, see Table 4. Such activities must always
be tailored to system and security requirements and the appropriate
level of trust. For higher levels, there ara Orange Book and such
other security assurance activities as those listed in Table 5. [22]

In time, enhancements reflecting this philosophy will be made.
Accreditors will become more involved with acquisition, and
system developers will follow more meaningful, DoD directives,

413

Table 4. AFR 205-16 Accreditation Activities

PHASE ACTIONS REQUIRED

Conceptual Identify and define general security requirement
Perform sensitivity assessment.
Initiate risk assessment.
Initiate economic assessment.
Define functional security requirements including
accuracy and validity.

Translate functional security requirements to
technical requirements.

Approve functional security requirements.
Identify required security management actions, for

example, required certifications and approval.
Develop detailed plans to satisfy security
requirements.

Review all aspects of security.
Develop a security requirements baseline.

Definition Develop detailed system or subsystem security
specifications.

Review and update sensitivity, risk, and economic
assessments.

Address results of risk analysis in design of
security measures.

include ST&E concepts and plans.
Review risk analysis.
Review and approve security specifications as part

of the overall specifications.
Review ST&E plans.

Development Review security specifications, ST&E plans, and
security aspects of Operator and User Manuals.

Develop and test security measures.
Review program development to ensure compliance
with security specifications.

Update and approve ST6'E evaluation plans.

Test Test security measures.
Complete ST&E.
Certify that the system adequately addresses
security requirements.

Approve for operational use.

Operation Consider security impact of all changes.
Consider necessity and sufficiency of the existing
security measures.

Modify system to maintain cost-effective security.
Reaccomplish risk analysis.
Reapprove system.

414

Table 5. Additional Security Assurance Activities

Clandestine Vulnerability Analysis
Formal and Informal Security Policy Models
Formal Top and Low Level Specifications
Formal Verification
Covert Channel Analysis
Penetration Analysis
Trusted Facility Management
Security Configuration Management
Trusted Recovery
Trusted Distribution

instructions, and regulations.

There Are Four Major Benefits

1) Security requirements become part of a functional baseline.
A systems approach is taken to the definition of a security
requirements baseline. The security thr,!ats and the preliminary
security operational requirements are specified in the MNS, SCP, and
DCP. As appropriate, security threat and security operational
requiremeht trade-offs are made in the sensitivity, risk, and
eccUlooulic assassmcnts. The security operations concept and the
security operational requirements are specified in the Operational
Concept Document.

All security requirements including security operational
requirements, compliant regulations, and approved waivers are
specified in the System/Segment Specification and, if appropriate,
in the Interface Requirements Specification. These documents become
the functional baseline for subsequent Formal Qualification Review
(FQR), and Development and Operational Test and Evaluation (DT&E and

OT&E).

2) A systems approach is taken to secure development. Security
is implemented by a single process. Accreditation, security
development, and security test activities are addressed in the SEMP
and TEMP. Security requirements are imposed and flcw-down to all
developmental and test activities, and are specifically addressed in
the software requirement specifications, hardware development
specifications, product specifications, software test documentation,
and system test documentation.

3) Accreditation activities contribute to the acquisition life
cycle activities. Accreditation is no longer an independent, merely
document-producing process. System development activities are
integrated. The results from risk assessment, contingency planning
and test, ST&E, and all other accreditation activities contribute
to acquisition life cycle activities.

415

4) Security requirements are met. Security requirements,
security design, and security development are verified from phase to
phase of the acquisition life cycle by established acquisition
procedures that include requirement traceability activities,
quality assurance activities, and formal design reviews. In a
similar manner, the formal test reviews and the activities normally
conducted toward the end of the acquisition life cycle ensure that
security r-quirements have been met in the development phase. Such
validation includes FQRs of configurations items and the various
DT&E and OT&E acceptance tests.

Historical Footnote

Confusion concerning security requirements is not new. In
World War II an appropriate lesson was learned. Let us try now not
to forget it. Anti-aircraft guns were placed on Liberty ships as a
security measure, to counter the threat of hostile aircraft.
Several months later, the guns on Liberty ships in the Mediterranean
were removed because they did not meet the War Department's
requirement for the destruction of enemy aircraft. Shortly after,
several ships were sunk by hostile aircraft. Someone forgot the
real requirement for anti-aircraft guns. (26]

References

[1] "'Very Serious Losses'; as the Navy Spy Scandel Spreads,
Officials Assess the Damage," Time, June 17, 1985.

[2] "Strong and Silent - Can a new U.S. Sub Compete with Moscow's
Best," Newsweek, September 12, 1988.

[3] "High-Tech Horror; How a $600 Million System Figured in a
Ghastly Accident," Time, July 18, 1988.

[4] "Hard Sell: in Defense of the Exocet," Time, September 24,
1984.

[5] "Security Requirements for Automated Information Systems
(AISs)," DoDD 5200.28, March 21, 1988.

[6] "Department of the Air Force Automatic Data Processing (ADP)
Security Policy, Procedures, and Responsibilties," AFR 205-16,
August 1, 1984.

[7] "Department of the Army Automation Security," AR 380-380, April
13, 1987.

[8] "Department of the Navy Automatic Data Processing Security
Program," OPNAVINST 5239.1A, August 1, 1983.

[9] S. Levin, "Probabilistic Risk Assessment: Identifying the Real
Risk of Nuclear Power," Technology Review, February-March 1984.

416

Jm

(10] "System/Segment Specification," DI-CMAN-80008A, February 29,

1988.

[11] "Software Development Plan," DI-MCCR-80030A, February 29, 1988.

[12] "Defense System Software Development," DoD Standard 2167A,
February 29, 1988.

[13] "Major and Non-Major Defense Acquisition Program," DoDD 5000.1,
September 23, 1987.

[14] "Defense Acquisition Program Procedures," DoDI 5000.2,
September 1, 1987.

[15] "Test and Evaluation," DoDD 5000.3, March 12, 1986.

[16] "Engineering Management," MIL-STD-499A, May 1, 1974.

[17] "Operational Concept Document," DI-MCCR-80023, June 4, 1985.

[181 "Defense System Software Quality Program," DoD Standard 2168,
April 29, 1988.

[19] "Technical Reviews and Audits for Systems, Equipments, and
Computer Software," •. i Z D e , 1985 tQR.

[20] "Specification Practices," MIL-STD-490A, June 4, 1985.

[21) "Industrial Security Manual for Safguarding Classified
Information," DoD 5220.22-M, February 1985.

[22] "DoD Trusted Computer System Evaluation Criteria" DoD 5200.28-
STD, December 26, 1985.

[23) "Information Security Products and Services Catalogue," NSA
Quarterly (January, April, July, and October).

(24] "RF Shielded Enclosures for Communications Equipment," NACSEM
5204, Appendix B, October 30, 1964.

[25] "Is your Computer Infected? Systems fall to silent and
contagious killers," Newsweek, February 1, 1988.

[26] "Measures of Effectiveness," SSM665 System Analysis Lecture
Notes, USC, November 1979-January 1980.

417

Security Assurance through System Management

David Juitt
Secure Systems

Digital Equipment Corporation
85 Swanson Road

Boxborough, MA 01719-1326
Internet: juittCa'ultra.enet.dec.com

Abstract

This paper details an ongoing advanced development effort within Digital Equipment
Corporation to study security aspects of computing across a world-wide distributed
environment and how they relate to conducting business safely. Recent results of
the project are a security standard that was implemented throughout Digital's in-
ternational computer network and a toolset for maintaining compliance with that
standard. The toolset assists in the management of security-sensitive issues and
provides a framework for delivering extended security management solutions in the
future.

Introduction
Computer security in the commercial area is a widely discussed topic these days as
companies strive to provide a safe method of doing business. As computing systems
change, and corporations begin to take greater advantage of the latest advances in
distributed system technology, a need exists to provide a more secure distributed
environment. Efforts are under way at Digital to identify security-related issues
that may affect methods of operation in our own distributed network, which consists
of greater than 35,000 nodes located throughout the world.

Throughout both industry and academia, the past year has brought a rash of inci-
dents that have underscored the inherent security vulnerabilities of large distributed
networks. These incidents have brought the issue to light that conducting busi-
ness over distributed networks often presents unanticipated risks that can manifest
themselves in some future loss. These risks can often be addressed through an or-
ganizational standard for computer security. Without this formal standard, complex
security decisions are inevitably left up to the individual, which often results in
vulnerabilities open to exploitation.

The Need for a Security Standard
There is a need to define what computer security means to an organization. A
corporate decision to rely on information systems as a way of conducting business
implies the need for providing a corresponding security standard that covers those
resources. The intent of such a security standard i:; to identify types of company data
and information that must be protected, the degree of protection required, and the

C copyright © 1989 by Digital Equipment. Corporation
All Rights Reserved.
The following are trademarks of Digital Equipment Corporation:
VMS, UILTRIX, DECNET, DECwidows, VAXcluster.

418

Ssystems on which the data 3nd information are located. The standard should help
to achieve an equilibrium between providing access and capabilities to users and
tightly controlling usage of security-sensitive information. This standard presents
the definition of what security is in an organization.

The effort to develop a comprehensive security standard is as important as the efforts
spent achieving the operational goals of the organization. It is critical that the
security standard cover all environments and operations that are available in the
distributed computing facility. Only after a standard is in place can the introduction
and maintenance of compliance be effective.

Digital initiated an effort to collect information and define a computer security stan-
dard during the Spring of 1988. The effort involved a large number of participants
from widely diversified areas of the organization. Over a period of about six months,
input was collected and reviewed by a policy task force. The resulting document stood
as the standard for computer security in Digital. The standard was then mapped
into operating system terminology with a number of procedures defined that would
allow a system manager to implement the policy.

The Need for Compliance
Once a codification of securit.y management techniques was assembled, the design of
a method to check compliance became possible. The actions necessary to ensure that
the standard was being adhered to needed to be clearly defined. One requirement
was to analyze ech specLif-lc operatinrg system a-A ;AiNfyf . . security-redevant

issues of system management, then to isolate the set of security-related functions.
During the course of defining those actions and needs, it became obvious that in some
cases day-to-day attention was needed. It also became apparent that a standard set
of tools was needed for continual security standard maintenance.

Operating systems such as VMS and ULTRIX contain many system features and
parameters that, if set and maintained properly, can offer considerable resistance
to security threats. System managers may be unaware of these features or the role
that these features play in curity. Requiring a system manager to learn many
different interfaces greatly complicates what is often a new task.

Close examination showed the need for network secu dty was increasingly addressed
by good system security. The very process of securing individual nodes, which evolve
into large networks, has helped begin to merge the past disjoint disciplines of net-
work and system security. When this method is extended, along with the issue
of securing network traffic, control of our distributed computing resources can be
maintained. This examination and analysis of outstanding needs shifted the project
toward attempting to develop a loerfly based solution to the problem of security
standard compliance.

Development of a Toolset
After the security standard was defined, and its impact understood, we designed a
toolset to ease the system managers' job of maintaining compliance, it was decided
that an easy-to-use, highly reliable s,-. -Ion was needed by the already overworked
system managers. Some of the goa) oi the toolset were:

419

"* Consistency of use across Digital's internationally distributed computer network.
"* Implementation in a high-level programming language. Past experience had

shown that command scripts could be modified too easily, thus reducing the
integrity of the results.

" A centrali_,d rcporting feature to address the problem of auditing compliance.
In this manner, the tools could provide information that would ensure that all
nodes in the network were conforming to the security standard.

" A remote testing feature that would allow for quick placement of future enhance-
ments to security testing.

A software toolset was developed that comprised an extensible framework, a security
daemon and an adaptable interface capable of greatly assisting a system manager
in the task of being a security. manager. The security tests performed are defined
by the Digital security standard. The framework permits locally developed tests to
be easily integrated into local procedures. The toolset provides a clearly defined,
two-level reporting system for compliance auditing from the viewpoint of a network
manager. The reports generated can be used locally to manage the system, or a
separate condensed copy of the results can be centrally collected. The problem of
maintaining the integrity of the collected data was addressed.

At the highest level the toolset provides functions to perform:
"* Scheduling

"* Execution of tests
"* Selected lockdown and
"* Reporting

The scheduling functions are provided by the security daemon. The daemon spawns
processes that are dispatched into the system to perform a single security test. The
tests that are executed by the toolset examine the attributes of five major subsystems
within an operating system:

"* File System

The File System tasks are geared toward detecting situations when critical sys-
tern files may not be adequately protected. The results of the tests may require
changes restricting the access to system directories. These changes should be
transparent to ordinary users. The tests also require users to limit the openness
of their own directories by storing publicly accessible files in public or project
libraries or in specially created and protected user directories.

"* Accounts

The purpose of the Account subsystem is to ensure that: (1) only bona fide em-
ployees and contract personnel are given accounts and (2) the level of access pro-
vided matches their job responsibilities. These checks, along with good password
management (password length and expiration time) can reduce the vudnerability
of systems to penetration.

420

" Network

The Digital network has traditionally configured its network objects to pro-
vide relatively open access. The Network subsystem requires the elimination
of nonessential network objects and the restriction of others to controlled use.

" Startup

The system generation security parameters available in VMS define the thresh-
olds at which a given system will decide: (1) that a breakin attempt is under
way and (2) the nature of the evasive action to take. The Startup subsystem
checks for minimal levels of these and related security parameters.

" Security Auditing

Auditing is a critical element in the plan for a secure environment. Only if there
are regular reports of significant security-related events, and these reports are
reviewed by system owners and managers, can possible penetration attempts be
detected and investigated. This subsystem ensures that the correct set of events
are enabled to be audited.

Selecting Tests

The menu-driven, DECwindows compatible, user interface allows the system man-
ager to establish one or more groups of tasks to check the security of the system.
These tasks are assigned to named groups that create a team of system security
management agents. The granularity of testing can be assigned in any or all of the

* A single autonomous task in a system

* A group of such tasks, spread across subsystems

* One or more complete, independent subsystems
* The full complement of subsystem analyses

The results of each group of initiated tests are stored in a local database file. This
file is also used for the synchronization required by groups of tests that are executed
ir, a VAXcluster environment.

Once the toolset detects a violation of the security standard a report is generated
detaiiing the area of non-compliance. If desired by the system manager, a command
procedure can also be generated containing the comnnands to adjust system param-
eters automatically such that compliance with the established security standard is
enforced. These cowmhand procedures are known as lockdown files, named after the
function they perform.

Report collection is performed after all tests complete execution. The daemon as-
sembles a complete report from the individual results of each test. Test processes
are responsible for returning status codes and storing report fragments in files. The
daemon then mails a copy of the full report to the system manager. A second level
of reporting is available for use by a network manager to collect statistical data
regarding compliance throughout the network.

421

Future Directions
The toolset as presented above represents an extensible framework on which addi-
tional security solutions can be based, 'Tbols that handle alarm interpretation and
intrusion detection are future possibilities. Image authentication management to
prevent the unauthorized modification of system images is another area that, can be
explored. There is still a need to address the difficult security problem associated
with the nifiuse of privilege that is commonly caused by uninformed users.

Accomplishments
This project was able to help identify and isolate the areas of system management
that are security sensitivc. It has also illustrated the importance of developing a
security standard before the implementation of security tools. The security standard
definition and toolset framework presented in this paper allow for new extensions to
take advantage of additional security-enhancing features of operating systems and
network software as they become available.

422

A SYSTEMATIC APPROACH TO SOFTWARE SECURITY EVALUATIONS*

-Mary Frances Twofanos
Data Systenis T-escarch and Developliient

Martin Marietta Ene'rgy Systnems, Inc.
P.O. Box 2003

Oak Ridge, TN 37S31-7346

Ahst ract

A security certification of the word processing and connuniucaztiwis software to be used
on the U.S. Department of State's computer systems was carried out. A novel approach to
comiputer security evahlation and testing based on National Institute of Stanlards and Tech-
nology criteria was used. Software controls were evaluated and poilits of vulncrability were
identified. This test was of a stand -alone system but could be ap)plied to all levels of com-
puting.

Iitrodactioii

The issues of comptiter-system security and security evaluations haye b'come inCcreas-
ingly important in recent years, particularly for government systems containing sensitivedal.ita. 11, 21 1] J. iit "'I i e forzl .. ,~ic., a •zJ h tt,*,)rla o,• `-,-c rty, T e, - 0... . ".... , \ . .. ,!_. .• .- [..

ti,2]Th JI A, -O Ii(Ai* 1eut el1-og (I.- Oi"-,-T) locate(l at tile
Oak Ridge National Laboratory (ORNL). addresses sonie of these issues as part of its ni-
sion. JCIST recently performed a security certification of the software to be used on 'Wang
VS-series computers in the U.S. Depal tment of State's (DOS's) Foreign Affairs Information
System (FAIS) Early Operational Capability (EOC). This certification was arranged through
an interagency agreement between DOS and the U.S. Department of Energy (DOE). Tht
purpose of this certification was to determine the extent to which FAIS software complies
with the security requirements mandated by DOS when it is used with specified versions of
the vendor operating system, utilities, and application software. This- piper describes the
methodology and approach used by JCIST to conduct this certification.

The security certification effort. was composed of three parts (basic, detailed, and peiie-
tration testing) as outlined in Guidelines For Computer Security Certification and Accred-
itation. [1] The basic evaluation examined the system and identified inherent, security ex-
posures and controls. This phase focused on the system design to determine whether it. was
complete. The basic evaluation set. the stage for detailed evaluation, in which the adequacy
of the controls was tested on an actual system. The detailed evaluation systematically tested
the coverage of each exposure by its associated controls.

Both the basic and the detailed evaluations focuse(d on the activitiies perforii(ed iy a Ic-
gitixuate FAIS user exercising the FAIS functions and other part.s of the Wang systeun in nor-
mal ways. Vulnerability to attacks by outsiders or attempts by FAlS users to circumvent the
systemns security in nontraditional ways were addressed by penetration testing. Penetration
tests verified the adequacy of system controls for protecting security features within the sys-
tenm and determined whether the system is immune to violation frlom the outside.

* The subinitted manuscript, prepared for the U.S. l)ep rtitcnt of State, has been autiIut ed by a couitiazato of" t I i .S. Govcrn

roent, nndar U.S. Department of Energy contract i)L-AC05 840(21.ltx with Maitit1 Maric.t La Fienigy Systets Itc., accothItingly, the

U.S. Government retains a nonexclusive, royalty-free license to publ ish ur teputtiice tit, pujthdshe'd ftrln of this cout rit tion, or allow

otliers to do so, for U.S. Gouvernitetnt purposes.

423

This approach was effective for two reasons. First, the bystem was reduced to a set of
conceptually smaller systems, each of which performed one function. As the thie analysis pro-
gressed from general to detailed, the analyst considered smaller, more understandable parts
of time system. Second, tme context of each function was readily apparent, giving time analyst
a framework within which to judg, vulnerability at each point in the system.

Overview of FAIS

The 10-year FAIS program is the strategy adopted by DOS to iml)lement a computer
architecture that integrates office automation, data processing and telecomnnmmications for
its offices throughout the world. Thus, FAIS is the DOS architecture for classified informna-
tion processing. EOC is the first implementation of individual elements of FAIS in the live
DOS classified environment and represents an operational test of both the systeni concept
and the FAIS software suite. The EOC phase uses existing DOS computers and off -the-shelf
software when possible; customized software provides additional functionality.

Most DOS persommnel did not have direct automated capabilities to send and receive for-
meal or informal, mail from their .korkstations. Access to the data bases containing official
documents was also limited. FAIS provides electronic capabilities to most users who were
previously isolated on stand-alone minicomputers and office automation systems. Services
provided by the system include word processing, local filing and retrieval, interorganizational
electronic mail, communications, logon to DOS data bases, a telegraphic interface, and secu-
rity features.

Evaluation Methodologies

Basic Evaluation

'The basic evaluation methodology applied to FAIS EOC was first proposed by Pfleeger
and Pfleeger. [2] This section briefly describes each of the steps that were taken by JCIST
in applying the basic evaluation methodology. The purpose of this analysis was to verify the
existence of controls and to rate each control according to its potential effectiveness.

The basic evaluation examined the FAIS EOC system design documentation to deter-
mine if effective controls were included to prevent exploitation of security exposures. This
cvaluation methodically determined the potential exposures, associated controls with expo-
sures, and assessed the effectiveness of the controls. The FAIS system is is used primarily
for preparation and transnmission of official documents. Therefore the basic evaluation Cm-
phasizes documents found in the system and the transactions performned on them. The basic
evaluation was performed using only the system documentation to determine whether (1) at
least 01e control was available fo r every identified exposure and (2) the controls, as designed,
were adequate to prevent exploitation of the exposure.

Deternminaitiou of Transaction Flows. The first step was to determine the types of data
flowing through the system. A comnplete list of data items was generated from the system
documnentation. Several assumptions made it possible to reduce this large list to nine data
object types without coinpronuising the security analysis. The basic evaluation considered
the following nine major data types: telegram, informal message, action memorandum, brief-
ing memorandum, informunation memorand(um, memorandum (other), issue pap)er, envelope,
and WP Plus docmnnent.

The next step was to define all possible transactions or operations that could be per-
formed on the data objects. Time following transactions were identified: create, revise, clear
aid approve, view, print, coJ)y, transmit, delete, and determine the existence of. A traisac-
tioim flow diagram was drawn for each combination of data object and traiisaction, depicting
the movememit of the data object through all modules within the system that could affect it
(Fig. 1).

424

USLR US.R CLEARANCE DISTRIBUTION MAIL
AUTHORIZATION AUTHORIZATION DATA BASE SUBSYSTEM MAIL

FObR LOO BOXES -

2 6 9 16 14 15

V -
3(-;3 3 EIELwOPE 8 CLEARANCE 13 DISTRIBUTION

SUBSYSTEM SUBSYSTEM MAILBOX

12
CLEARANCE

CONTROL(
1 0 MAILl BOX11

WANGOFFICE
DIRECTORY

Figure 1. Telegram Clearance and Approval Transaction Flow.

Evaluation of Transaction Flow for Exposures. The types of vulnerabilities in the system
were derived from the EOC security requirements as defined by DOS. [3] According to the
requirements document, the system security requirements for FAIS FOC can be cate orized
as follows: discretionary access controls, use of internal and external labels, accounta-)ilit*,
auditability, and continuous prot•ction. Forty-one detailed requirements were ident ified for
EOC. These requirements were derived and grouped according to the niiiniuin requirements
listed above. Sixty-two potential system exposures was identified from the system securncy
requirements. These exposures were also giouped into the general categories they address.

To provide a systematic approach to identifying the vulnerable points in the system, po-
tential exposures were associated with each step of the transaction) flow diagrams. A new
table was generated from this mapping that shows each step of every transactioný flow and
every exposure that might occur at that step. This mapping was meaningful, but a measure
was required to distinguish the seriousness of individual exposures. To determine this like-
lihood of exploitation, the knowledge and skills required to take advantage of aim exposure
were considered. Each exposure was evaluated and assigned one of the following six ratings
denoting the likelihood of occurrence:

D1 essentially impossible to exploit,
D2 a system administrator or security officer could exploit,
D3 an operator could exploit,
D4 a system user with inside information could exploit,
D5 any system user could exploit, and
D6 any person could exploit.

425

The' severity of an exposure i.- defined as the most serious (highest nuinbered) applica-
blp rating front this lis:t. I..poll coiplet iol of this step, a table was generated indicating the
rating for each of the 62 exposures.

Identifving Controlb. FAIS contains a set of security safeguards (called "controls") de-
signed to reduce exlosur.'s. The systeii docuiicItation was studied and 114 controls were
identified and (11,' rate(d in a table. A "stringency" measure, designed to focus on human
oversight and/or intentional miiisuse-, wVa.s measured by determining who could decide whether
to use the control or not. Each of the controls was assigned a stringency label to indicate the
effectiveness of that particular control:

Si cannot lbe avoided,
52 systemn control, at the discretion of the security administrator,
S3 system control, at the discretion of the operator,
S4 system) control, at the discretion of the user, and
$5 procedural or administrative control.

Mapping Expolsures and Controls. In most cases, an exposure was covered by multiple
couitrols. This set of controls included those designed to prevent exp)loitation of an exposure
a" well as those designed to detect exploitation after the occurrence. This step produced a
table of a one to utany. ilaplting of exposures to controls.

Evaluating Control Adequacv. The last step of the basic evaluation was to determine
"whether the controls designed into the FAIS system were adequate to meet the specified se-
curity requiremevnts and genet li security needs of the system. Every exposure and its corre-
sponding set of controls was examined to determine whether the set of crmtrols was capable
of preventing or detecting any exploitation of that exposure. The effectiveness of each set of
controls was categor'ized as one of the following:

(A) able to prevent an occurrence,
(B) able to detect all occurrence only after the fact. or
(C) alble neither to prevenit nor detect anI occurrence.

A table listing the exposures, the difficulty of exploiting each exposure, and the effective-
ness of the set of controls iin preventing that exposure from being exploited was generated as
the final step of the basic evaluation.

Data Base. The tables and lists generated during the basic evaluation were collected iln
a data base. [4] The data base provided a convenient way to store, organize, and manipu-
late the large atiount of data identified and collected during tie basic evaluation. It was anl
important tool in assisting the methodical approach to testing the actual syst em. The data
base was develop)e(d froni the low level analyses of the I asic evaluatio, lthat are relatively
easy to idelrstlaid to support th(e imore conlprehensive detailed evaluation.

Detailed Evaluajoti--

The purpose of the (letailed evaluation is to test the adequacy of the controls on an ac-
tual system. The o(Jtailed evaluation proceeds systematically to test each exposure at each
step) (f each transaction that can be performed on each object. Exhaustive application of
this approach should locate all instances where a user performing normal system functions
can violate the security requireunetts of the svs em.

Potential exposures Jpresent at each step of eacti transaction are examined. The data
base contains t 'Ihis step/exloSxie/coitrol relationslhips and can autoniatically generate
test scril)ts. '1 .data Ibase provides a syste.matic way of progressing through each possible
I)athi a user coiii t take oit thlie systeiii. Tihts, it is possilble to p~rint a list of all controls for all

426

exposures for all steps. For the purposes of detailed evaluation, it is unimportant which con-
trol(s) prevented exploitation of an exposure. The detailed evaluation only seeks to establish
that some control(s) prevents this exploitation and that therefore a security requirement has
been satisfied.

Vulnerabilibty tleport•. If s:ystem vulnerabilities are identified, the system tester com-
pletes a vulnerability report. On the report form, the tester identifies precisely what test was
performed; what conditions were in effect at the time of the test (for example, under what
user privileges the tester was operating); what results should have been obtained; and what
results were actually wet obtained. The vulnerability reports are numbered for reference
purposes.

Test. Users. Legitimate FAIS users must be defined because the detailed evaluation fo-
cuses on the functions performed by legitimate FAIS users exercising the system. A system
security administrator's (SSA) manual describes the proper configuration and control of the
automated and administrative security controis.[5] The SSA. manual lists five classes of users
on the FAIS computer system (general user, operator, system manager, system security of-
ficer, and configuration manager). The detailed evaluation focuses primarily on the general
user, who must be defined in five separate profiles on the system (VS, Wang, FAIS, AMU,
and WP Plus).

Only two profiles require siie-specific information if the SSA manual's guidelines are ad-
hered to. According to the parameters of the FAIS and WP Plus profiles, at least 16 users
must be defined to adequately represent the general user population. In the FAIS profil,
there are five access levels to approve and originate documents: Top Secret (TS), Secretltn",% ý 0 ý . ." I f fNt•"' 1- r N T j _I €••' . -1 TT.._ IT n"N _ 1, T . •I.. : ,I TTXJT . T s

Ik~rj), ~.AI- 1u((Jiue iJn t DuJ1 J Ldiuk %_J±1I41a1 Vz'U ki'"), aLLLU VICLLS1ai 1'" k U- J. MS our '-.C , ys-
tern, there was at least one user for each combination of clearance levels. Representative
channel and caption parameters were also assigned. Two classes of users were defined in the
WP Plus profiles with differing library access to test the sharing of libraries. One user was
given no access to WP Plus. In addition to these general users, the system also contains an
SSA and an operator.

Detailed Evaluation AIproach. The detailcd testing was performed on a WANG VS 85
minicomputer, configured as a DOS bureau processor. The evaluation included processing
on a stand-alone computer system only. This test did not evaluate any networking interfaces
because the system was not connected to any other computer systems.

The detailed evaluation methodology describes the exhaustive testing of each exposure at
each step of each transaction of every object on the system. The transaction flow diagrams
generated during the basic evaluation show that many of these tests are redundant. As a
result, the first object tested required extensive testing and evaluation. This tcst focised
on all combinations of users and input and provided a baseline from which subsequent tests
would be performed.

Given the thoroughness and completeness of the initial testing, the methodology allowed
for the elimination of redundant tests by identifying the unique paths or elements of the sub-
sequent tests. These unique paths required complete analysis and testing. Because of this
approach, the number of tests was reduced without comproinising the effectiveness or com-
pleteness of the detailed evaluation methodology.

Penetration Testing

Penetration testing attempts to identify errors that might not have been located through
either the basic or the detailed evaluations. It attempts to identify security flaws that could
be exploited by authorized users or by outsiders to circumvent or defeat tie security of the
system. The general penetration testing approach is based upon an analysis of the system,

427

hypotheses of possible flaws, confirmation or rejection of hypotheses, and extension of con-
firmed hypotheses. [6]

The goals of the FAIS EOC evaluation were to assess the penetration resistance of FAIS
software suites, help determine the difficulties involved in exploiting flaws, and provide a
clear demonstration of FAIS flaw exploitability. The penetration testing approach involved
three steps: identify sensitive objects, determine points of vulnerability, and test vulnerabili-
ties to determine the adequacy of controls.

Identify Sensitive Objects. For ponetration testing, "sensitive objects" are the data and
program modules on which the security of the system depends; they implement the secu-
rity of the system. Thus, to identify sensitive objects, it was necessary to study the control
measures and devices that prevent exploitation of vulnerabilities in the security system. A
sensitive object may be a collection of security objects. For instance, the "Wang user profile"
includes several separate security objects such as a 3-character logon ID and a password. By
reviewing the implementation of controls and focusing on representations of data items, the
security objects of the FAIS system were combined into the sensitive objects. The sensitive
objects were then categorized according to their source or the application that performed the
various security functions.

Each control description involved at least one security object and its use; each security
object is used in (or by) at least one contr(.1. An analysis of these controls ploduced a list-
ing of about 70 security objects. These security objects were determined from the security
features of the system.

Determine Points of Vulnerability, Points of vulnerability were determined in two steps:
identification of security control functions and matrix development. Because sensitive ob-

jects are the controls that implement the security of the system-, they are nreprisly the means
whereby a perpetrator can exploit the security of the system. Hence, the protection of sen-
sitive objects (security control functions) and the ways this protection can be circumvented
were examined.

A sensitive function protects or implements a sensitive object. For example, the system
userlist, a sensitive object, contains the IDs, names, passwords, and access rights of all des-
ignated system users. The security utility is used to add, delete, or modify records of the
userlist and was therefore identified as a sensitive function.

A list of sensitive functions was constructed and steps were taken to verify the complete-
ness of the list of sensitive functions. A complete list wa.- produced of all transactions during
a test that showed all files that were opened and all security functions accessed during that
particular test. Unfortunately, the amount of additional output generated by the audit log
prollibited the usefulness of this approach to verify every function. At the end of this phase,
the information gathered was represented as a lattice structure (Fig. 2).

A matrix was constructed from the lattice structure. The matrix depicts time controls of
the overall FAIS system and the functions that implement them. The columns of the matrix
represent, the sensitive objects of the system, and the rows relpresent the functions that ac-
cess them. Thus each cell in the nmatrix indicates that a particular function interacts with a
particular object. In addition, each noiblamik entry attempts to categorize the type of inter-
action.

The matrix was the backbone of the testing apjproach. The functions and the effect the,,
have oin the associated objects could be examined miethodically using this structure. More-
over, the scripts were written to target specific function/object pairs in an attempt to defeat
the effectiveness of the controls they iniplhment. To examine each function/object pair from
a number of users' perspectives it was necessary to identify the geinral categories of users
available on the system. Five classes of users, grouped according to their access privileges,
were identified. These classes range from ain illegal user who has no authorized access priv-
ileges to the system to an FAIS super user who has complete access to the entire system.

428

Wvhen tests were completed for each nonempty cell of the matrix, all points of direct attack
had been tested.

FAIS SYSTEM

I I i I
APPLICATIONS OPERATING SYSTEM WANG OFFICE WP PLUS FAIS

coONTROS LOGONID PASSWORD... FILE

RIGHTS

SENS'TIVE USER UST
OBJECT

SENSITIVE /
FUNCTION L0.3O SECURITY

PROCEDURE PROGRAM

Figure 2. Lattice structure of the FAIS systenm has controls accessing sensitive objects pro-
tected and implemented by security control functions.

A sensitive object can be compromised in one of two ways: by direct attack (effecti%'('or
a specific object) or an indirect, "backdoor" attack (effective on objects of the given type).
Direct penetration testing focuses on the integrity of the specified goals of the protection
scheme. Indirect attacks attempt to target properties and characteristics of the system hard-
ware and software that are unknown or little known to the analyst. They include deliberate
and malicious attempts to compronise a sensitive object and may be perpetrated by both
authorized and unauthorized users. Unlike conventional direct attacks, indirect attacks ex-
ploit vulnerabilities that are not based upon errors or onissions in the security software.
Methods employed in such attacks fall into two general categories: those that use undocu-
mented functions or procedures in software or hardwa-e, and inventive application of system
components in a novel or unorthodox manner. Penetration testing is complete only when all
forms of these two types of attacks have been checked.

Test for Vulnerabilities. The objects and functions in the system were partitioned among the
security analysts. Following the test scripts associated with the object/function pairs, each
analyst tried to undernmne the effectiveness of the given function or object. The results of
each test were recorded. If unauthorized access to an object was discovered, a vulnerability
report form (identical to those used in the detailed evaluation) was completed to describe
the testing and the results.

The results were analyzed after each l)haie of testing. Often this analysis suggested fur-
ther tests that should be performed. Analysis of the results from these new tests continued
the cycle of testing, analysis, and generation of new tests. The iterative process terminated
when the analysis indicated that further testing was unlikely to reveal additional weaknesses.

429

Evaluation Results

Basic Evaluation

Each requirement is associated with a set of controls, but the basic evaluation looked be-
yond requirements to potential exposures and the resulting weaknesses in the system design.
To complete the evaluation, the tables developed during each step of the basic evaluation
were analyzed to identify the weakest points in the system. The difficulty of exploiting each
exposure was assessed. There were six ratings for the likelihood of occurrence for cXposures
ranging from "impossible to exl)loit"(Dl) to "any person could exploit"(D6). None of the
62 potential exposures were assigned a D6 rating, indicating that any person could exlloit-
the exposure; 10 exposures were assigned a D5 rating level, suggesting that any system user
could exploit them.

The analysis of the table mapping exposures ets of controls also indicated that each
potential exposure is covered by at least one cont. ., and most potential exposures are ad-
dressed by a set of controls. Each identified control was assigned a stringency rating. The
weakest controls in the system were those rated S5 (administrative controls) or those at the
discretion of the user, rated S4. Twenty-two of the 114 controls were rated as S5, or admiln-
istrative controls.

The final step of the basic evaluation determ.iined if the set of controls was capable of pre-
venting or detecting any exploitation of the exposures. In this step, each set of controls was
categorized according to its effectiveness. The lowest rating of C was assigned to those con-
trols able neither to prevent nor detect an occurrence of the exploitation of that exposure.
Of the 62 exposures and their corresponding conmtrols; only 9 were given a C ratiflig.

The nine weak exposure/control sets were compared with the ten most exploitable ex-
posures. Only three exposures appear in both lists. Thus three areas were identified where
weak controls combine with ease of potential exploitation. According to the basic evaluation,
these areas are considered to be the points at which the system is most vulnerable.

Detailed Evaluation

The detailed evaluation does not attempt to assess the potential imlpact of the shortcon-
ings or the difficulty of eliminating them. It proceeded systematically to test the adequacy of
the controls on an actual system and compared the security requirements specification with
the functions of the operational FAIS system. When comparing the security requirements
with the impieri 'nted system to determine if the requirements were satisfied, a strict inter-
pretation was applied to each security requirement. For instance, if the requirement specified
that every object stored within a system must be marked with a label identifying the sensi-
tivity of the object, and an object was discovered that was not labeled apj)ropriately, then
the requirement was not satisfied.

The evaluation showed that 22 of the 41 security requirements specified in the security
requirements document have not been satisfied for EOC. Of the 22 requirements, 6 refer to
access control problems. Six more of the requirements fail due to labeling of objects, espe-
cially informal messages. Two of the accountability requirements were not satisfied. The
audit log testing determined that (he audit log fails to meet four of the auditability require-
ments. Finally, four of the requirements designed for continuous protection were not satis-
fled.

The results of the detailed evaluation were not a surprise. It was anticipated that a large
number of the requirements would fail given the strict interpretation applied. DOS viewed
this analysis as a baseline or benchmark. DOS plans to assess the impact of these vulnerabil-
ities on current operations. More importantly, DOS plans to use this informnation to identify
corrective measures, to evaluate its current security requirements and needs, and to resolve
security issues to improve the security of future systems.

430

Penetration Testing

The object of the penetration effort was not to find all the flaws in the system, but to
provide an assessment of the application's penetration resistance. As was the case with the
detailed evaluation, the penetration effort does not attempt to assess the potential inmpact of
these vulnerabilities or the difliculty of eliminating them.

The penetration testing and evaluation generated nine vulnerability reports, each of
which documents a specific security failure. Each of these vulnerabilities is described in de-
tail in these reports. The actual vulnerability, the steps and circumstances necessary to ex-
ploit the security failure, as well as an indication of the type of user that may take advantage
of the situation are included in these descriptions.

This report cannot provide specific information describing the actual vullnerabilities dis-
covered. The penetration evaluation did provide a demonstration of the exploitability of five
vulnerable areas. The vulnerabilities included the ability of an authorized user to gain access
to additional commands and files, acquire additional user privileges, and bypass envelope se-
curity. This evaluation did not demonstrate the ability of an illegitimate user to penetrate
the system, but did show that authorized users can expand their access.

Conclusion

In this paper, we have described a novel approach to computer security evaluation and
testing of an existing system. Although it has been applied to a stand-alone system only,
this approach can be taken to evaluate the security of CoTI f;uthlg sy2tems 4t 1l levels. For
example, the same methodology can be used to test a complex network of computers or indi-
vidual applications such as data bases.

This approach has several advantages. First, the method is completely systematic and
provides a well-defined sequence of steps leading from the basic evaluation, through the de-
tailed evaluation, to penetration testing. This systematic methodology minimizes tile chance
of overlooking a basic flaw in the security of the system.

A second advantage of this methodology makes the huge task of security evaluation man-
ageable. Each step builds on the results of the pievious step. First, the basic evaluation
determines whether the design of the security system (as described by thc documentation)
yields an appropriate level of security. The results of the basic evaluation are then used in
the detailed evaluation, which systematically tests the actual system to determine whether
the documentation accurately reflects time level of security of the system itself. Finally, the
results of the detailed evaluation are used in the penetration testing phase, which systemat-
ically tests the adequacy of system controls for protecting the objects tlhat. provide security
within the system. This methodology is one of few organized approaches to generating par-
ticular test cases for penetration testing.

A third major advantage of this approach is that security certification does not have to
be carried out by a computer security expert. Testing at all levels can be carried out by a
systems analyst familiar with the system under investigation. The methodology described
in this paper can be applied widely because the availability of systems analysts is far greater
than that of computer security experts.

Finally, the approach is based upon a recognized national standard for computer security
evaluation. [1] Hence, the systems analyst can have confidence that he/she is using a secu-
rity testing methodology whose approach was derived from a reference document written by
the National Institute of Standards and Technology (formerly the National Bureau of Stan-
dards) for establishing and performing a certification program for computer security. This
provides a degree of reassurance to any agency using this methodology to test the security of
its computing systems.

431

This is only the first step in DOS's computer security evaluation process. This is but
one of several certification efforts necessary in accrediting FAIS EOC for operation as a top
secret computer network. The results of this study must be used in conjunction with the
results of the verification and validation effort as well as the system and functional testing
results of the system dev 'oper. Finally, the results of the FAIS EOC network security eval-
uation currently in progress must also be taken into account in order to obtain an overall
picture of the security of the FAIS system.

References

[1] Guidelincs for Computer Security Certification and Accreditation, Federal Information
Processing Standards Publication 102, U.S. Department of Commerce, National Bureau
of Standards, September 1983.

[2] C.P. Pfleeger and S.L. Pfieeger, "A Transaction Flow Approach to Computer Security
Certification," Computers & Security, Vol. 7, pp. 495-502, Oct. 1988.

[3] Planning Research Corporation, oreign Affairs Information System Early Operational
Capability Security Recquirements Allocation, McLean, VA., May 1986.

[4] C.P. Pfleeger, S.L. Pfleeger, and M.F. Theofanos, Data Base to Support a Transaction
Flow Approach to Computer Security Certification, Martin Marietta Energy Systems
Technical Report, K-DSRD 161.

[5] Planning Research Corporation, Foreign Affairs Information System Early Operational
CapQability I.S(O'T Manuai, McLean, VA., Sept.. 1987.

[6] C.P. Pfleeger, S.L. Pfleeger, and M.F. Theofanos,"A Methodology For Penetration Test-
ing," submitted to Computers & Security, March 1989.

432

Executive Summary

PROFESSIONAL CERTIFICATION
FOR

COMPUTER SECURITY PRACTITIONERS

Toni Fish & Sally Meglathery

International Information Systems Security Certification Consortium
(ISC)2

P.O. Box 98
Spencer. MA 01562-0098

Introduction

In 1986, the Information Systems Security Association (ISSA) began a process of
cr.at..."'- og for cert.ifi.xc-a•on of professional practitioners in i

systems security. In 1987 and 1988, the National Security Agency (NSA) sponsored
two workshops, at the University of Maryland and at Idaho State University (ISU),
that created a numnbee of modules intended to be used by universities in teaching

computer security in engineering and in business of MIS programs. In 1988, the
Special Interest Group for Computer Security (SIG-CS) of the Data Processing

Management Association (DPMA) was able to bring together a consortium including
NSA, Idaho State University, DPMA, ISSA, and the Computer Security Institute, to

propose the creation of a consortium to continue the development of such a
professional certification program.

This discussion summarizes the planning work that has been done since early

1988 and outlines the plan that has been developed, which will lead to the first formal

certification examination by September 1991. The work sponsored by NSA in the

curriculum modules has been combined with work of ISSA in the conbortium to serve

as the foundation for a Common Body of Knowledge. ISU is serving to maintain a

common data bank of information, bibliography, and soon test questions and answers
with justifications. All of these elements will support the development of the

certification program, and will serve as an important. source of information in future
maintenance of the certification examinations and program.

433

The International Information Systems Security Certification Consortium (ISC)2

brings together representatives from many professional organizations in the

information processing field, from academe, and from the United States and

Canadian governments. This collection of talent and resources is producing a

certification program and a data bank that will serve as a significant resource and for

formalization of the profession for many years.

The Project

The (ISC)2 has developed a document which outlines the events that are

significant in this project, and it presents some information about the activities and

people involved in each stage. This document also includes a complete list of the more

detailed activities.

Briefly, the project of creating a certification program involves planning the work; -

identifying a Common Body of Knowledge; planning, creating, and validating an

examination; and establishing committees to maintain the Common Body of

Knowledge and examination and certification process as dynamic entities that

mirror the changes in information systems technology and security concerns. The

work is underway now; the first formal examination is scheduled for shortly after

September 1991.

The Players

The players include representatives from the private sector, from volunteer

professional associations, from the academic world, and from the United States and

Canadian governments. The structure of (ISC)2 permits inclusion of other interested

bodies as the program develops. The major computerized information resource is

maintained by Idaho State University to ensure its availability to all (ISC)2

members and to support the certification program in the future. This resource is

derived from wo:k sponsored by NSA and as it is augmented during our project the

resource will grow in value to all security professionals.

434

Integrating Security Requirements and Software
Development Standards

T.C. Vickers Benzel*
Trusted Information Systems Inc.
11340 W. Olympic Blvd. Suite 265

Los Angeles, CA 90064
213-477-5828

March 1989

-This work was supported by the Rome Air Development Center under contract F30602-86-C-0048.

435

1 Introduction

The Unisys Corporation and Trusted Information Systems, Inc. are analyzing the security
requirements of complex battle management system-s under a contract to the Rome Air
Development Center. The tasks under this contract are recommending methodologies to
address system architecture, development and eventual accreditation.

In order to provide assurances that a complex battle management system can satisfy its
security requirements, it is necessary to examine security in the software development process
in addition to examining security issues for the battle management system architecture,
accreditation, and design. This report is the second in a series [4] of investigations on
security requirements with respect to a software development methodology for complex battle
management systems. The software development methodology is defined here to include the
tools, techniques, and processes which when used in a structured manner can lead to a
cohesive software product.

This paper reports on the results of our examination of the software development process
when applied in conjunction with security requirements to a developing system. Section 2
discusses the need for integrating the software development process of DOD-STD-2167A and
security requirements; it then provides a brief description of the software development pro-
cess of DOD-STD-2167A and the Trusted Computer Systems Evaluation Criteria (TCSEC)
development paradigm as background. Section 3 discusses several key issues with respect to
integrating DOD-STD-2167A and the TCSEC. Section 4 proposes a first approximation at
a tailored software development process integrating security requirements with DOD-STD-
2167A requirements. The integrated approach relics on an iterative model of software devel-
opment and recommends tailoring rather than revising DOD-STD-2167A. Section 5 presents
conclusions and plans for future refinement of the integrated trusted software development
process.

2 Need for Integration

Currently the DOD has one set of regulations governing the software development process
and a separate set of regulations governing the development of trusted computing systems.
The central regulation in the software development arena is the Military Standard: Defense
System Software Development (DOD-STD-2167A) [13]. The central regulation in the trusted
computing systems arena is the Trusted Computer Systems Evaluation Criteria (TCSEC)
[5].

436

Historically, security requirements and software development standards have been treated
separately. While the TCSEC (the most commonly used source of security requirements)

embodies principles for developing trusted systems, it does not address the software develop-
ment process. On the other hand, DOD-STD-2167A imposes explicit software development
requirements and, in doing so, implies a specific process to follow for developing "good"

software.

Experience has shown that retrofitting security requirements late in the software develop-
ment process leads to systems which do not adequately satisfy security requirements [6].
Recent attempts at including security in the early phases of a project often result in a
"two-track approach" to system development. That is, software developers proceed within
the "traditional" approach to development while the security group conducts a parallel effort
driven largely by the TCSEC security requirements. The two-track approach inevitably leads
to one of the tracks dominating the process while the secondary track is virtually ignored.
Because the use of a "traditional" software development approach, such as that embodied
in DOD-STD-2167A, is often contractually mandated, it is the security development which
suffers. In fact, when software development faces budget and schedule problems the security
track is often greatly reduced. Even under the best of circumstances the two track approach
leads to a set of wvell defined security requirements refined through the process implicit in
the TCSEC, but which have little or no effect on the real system developed by the system
developers. Systems developed using the two-track approach often encounter difficulties in
obtaining the necessary security certifications and accreditations to process classified data.

Not only does the the two-track approach result in systeems which cannot be accredited, but
it is more costly, can result in less trust in a system composed of trusted and untrusted
components, and inevitably results in tradeoffs between the two tracks as one track begins
to dominate the other.

Early studies under this contract have concluded that it is essential to integrate security
requirements and the software development process [4]. In addition, the Joint Logistics
Command Orlando II conference panel VIII recommended that the DOD, "establish a com-
rnitt"e to develop changes to DOD-STD-2167A that incorporate security requirements as an
integral part of a system's development life cycle" [7]. To our knowvledge such a panel has
not been established. However, others in the security and software development communixties
are performing research aimed at integrating security requirements and DOD-STD-2167A. In
order to advance these efforts an invitational workshop [8] was organized to provide a forum
for key offices and personnel working in the areas of software development standards and

information security. The goals of the workshop were to bring together technical researchors
to share ideas on integrating software development standards, to identify the1 process and
offices responsible for this, and finally to define future directions.

437

U-,.

The results of the workshop indicate that there is a strong interest in defining approaches to
including security requirements in the software development process. Discussion centered on
how integration should occur. In particular, should DOD-STD-2167A be changed? Should
security requirements be included as an appendix of DOD-STD-2167A? Should security
requirements be included via a companion document such as DOD-STD-2168 [14)? Or
should they be included through tailoring advice and perhaps new Data Item Description's
(DID's)? There was not unanimous agreement on these approaches; however, it was pointed
out that DOD-STD-2167A has been frozen for the next five years. Thus, revision is not a
viable approach for the near-term.

2.1 2167A Explicit Development Process

DOD-STD-2167A describes a framework for a software development process that requires
contractors to implement a process for managing the development of deliverable software.
The major activities of the DOD-STD-2167A process include:

1. System Requirements Analysis/Design

2. Software Requirements Analysis

3. Preliminary Design

4. Detailed Design

5. Coding and Computer Software Unit (CSU) Testing

6. Computer Software Component (CSC) Integration and Testing

7. Computer Software Configuration Item (CSCI) Testing

8. System Integration and Testing

Within each of these activities DOD-STD-2167A further defines a set of reviews, a set of
steps to be taken in support of the reviews, and a list of deliverables. These are summarized
in Figures 1 and 2, taken directly from [13].

438

DOD-STD-21 67A

IYSTIPA NOUIAGMINTS
ANALYSI1.101SlON

Nt(UIlEmflNTh SYTE FlUmIarmIT PRIELIIINARtY OTI

A14ALYSIX ANWLYV

scamimr PkAN
GIEIGNtrTs tool

DOC\CUMUNT

10"A.9 ARCUuA.histal

spaCI CATONIW

AVaILS NEIEgNV1

S ALLVATWL

P~t%1?4ltAAY"CLIINAR

Figure 1:Deliveralel Itduv~ Reies (NmAudtad Sei

43OURC 9 1"

DOD-~STD-21 67A

CIMIN AP0 CV :NTGAATON N110RATION

L ETAILD COG.S C&? C

CDL)G. T~r" ASO TWMM4 TUVMAMQrSI

SOURSSFUPDA 0

DIESCRIM1ON3 OSCRIP11OFIIV RUOT:S

I O.0PIRATIOM
7

I

* *rAPO& I
ANDO S6MtUtT

o INWA -QtMArE INTO CIvsLOpmI2MTAL -
C,,ONVCUMATION VSR310N

*MAY *a VSKOOR S.JPr1.1o 1" ".41 02SCRIPTION

*MAY 89 Aj 00CUMINTI51
1. SY1TIMMISIOMEHT SIPIECFCATIOF
L. PARIME ITtM VECIPICAMlN
2. CRITICAL ITILM VIVIFICATION

MAY as 02EtERRE UNTIL AMTR
XYTLMd INTIEGAATIOt a TIMM4. 1

SCOFTWARN

DEEON PM(RTAI. EFIA1Oi

MILVIEW (CINPICUR.

MaOUC?

Figure 2: Deliverable Products, Reviews, Audits, and Baselines - continued

440

The System Requirements Analysis and Design Phase consists of describing a system design
and system architecture. 1 This analysis is usually conducted on a Preliminary System Spec-
ification and is intended to determine whether the software requirements are consistent and
complete. The design and system architecture are documented in a System/Segment Speci-
fication (SSS). In addition to the SSS, the contractor also develops a Software Development
Plan (SDP) which states the contractor's plans for conducting the activities and producing
the deliverables required by DOD-STD-2167A. This phase often occurs in conjunction with
the Pro-System Development Phase, since a contractor's early design description is often
required in a response to a Request for Proposals (RFP).

The Software Requirements Analysis Phase consists of defining the overall software architec.-
ture. This step allocates requirements to individual Computer Software Configuration Items,
and documents the software architecture in the Software Requirements Specification (SRS).
In addition to allocating requirements, it is necessary at this phase to define the complete
set of interface requirements for the external interfaces.

The Preliminary Design Phase consists of defining a preliminary design for each Computer
Software Configuration Item and further allocating requirements from the SRS and interface
specification. This phase is intended to establish design requirements and to develop a
preliminary design for the internal interfaces. These design decisions and any additional
engineering information generated during the preliminary design process are documented in
the Software Design Document (SDD).

The Detailed Design Phase consists of developing a detailed design by alloceating requirements
to individual Computer Software Units and establishing design requirements for each unit.
In developing the design the contractor is expected to develop the detailed design of the
external interfaces. The design decisions made during this phase are documented in the
SDD. It should be noted that the SDD is a living document that exists across design phases.
This is an important aspect of the DOD-STD-2167A development process, which encourages
contractors to refine the design and report on it accurately, rather than writing "snap-shot"
specifications as was the case under MIL-STD-490 [12]. In addition, during this phase the
contractor establishes a Software Development File (SDF) for each Computer Software Unit.
The Software Development File is used to record information related to the development
or support of software. It usually includes design considerations and constraints, design
documentation and data, schedule and status information, test requirements, test cases, test
procedures, and test results. It is important to note that much of this material can be
included in the SDF by reference to other documents.

1(2] notes that DOD-STD-2167A uses the term "system architecture" quite differently than does tlhe

TCSEC. 1i) DOD-STD-2167A "system architecture" refers to the contractor's breakdowvn of the system into
functional arcas. In the TCSEC, "systcm e.rchitecture" refers to the requirement to structure tihe s•ystem
and the TCB in order to increase assurance that the TUi3 satisfies the reference monitor requirements.

441

The Coding and Computer Software Unit Testing Phase consists of coding and testing each
software unit. During this process the contractor must ensure that the algorithms and logic
employed are correct and that the software satisfies its specified requirements. The test
results are recorded in the Software Development Files (SDFs).

The Computer Software Component Integration and Testing Phase consists of testing and
integration to ensure that the algorithms and logic employed are correct and that the in-
tegrated component satisfies its specified requirements. This is analogous to the previous
phase but it involves integrating multiple software units into components and then testing
the components. This phase often involves making changes to the design documentation
and code which necessitate retesting and updating the Software Development Files (SDFs)
of all software units and components. The procedures used for setting up, conducting, and
analyzing the teas are documented in the Software Test Description (STD).

The Computer Software Configuration Item Testing Phase consists of formal qualification
testing. The results of this testing are recorded in the Software Test Report (STR). Results
of this testing often require revisions to the Software Design Documents (SDDs), code,
and Software Development Files. Following successful completion of formal qualification
testing the fnal Source code is prepared for delivery as specified in the SoS. The delivery is
accompanied by the final Software Product Specification (SPS) which is developed during
this phase. In addition to preparing the source code and SPS for delivery, the software
support and operational documentation is also prepared in preparation for transitioning the
deliverable software from development to support. The software support and operational
documentation consists of:

1. Computer Resources Integrated Support Document (CRISD)

2. Computer System Operator's Manual (CSOM)

3. Software User's Manual (SUM)

4. Software Programmer's Manual (SPM)

'3. Firmware Support Manual (FSM)

The System Integration and Testing Phase involves supporting the Functional and Physical
Configuration Audits and is the final step in the 2167A software development process.

442

2.2 TCSEC Development Paradigni

The TCSEC does not explicitly describe a framework for the software development process.
Rather it embodies certain design principles implicitly. The TCSEC is intended as an eval-
uation criteria oriented towards the evaluability of a design, instead of the process used in
the design. However, in order to achieve a design that can be evaluated at the B2 and higher
levels of the TCSEC 2, it is necessary to follow an implicit design paradigm which consists
of developing the following design documents and correspondences.

1. Philosophy of Protection

2. Security Policy Model

3. Formal Top-Level Specifications (FTLS)

4. Descriptive Top-Level Specifications (DTLS)

5. Security Policy Model to FTLS Correspondence

6. DTLS and FTLS Correspondence to Trusted Computing Base (TICB)

7. Covert Channel Analysis

8. Functional Testing

9. Security Testing

10. Security Specific Documentation

(a) Trusted Facility Manual

(b) Security Features User's Guide

(c) Configuration Management Plan

Each of the above documents and correspondences is intended to ensure that the proper
security requirements are addressed in the design of a Trusted Computing Base (TCB).
While the TCSEC does not require that these are produced in the order listed above, it is

2The TCSEC is divided into four divisions: D, C, B, and A ordered in a hierarchical manner with the
highest division (A) being reserved for systems pioviding the most comprehensive security. Each division
represents increased confidence in the system for protection of sensitive information. The discussion of
TCSEC requirements in this section focuses primarily on the TCSEC requirements for B2-A1 systems since
for integrity reasons it is believed that complex battle management systems will require at least B2 systems.

443

far more difficult to fully satisfy the TCSEC assurance requirements if they are not produced
in roughly this order.

The Philosophy of Protection is intended to capture the essential security requirements of the
system (e.g. access control) and how they are translated into the TCB. This is an informal
document which is used to identify the specific TCB protection mechanisms.

Once the essential security requirements and corresponding protection mechanisms have been
identified, a formal model of the security policy can be developed. The formal model is a
mathematically precise statement of the security policy for the system under development.
Formal models, such as the well known Bell and La Padula Model [1], are often stated in
terms of an abstract model and a concrete model [11]. The abstract model captures the
essential security requirements, (e.g. *-property, Simple Security) while the concrete model
provides an abstract set of rules of operation (e.g. Get Read Access).

The abstract rules of operation can then be elaborated into a high-level design specification
in the form of a Descriptive Top-Level Specification (DTLS). The TCSEC defines a Top-
Level Specification as "a non-procedural description of system behavior at the most abstract
tevel; typically, a functuonil specification that omits all implementation details." A DTLS is
written in an informal language (e.g. English), a program design language, or a combination
of the two. The DTLS must completely and accurately specify the TCB interface in terms
of exceptions, error messages, and effects. The DTLS is intended to capture the user-visible
actions of the TCB. One common approach to developing a DTLS is to write informal
descriptions of the TCB functions in terms of input, processing, and output statements.

The highest level of assurance in the TCSEC, Al, requires that a Formal Top-Level Speci-
fication (FTLS) be developed. The FTLS is written in a formal specification language and

must be proven to enforce the security policy as described by the formal model. Because
most common formal specification. languages c;n not be used to specify temporal properties

and subtle hardware characteristics, the FTLS is not required to provide a complete descrip-
tion of the TCB interface. Instead the FTLS must only provide an accurate description of
the TCB interface. Thus, it is important to note that one needs to refer to both the FTLS
and the DTLS in order to fully specify the system under development.

To gain assurance that the system design will enforce the Security Policy, the FTLS is shown,
through a combination of formal and informal techniques, to be consistent with the formal
mnodel. This consistency proof is often referred to as the FTLS to Model Correspondence.

Once the design has been shown to bc consistent with the security policy (via the FTLS-
Model Correspondence), it is necessary to establish that the implemented system (the TCB)
is consistent with the design. This is done informally and requires establishing the corre-

444

spondence between both the DTLS and the FTLS, and the TCB. It is necessary to use both
the DTLS and the FTLS, since the FTLS provides better assurance through its formalisms,
although as noted above it is not complete.

Additional assurance of the system's security is gained through a Covert Channel Analysis.
A covert cbanne. is defined by the TCSEC to be "any communication channel that can
be exploited by a process to transfer information in a manner that violates the system's
security policy" [5]. For TCSEC B-Level systems the covert channel analysis is informal and
is performed on the design documents and system implementation. At the Al-Level of the
TCSEC formal techniques are used and the covert channel analysis is usually performed on
the FTLS.

In the TCSEC development paradigm there are two types of testing requirements: Functional
Testing, and Security Testing. Functional Testing is similar to that required by DOD-STD-
2167A and is aimed at demonstrating that the system meets its specifications. Security
Testing, sometimes called Penetration Testing, is intended to show that not only does the
system do what it is intended to, but that it does nothing else. In particular, Security
Testing attempts to, "uncover all design and implementation flaws that would permit a
suIbject lL _J- exteriual to t' . TCB3 to rcad, change Or delete data no~rmally denied under the
mandatory or discretionary security policy enforced by the TCB" [5].

In addition to the design documents and correspondences described above, the TCSEC
requires several documents that are security specific. These are:

* A Trusted Facility Manual addressed to the ADP system administrator and which
presents cautions about functions and privileges that should be controlled when running
a secure facility.

* A Security Features User's Guide which describes the protection mechanisms provided
by the TCB and presents guidelines on their use.

* A Configuration Management Plan which describes the configuration management pro-
cedures used for controlling changes to the system during its entire life-cycle.

2.3 Relationship between 2167A and TCSEC

An iuitial examination of these two sets of requirements (DOD-STD-2167A and the TCSEC)
might lead one to believe that there is little relationship between the two processes, and thus
any software development that must satisfy both sets of requirements could well proceed

445

along the two paths independently. As discussed earlier this is ini fact the approach that
most efforts have taken in recent yvears. However, this approach led to many problems. The
primary problem has been difficulty in obtaining the necessary security certifications and
accreditations because the implemented system did not correspond to the security assurance
evidence or the security assurance evidence was lacking or insufficient. It is believed that in
order for large complex battle management systems to be developed using the DOD-STD-
2167A software development process and meet security requirements an integrated approach
must be developed.

Closer examination of the two processes shows that in fact there are many parallels. Both
rely on hierarchical decomposition, refinement of requirements into implementation (SSS-
SRS-SDD and Model-FTLS-DTLS), and testing and specification correspondences play a
key role in both processes. Given these similarities and the driving need to develop trusted
systems using the DOD-STD-2167A software development process, an integrated approach
is not only feasible but is highly desirable.

The next section will propose a first approximation at a tailored software development process
which integrates security requirements and DOD-STD-2167A requirements.

3 Integration Issues

There are several issues surrounding software development models which need to be addressed
before an integrated trusted software development process can be proposed. It is important
to recognize that while DOD-STD-2167A describes an explicit software developmentprocess,
it does not prescribe a specific underlying software development model. This has been a
point of some confusion and controversy. The software development process of DOD-STD-
2167A describes a set of phases for software development and a set of deliverables and
reviews relative to the phases. The choice of a particular software development model (e.g.
waterfall or spiral) is left up to the contractor 3. A software development model provides
a framework for guiding the software development process. The two most common and
often dcbated software development models are the waterfall model [91 and the spiral model
[3]. The waterfall model treats the software development process as a series of sequential
steps each of which is completed before the next step is begun. The spiral model is a risk-
driven approach whiclh focuses on identification and reduction of risk during the development
process by iterating over phases o.' the software development process.

3This is noted in the foreword to the standard which says, " This standard is not intended to specify
or discourage the use of any particular software development, method. The contractor is responsible for
selecting software development methods (for example rapid prototyping) that best support the achievement
of contract requirements."

446

DOD-STD-2167A implicitly imposes a hierarchical decomposition structure on the software
development process, as depicted in Figure 3 from [131. It is this imposition of hierarchical
decomposition that leads many to believe that DOD-STD-2167A must be used in accordance
with a traditional waterfall software development model, and that the standard is not suitable
for usc in a software development effort where a prototyping or spiral model of software
development is employed [10]. However, it should be noted that the DOD-STD-2167A
process has numerous revisions and iterations built into it, for example the requirements
of the CSU Testing phase; thus, the dichotomy between the spiral development model and
DOD-STD-2167A is not acs great as it may first appear. As it turns out, iteration within the
software development process of DOD-STD-2167A is a crucial point with respect to defining
an integrated approach.

Secondly, it is important to recognize that security requirements affect all stages of software
development. Security analysis is by its very nature iterative because it consists of examining
an evolving system at various stages in order to detect security weaknesses which can then be
removed from the system design. Once the identified security weaknesses are repaired then
the design is once again analyzed, and design proceeds in this manner. Because the TCSEC
,,requiivo- 'Uh a direct correspndene• be sbhown betweer. the code and the top-level design
specifications (FTLS and DTLS) this iterative process conlinues throughout all stages until
the final system implementation is completed.

Therefore, the approach to integrating security requirements and DOD-STD-2167A pre-
sented in the next section assumes that it is both feasible and desirable to use DOD-STD-
2167A in an iterative manner.

4 Integration Approach

The integration approach presented in this section assumes that both the process of develop-
ing software and the engineering of secure systems are iterative processes. However, in order
to facilit ite intermediate deliveries of system design an.id documerania.ion it is desirable to
confine the iteration to within specific intervals. Thus several cut points have been identified
which can isolate the affects of the iteration to the components of a sprxt:ific interval. It
should be noted that these interva.l, do not necessarily correspond to the softwvare deve.lop-
ment pllhases and reviews of DOD-'S"TPD-2167A. In adopting such an iterative approach it, is
necessary to recognize that .,to.M' versions of certain system sp)Ceclcations may be delivered
late in the life cycle of the system devehnmc<.nt.

This is a first, approximation of whcr-e, when, and how the software duvelcpdnwtt process of

447

DOD-S'TD-21 67A

I ~ c
IA

I acsII.MAN

I 1c

C9Q c~u C

Is IIu
I I0Is Is s

00 M ~J ~O Y OIFIP~UT

Figure $3: Examnple Of a System Breakdowvn and CSQCI Decomposition

448

DOD-STD-2167A and securiLy requirements should be integrated; further discussion, exam-
ination, and experimentation are anticipated. For purposes of initial analysis, we used the
security requirements of the TCSEC, since the confidentiality requirements of the TCSEC
are better understood than the emerging se,..rity requirements pertaining to integrity and
assured service. It is believed that this approach is general enough so that it can be ex-
tended to include the additional security requirements of integrity and assured service as
they become better defined. For example, identification of where in the process a formal
(confidentiality) model should occur applies equally well to a formal model of integrity.

In defining an approach to integrating the two processes, three different aspects were exam-
ined. First, one needed to consider the two timelines and determine when in the integrated
development process various phases should occur. Secondly, it was necessary to examine the
specific requirements, documents and deliverables in order to determine what new require-
ments were introduced as a result of integrating the processes and which existing require-
ments needed to be tailored. Finally, since the integration relies on an iterative model of
software development it was necessary to determine the intervals which involved iteration.

4.1 The Timelines

The software development timeline of DOD-STD-2167A was used as a basis for forming
an integrated software development process, because it explicitly identifies phases. The
design phases, documentation, and correspondences of the TCSEC were then mapped into
the phases and deliverables required by DOD-STD-2167A. The resulting integrated trusted
software development approach is shown in Figure 4. Not all TCSEC processes could be
directly mapped into existing 2167A deliverables and this is depicted by the shaded boxes
and broken lines in the figure.

The remainder of this section will describe each of the TCSEC requirements and the rationale
behind its placement in a phase of the DOD-STD-2167A timeline.

The Philosophy of Protection should be developed during the Systems Requirements Analysis
Phase along with the development of the SSS. This is because, as noted previously, the
Philosophy of Protection is intended to capture the essential security requirements. Thus,
prior to entering the design process it is necessary to identify and document the verall system
security requirements. This i6 consistent with the type of activities required by DOD-STD-
2167A during the System Requirements Analysis Phase, which consists of describing an
overall systeem design and architecture.

The formal model should be developed during the Software Requirements Analysis Phase

449

Security securitySystTesting

P i. model VTLS DTLS orri2A~e!
TeC h.

Doen

st SftrDae Coding CSC CSCl Integration

System Sotware prelim. Detailed & CSU Integration Testing Testing

Req's Req's Design Design Testing & Testing

Analysis Analysis

Figure 4: TCSE(C a.,, 1 DOD-STD-2167A Software Development Timebines

450

along with the development of the SRS. This is because the Software Requirements Phase

focuses on establishing software design requirements and constraints (through the interface

.eqdirements specification), and because the purpose of a formal model is to establish ab-

stract design requirements and constraints. It is important that. the formal model be written

early in the development cycle in order to demonstrate that developers have a clear un-

derstanding of the security requirements and that the security requirements are sound and

consistent. The formal model of the security requirements can then drive the development

of the specifications.

The FTLS is developed during the Preliminary Design Phase inl conjunction with the SDD.

This phase focuses on establishing design requirements on a component level, which is similar

to the goal of an FTLS to provide an abstract design of the functions of the TCB. It should

be possible to perform the initial FTLS-Model correspondence during this phase. However,

the development of the DTLS and completion of the SDD may require revisions to the FTLS

and reconstruction of the FTLS-M, del correspondence.

The DTLS is developed during the Detailed Design Phase in conjunction with the SDD.

Both the DTLS and the SDD document design decisions pertaining to function interfaces,

exceptions, error messages, and effects. The similarity between the information in the U''LS

of a B2-A1 level TCB and the information in an SDD for a highly trusted system make

the Detailed Design Phase a high leverage point for integrating security requirements into

the st ftware development process. In fact, the one point at which systems developed unader

the two-track approach tend to overlap is in the description of the design in the SDD and

the DTLS. Tremendous savvings and increased assurance can be gained by integrating these

design decisions and documents.

It is an interesting observation that there is no TCSEC design process which directly maps to

the DOD-STD-2167A Coding and CSU Testing Phase. This is largely dlue to the TCSEC's

emnphasis on design rather than implementation. The TCSEC does however require that

the FTLS and DTLS be shown to correspond to the code. This correspondence and the

Covert Channel Analysis should occur during the Coding and CSU Testing Phase which is

concerned with testing components for correspondence to their specifications. 'Phis pha5se

in both the TCSEC development paradigm and the DOD-STD-2167A development process

has the greatest amount of iteration involved, and revisions required at this stage could

conceivably affect all previous stages. This will be discussed further below.

The TCSEC functional testing can map directly into the DOD-STD-2167A CSC Integration

and Testing phase since both are concerned with testing that the system works as claimed

and that it meets its specifications.

Security Testing cannot begin until the CSCI Testing Phase and cannot be completed tantil

451

the Finial System and Integration Testing Phase. This is because the types of subtle flaws
that Security Testing aims to discover may not be present until all CSCIs in the systemi are
integrated.

Finally, the. Security Specific Documentation should be delivered during the System Integra-
tion and Testing Phase along with the operation and support documentation. Earlier drafts
of these documents can be developed during the design phlases. However, they are subject
to revision as a result of the testing and correspondences.

The above discussion has demonstrated that there is a natural ,.i~egration of the TCSFJC
security requirements and the DOD-STD-2167A software development process. In most
cases this integration requires tailoring or modifying the DOD-STD-2167A deliverables. In
some cases new security requirements and deliverables are introduced. The next subsection
wvill discuss tailored and newv deliverables.

4.2 Tailored and New Requirements

One useful out-comec of the invitational workshop mentioned in section 2 was a discussion
of the tra~de-oils involved in mnodifying versus creating new deliverables. In. defining an
integrated approach, it at first appeared that one should create new deliverables for all of
the security specific evidence. However, discuss-ion at the workshop indicated that there
could be a significant risk to creating new deliverables. In particular, if the cost (in term-s
of level of effort or dollars) is negotiated between the government and the contractor then
it is quite likely that newv or additional deliverables above those specificed in DOD-STD-
21671A might be eli-minated to save time or money. Thus, it was concluded that wherever
possible existing DOJ)-STD-2167A deliverables should be tailored instead of creating new
deliverables. There atre several advantages to this apprtoach. Fir-st, DOD-STD-2167A is
already structured to provide for tailoring of deliverables to specific contracts. Second, this
approach minimizes the likecllihood of security deliverables being cut. Third, the tailoring of
deliverables leads to a better integrated software development process which mi-ni~mizes the
chances of a two-track approach being used. Close examination of the integrated approach

presented in this paper confirmed that the DOD-STD-2167A deliverables shown, in Table 1
call be tailored to incorporate TCSEC requirements.

how1%ever, several sc~urity icquireniients from the TCSEC were not easily incorporated into
the existing DOI)-STD-2167A deliverables and are shiown in Table 2. Furthermore, it is
anticipated that as the Integrity and assured service requirements of security become better
&-flled newv (eleiverables will arise. Wh~ethier or not the newv de-liverables can be incorporated
into existing 2167A deliverables will have to be determinend as the deliverables arise.

452

Tailo'___redd21 67A Deliverable Inlcor_.porated T CSEC Requirement

SS3 Philosophy of Protection
S11S Security Policy Model
SDD DTLS and FTLS
SDF Functional Testing
STR Security Testing
(DSOM Trrsted Facility Manua•l
SUM Security Features User's Guide
SD P Configuration M~anagement P lan

Table 1: Tailored Deliverables

New Security Deliverables

Model-FTLS Correspondence
FTLS-Code Correspondence
DTLS-TCB Correspondence
Covert Ch~annel Analysis

Table 2: Security-Specific Deliverables

4.3 Where Does Iteration Occur

Section 3 discussed why it was desirable to define the integrated software development ap-
proach with respect to an iterative software development model. While it is believed that
iteration and revision can lead to a better specified and implemented system, 'we also rec-
ognize that government acquistion authorities and certification/ accreditation agencies need
intermediate deliverables in order to assess a system under development..

We have therefoi e attemnpted to identify points at which certain deliverables can be frozen
and delivered, thereby isolating the revision and iteration process t~o specific intervals. Initial
analysis of th~e integrated software development aplproach iden~tified three major intervals
within which iteration can be contained. These are shown in Figure 3 anld discussed below.

The first interval consists of two DOD-2167A phases: System Requiremecnts Analysis/Design,
and Software Requirements Analysis. These two phases are focused on definin~g overall sys-
tern and software requirements and identifyihig the essential security requirements and con-
straints. During these two phases, the SSS (tailored to inctide the Philosophy of Protection)
and the SRS (tailored to include the formal mode]) are developed. Ilise documents may
require several vet sions as lbetter understanding of the system and security reciq uirments

453

Iteration Iteration Iteration

Interval irervai Interval

SSS SRS CD7 TD T R o&s
Deliverables + + 4 M+I* 1 + -f ANN

Ph .1 Mode OI I I''~ Testing
lof Prot.LJ [r !stng FDoc.
I ' I * I t

2167A System SW Prelim. Detailed Coding CS;; CSc! SystemPhases Req's Req's Design Desin & CSU hteg. & Testing TetegAnalysis Analysis D Testing Testirn Testing

Figure 5: Iteration Intervals within the Integratei Approach

454

emerges when the Formal Model and SRS are developed. In order to ensure that all parties
have a common understandiing of the system to be developed, it is desirable to establish
baseline versions of the SSS and SRS. These documents should be complete and a first. draft
incorporated into the baseline at the Software Specification Review. Ideally, the formal
,model could be frozen during this interval and used to drive the specification process.

However, this is not entirely realistic since the complex systems under development today
have many more capabilities and design constraints than only those captured by the forma'
model. Therefore, it is recommentded that the most abstract portion of the model be corn-
pleted during this interval, but that the concrete portion of the model be revised during the
next interval as the complete system design is specified.

The second interval consists of three DOD-STD-2167A design phases: Preliminary Design
Detailed Design, and Coding and CSU Testing. These phases are focused on establishing,
.refining and implementing the system design. During this interval the SDD (tailored to
include the DTLS and FTLS), the Code and the Correspondences are developed. As noted
previously the ruhlts of the correspondences, covert channel analysis, coding, and CSU
Testing will probably require revisions to the Code and SDD. These documents should be
coinleted and delivered in draft form at the end of the Coding and CSU Testing phase..
However, they cannot be finalized until the System Integration and 'esting Phase due to
the possibility of changes required as a result of the Functional and Security testing.

The third and final interval consists of three DOD-ST!)-2167A design phases: CSC Inte-
gration and Testing, CSCI Testing, and System Integration and Testing. These phases are
focused on demonstrating that the implemented system meets its specifications, and on de-
velop.,ig operation and support documentation. During this in~terval the system and all
system specilii.ati, ns and design documents are finalized and delivered.

5 Conclusions

This paper has examined the software development processes of DOD-STD-21G7t . 'e
TCSEC. It was dctermined that in order to integrate these two processes it is 1ec .r"ry
to view both the process of developing software and the engineering of secure systems as
iterative processsm.

A first approximation at a tailored software development process w1hich integr ates security

requirements and DOD-STD-.2167A requirements was presented, along with the rationale
for the integration. This demonstrated that there is a natural integration. Furthcrmore,

455

the integrated approach appears to be practical and realizable in the near-term since it
relies on tailoring DOD-STD-2167A, rather than requiring major r.visions to the standard.
For the immediate future, this approach should be subjected to peer review and used on
a development project which requires conformance to the DOD-STD-2167A requirements
and TCSEC security requirements. It is becoming increasingly clear that in order for large
complex battle management systems to be developed using the DOD-STD-2167A software
development process and meet security requirements, an integrated development approaclh
such as the one suggested here must be followed.

456

A List of Acronyms and Abbreviations

ADP Automatic Data Processing

CR.ISD Computer Resources Integrated Support Document

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSOM Computer Software Operator's Manual

CSU Computer Software Unit

DID Data Item Description

DTLS Descriptive Top-Level Specification

FSM Firmware Support Manual

IrTT Formal Tr,-T o .. S ifiCation

RFP Request For Proposal

SDD Software Design Document

SDF Software Development File

SDP Software Development Plan

SPM Software Programmer's Manual

SPS Software Product Specification

SRS Software Requirements Specification

SSS Systemr/S.,rrent Specification

STD Software Test Description

STR Software Test Report

SUM Software User's Manual

TCB Trusted Computing Base

TCSEC Trusted Computer Systems Evaluation Criteria

457

References

[1] Bell, D. E. and LaPadula, L.J., "Secure Computer !7:jstemCs: UTnifted Exposition and
Multics Interpretation", MTR-2997, The MITRE Corp, Bedford, MA, March 1976.

[2] Bodeau, D.J., "TCSEC Specification and Verification Documentation Applicability: Pn-
terim Report", WP-27545, The MITRE Corporation, Bedford, MA, September 1987.

[3] Boehm, B.W., "A Spiral Model of Software Development and Enhancement", reprinted
in Software Engineering Notes, Association for Computing Machinery, Volume 11, No
4, August 1986.

[4] Crocker, S.D., Siarkiewicz, E., "Software Methodology For Development of a Trusted
BMS: Identification of Critical Problems" TM-8361/003/00, Canmarillo, CA, The
UNISYS Corpora'ion, April 1988.

[5] "Department of Defense Trusted Computer System Evaluation Criteria,'" DOD 5200.28-
STD, December 1985.

[6] Farmer, W.M., D.M. Johnson, F.J. Thayer, "Review of RAP Design Verification",

MTIR-10227, The MIT RE Corporation, Bedford, MA, April 1987.

[7] "Proceedings JLC-CRM 4th Biennial Software Workshop, Orlando II", 23 March 1987.

[8] "Minutes of the Trusted Software Development Workshop 21 October 1988", Pflceger,
C.P., T.C.V. Benzel, L.D. Martin, TIS-R-197, Trusted Inf rmation Systems Inc., Glen-
wood, MD, 14 December 1988.

[9] Royce, W.W., "Managing the Development of Large Software Systems: Concepts and
Techniques", Proceedings, WESCON, August 1970.

[10] Marmor-Squires, A.B., Rougeau, A.P., "Issues in Process Models and Integrated Envi-
ronLment for Trusted System Development", Proceedings 11th National Computer Secu-
rity Conference, Baltimore, MD, October 1988.

[11] T'avilla, D.A., "A Guide to Understanding the Orange Book Security Model Require-
ments", WP-26782, The MITRE Corporation, Bedford, MA, May 1986.

[12] MIL-STD-490A, Military Standard: Specification Practices, Department of Defense, 4
June 1985.

[13] DOD-STD-2167A, Military Standard: Defense System Sofiware Development, 29 Febru-
ary 1988.

[14] DOD-STD-2168, Alilitary Standard: Defense System Software Quality PIrogram, 29
April 1988.

458

riiE EI,,MRONIC SE"URIIY COMMAND
AUTORIATED ACCREDITATION4 PACKAGE

MR HORACE B. PEELE
Chief, Policy and Security

ESC/Communications-Computer Systems
San Antonio, Texas 78243-5000

INTRODUCTI ION

The Electronic Security Command (ESC) is or- of thirteen major
commands within the United States Air Force. It performs several
classified intelligence missions. As the ESC Designated Approving
Authority (DAA) for sensitive unclassified and collateral systems
and as ihe official liaison office to a national-level agency for
operational computer security issues, I am pleased to have this
opportunity to discuss an important ESC initiative, the development
of the "ESC Accreditation Package".

BACKGROUND

First, we must set the stage. As the need for computers grew in
numbers and the interdependency between information processing and
telecommunications increased, the Air Force realized that several
potential new threats were developing:

First , the end-users were becoming more and more reliant on
automated systems to support critical missions,

Second, there is an increased exposure to risk due to
requirements for networking to support these missions,

And lastly, the structuring of communications-computel systems
with well defined data bases results in a high loss potential if
these systems are exploited.

Inr other areas of the federal government and the co,,7ircial world,
Sthe same type of concerns began to grow. In an effort to strengthen

its resources against these weaknesses, the Air Force functionally
relocated and redefined "COMPUSEC" to be part of Information
Systems Security defined as: "The protection afforded to
communications and computer systems in order to preserve the
availability, integrity, and confidentiality of the systems and the
information contained within the system. Such protection is the
application of COMSEC, TEMPEST, and computer security executed in
liaison with information security, personnel security, industrial
security, resources protection, and physical security."

This was the first effort within the Air Force to integrate COMSFC,
TEMPEST and COMPUSEC. Later, the Air Force changed the title
"Information Systems Security" (ISS) to "Communications-Computer
Systems Security" without further redefinition. Partial rationale
was to deconflict and distinguish ISS arnd the already existing

459

"Information Security", one of the fundamental security disciplines.

Information Security is defined as: The result o f any system of
administrative policies and procedures for identifying, controlling,
and protecting from unauthorized disclosure, in for mit ion whose
protection is authorized by executive order or statue (DOD
5200.1-R/AFR 205-1).

FUND1AMNTAI. SECU.RITY DISCIPLINES

For a complete understanding of ISS, it is necessary to place the
fundamental security disciplines into context and describe their ISS
relationships. One must recognize and be assured that there are
only three fundamental security disciplines--"Personnel Security,
Physical Security, and Information Security" and that all other
security disciplines, without exception, are derived from and
directly support one or more of these basic fundamental securities.
I f all written word were still chiseled into stone, the fundamental
securities would be all that prevailed. It is only through
technology that we transgress into the concept of derived security
disciplines. Let's visit these fundamental securities by definition.

Pe;-sonnel Security is a fundamental single-d6sciplinary security
umbrella governing the establishment of policies and procedures to
ensure itt I the acceptance and retention of employees (botN military
and civilian) and that granting access to classified information to
those employees are clearly consistent with the interests of
national security.

Physical Security is a fundamental single-disciplinary security
umbrella governing the establishment of policies and procedures for
an area that deals in terms of threats of physical damiige to Air
Force priority resources, safeguarding defense information, security
against esponiage and subversion, and the USAF Resources Protection
Prog ram.

Information Security is a fundamental single-disciplinary
security umbrella governing the establishment of policy relating to
the protection of information, regardless of its physical state,
which includes policy for unclassified, sensitive-unclassified, and
classified information.

As well as understanding the fundamental securities, it is also
necessary to relate how ISS, a derived security, supports the basic
fundamental securities.

Information Systems Security i5 a derived multidisc'jplinary
security umbrella governing the establishment of policy relating to
the protection of information while the information is specifically
in the electromagnetic state. It is a function which integrates
Communications Security, Computer Security, and TEMPLST in direct
interdiscipli nary support of Personnel Security and Physical a"I
Security as well as Information Security.

460

Now tha, we have explored one way of look;ng at ISS, we need to
discuss another issue which consis tentl3 intirrupts Ihe logic
process, that being the misuse of certain words rela!in g to ISS.
Specifically, there is gross misuse and interchan, ge of the words
"certification" and "accreditation". This has been a topic of
discussion during recent meet ings of various Stibcomumi tee n n

Automated Information Systems Security (SAISS) working groups.

The Chairrman of the SAISS Policy Working Group indicated that Wlile

nany departments and agencies do have policies and techniques for
certification and accreditation, the problem is inconsistency. What
one agency calls certification, another calls accreditation. The
Chairman of the SIASS Systems Securiiy Standards Working Group
poInted out thaI there is no national-level pot icy outside the

intelligence c o0 11m u n i t y requiring both cert i fict(ion and
accreditation. It has been suggested that a new, Execu live Order be
written to cover this issue.

In addressing any forum, one must be carefuli not to usc these woids
ikicorrectly and te ctha lenge the audience ic order to place the
b i e f i ng or d i s cuss ion on c emmon i grf)unds . 1h erc fore , let ut,; visit
these critical words and view their Air Force definitions,

I ha, sp ecif ie CS heC e xtIenI to wh ichI a s ys t em i e etIs s e cu r itIy
r e qu iremrcn, s (AlFR 700-10 , par' . Ati-). '1he term is usuaily used in a.

phrase such as "TEMNIP-SI certi tied" or "certified Trusted Compint Uig
Sys {t em" ,

Accreditation. The o fficial authorization granted by the
appropriate Des ignated Approval Authority (DAA) peralitt in" Ihe
processing of clasaified data on a co~imiuitications--cokiiiuter s.vystera
(AFR 700-10, p ragrapih AI-4). The issuance of any approval is based
upon the PAA's review of the system accredifation package.

From these points of view, "certificatiori" is lhe pr -r I hat the
system including all hardware and software actually works! While
"Accredi tat ion" is a "Mother , may I use it?" concepi. fhis sets ,ike
stage for our discussion.

ACOUqDI i TAT i ON DI S SCUSS I ON

What format is an acc-edilat.ion, package. Whaat Ii fe cycle hiase does
or1e subrili t the ace rtd i tat, i on,, request ? How does one obtain
permission to ase a systcm? VWho i s the D)es ignated Ai prov %ng
Authority? How lon~g toes it take to get approval? Who could use an
automated accreditation system? Many questvonts...

The proliferation of s tanda,•l tne sste is , coupled with th c
accreditation requirement, hiS resulted in fthle production of
literally hundreds of accredita! ion packges s.- for new systems, for
systems which have had hardware or sof ware c-anfiguratio i changes,
and for systems wh i h have been r e Ioca t c(d f roim one place to
another. These packa ges, a re a I I being c rea ed or upda Id , a h I lie

461

cas miay be , by the Iriformat ion Systems Securi ty Of ficer (ISSO) i n
some handy non-standard format and probably as an additional duty.

As werkers , we i~ndcrstand the problem of be ing told to do sonicthing
ext rai, the "NOT IN MY JOB DESCRIPTION" syndrone , and hov% i t tends to
deflate morale. As managers, we sometimes have no choice ,
especially when we are extremely short of full-time ISS personnel
and ha.ve lo, do the manhour--intensive job out-of-hide.

A-eck-ediitation results in pranting the user the approval-to-process.
As a -ESU It , accreditation has received constant high-level
attention reflecting the growing concern of managing increased
s ec u rity r equ ir eme nt s w it h a continuing c r it icalI shortage o f
na n powe r. The fact t h at t he re is no standard format or process i s
alIso a maj or concern .

Af tor the acquis it ion, the cert if icat ion test ing , and the permanent
installation~ o f the AIS , the accreditation process is the mo st
ori\xcal to A successful operation. I f the formalI submi ss ion o f thie
tcrthd itat ior package i s rejected by the DAA because i t was

irnprope rlIy accomplished, tIne n it. usually result(s in a d eIa y in
implemýtent ing the new sys tem, potent ial ly a miss ion cr it ical sys tem,
pas,,ibly even a life-saving system..

Upo p,)k 3rcIi mi n ar y investigation, i t appeared t ha t standardization
co ulId s upportI interfaces t o o the r systems such as: Vulnerability
analysis; incidecnt reporting analysis; national and lower-level data
C alIl responses; t he creation of security management products;
configuration control ; inventory control ; e .-s e t he requ iremen ts i n
hos t- enan t agreem4enits; PublIi c Law 100-23S re po rtIing; and , othle r
rep~orting requ irement & w itIh in t he intelligence community. Simply
s ta te.d, the requ iremen ts anal)ys is revealIed t ha t acc red ita t ion is a
piece of a large complex system of disjointed processes.

PIECZS OF THE PIV
19 999 9999

OTIWRS

SYSTI M i'AC 11,1 Y
ACCRED ITAT ION ACCRED 1 TAT I ONN

MIANAG3EMENT I NVENTORY
l'RODU I'S SYSTEMIS

VUL.NERAB I L I TY TEMPEST
SYSTEMS

462

Autoniating the procedure could also reduce user complaints about
workload, amount of time. But more beneficially, it would tend to
capture the original input in electronic media form and assist in
eliminating redundancy in preparation of reports among similar
systems. Therefore, developing a standard accreditation package
format and a user-interactive application operating on standard
hardware systems was a giant step toward alleviating the burden of
the ISSO and the system users.

The strategy for developing such a tool must be approached with
caution. A failure could result if the development of a system does
not consider all potential users. In the case of ESC, it was
necessary to consider support to the accreditors from the both the
classified and unclassified worlds.

The resultant system also had to support all organizational levels
from the lowest-level unit up through to the major command level, to
the military department, and to the national level agencies. The
ESC system was designed and programmed using dBase III Plus
operating under MS-DOS. It was designed through several DOD-wide
workshops of drafting the knowledge of many representatives of many
components. The purpose of the DOD-wide workshops was to
standardize the format such that it would work for any Army, Navy or
Air Fe rce FJAA. Next, th e firs dBa se 1t Plu, prototype was r
developed and sent to all Air Force major commands for evaluation.
As a result, the prototype was expanded during development to meet
all known accreditor requirements. More recently, it has been
updated to support the PL 100-235 and new Director of Central
Intelligence reporting requirements.

With a prototype program in hand, it was decided to determine the
actual cost savings in the preparation of accreditation packages. A
subordinate ESC organization was chosen as the test facility. This
organization, comprised of approximately 450 personnel, had
completed 85 accreditation packages on systems ranging from
stardalone personal computers to mainframe systems in one year. The
average time in the preparation of these packages was 8 hours each.
The following depicts the cost of their preparation.

8 Hours X 85 packages (Total hours) 680
The ISSO salary per hour $22.00
Total cost of manual preparation $l4,_ -0.00

The following evaluation was performed to determine the dollar value
savings if the same 85 packages had been prepared using the dBase
III Plus prototype system averaging 2 hours for each package.

2 hours X 85 packages (Total hours) 170
The ISSO salar'y per hour $22.00
Total cost of dBase III prepara-ion $3,

463
463 "'

A comparison reveals an outstanding result!

Total cost of manual preparation $14,960.00
Total cost of dBase III preparation 3h740.00
Savings (one Year -- one organization) $11,220.004

One has to ask the following question: IF TillS B1E TRIE, TI1\N WHIAT
IS TIlE DOLLAR VALUE TO TilE AIR FORCE? WHAT IS TIHE DOil.AR VALUE TO
OTHERS? WMAT OTHER BENEFITS CAN BE DERIVED WI111O1'[ADDITIONAL INPU'I"
COSTS?

The accreditation package can also support other important functions
such as vulnerability reporting, incident reporting analysis, data
call responses, the creation of security management products,
configuration control and inventory control. As an examDle, the Air
Force implemented the Department of Defense Computer Security
Technical Vulnerability Reporting Program (CSTVRP) on 27 Apr 87.
The CSTVRP requires the ISSO to identify known vulnerabilities and
report them for subsequent action. The ISSO can use the repository
of information found in tihe accreditation data base files to support
and minimize efforts in the reporting to the CSIVRI'.

Essentially, once a vulnerability has been determined, it could be
linked w.ith the appropriate accreditation package describing the
network configuration plus all the software and hardware used by the -
suspect system. Likewise, the data base can be used to determine
the location of other possible suspect systems with the same
potential vulnerability, thus gaining control of locat ing the
vulnerability throughout a given organization, agency or several
agencies. Likewise, at a higher levels of command, the data base
can be used as input to a prediction analysis model. Such a model
could be designed to locate other possible suspect systems with the
same potential vulnerability while actually predicting a possible
security incident or break-dow'n (vulnerability wise) in a system
before it happens.

ACCRED I TAT iON PROCE)URE

The following is an extract of the actual procedure, published in an
ESC regulation, outlining the preparation of an accreditation
package.

HOW? All AlSs which process, store, transfer, or receive
unclassified, sensitive-unclassified, or classified information must
be accredited before they may legally be operated in any particular
functional area or location. This applies to all systems;
government owned, lea sed, or on loan from other organizations.
While accreditation can only be granted by the DAA, interim
approval-to-process may be granted by the designees of the DAA.

1. Original Accreditation Process. The accreditation process
applies to any AIS processing unclassified, sensitive-unclassified,
or classified and requires the submission of an accreditation
package for subsequent approval.

464

2. When to submit an Accreditation Package. The original request
should be submitted not later than 60 days prior to desired initial I
operating capability (IOC) or as soon as the required information is
known on specific components, configuration, and interfaces. On
large AISs where the purchase contract calls for a critical design
review (CDR) , submit the package in the development phase
immediately after the CDR.

3. Types of Accreditation Requests/Methods of Submission. There
are two ways of submitting accreditation packages based upon the
requirements.

a. Single Accred ation. The primary method of requesting
accreditation is to submit only one AIS per package. The reasons
for this type submission vary, but range from the complexity of
accrediting a large AIS to the simplicity of being able to manage
accountability easier by having only one AIS per package. And there
are no restrictions.

b. Type Accreditation. This method permits the submission of
one package requesting accreditation of several AISs and all at one
time. There are certain restrictions on a "type" submission: All
the AISs must be used for the same mission, installed in the same
general location, operating in the same security mode, processing
the same classification levels, have the same basic hardware --

configuration, made by the same manufacturer (like all Z-150s), and
assigned to the same CCSSO. Do not mix types of AISs within the
same package.

4. Types of Approval-to-Process. Once an accreditation package
has been submitted, you may receive a "Temporary approval-to-
process", "Interim approval-to-process", or "Accreditation".

a. Temporary Approval-to-Process. Temporary approval is a
special case usually based upon the requirements to test a research
or developmental AIS for a limited time-period such as 30 days, 45
days, etc. The issuance of temporary approval-to-process is based
upon the complexity of the AIS and any network connectivity. A
package of this nature may be approved by either the DAA or the
designees of the DAA after the receipt of the accreditation package
and is based upon a complete review of the accreditation package.

b. Interim Approval-to-Process. Inteim approval-to-process
is the typical first step in the accreditation process. An
"Interim" may be granted by the DAA based upon a preliminary review
of the accreditation package. Upon review, temporary waivers may be
granted, on a case-by-case basis, for the operation of an AIS which
has security deficiencies if the waiver supports the time-critical,
mission-essential processing requirements of the coommand. An
"Interim" may be issued on any size AIS, networked or standalone,
located inside or outside of secure facilities, regardless of the
classification level of information (unclassified, collateral or
SCI) being processed. It applies to all AISs operating in the

465

Dedicated, System Iligh, Compartmented, or Multilevel Mode of
operation.

c. Accreditation. Full accieditat ion for any AIS can only be
granted by the DAA after a site visit and only after a full test of
the security controls of the entire system. It applies to any AlSs
which may have previously been given an interim approval-to-process.

5. Updating an Accreditation Package. When certain operational
changes are made in an accredited AIS, its accreditation package
must be updated or the DAA may cancel the accreditation. Updates
are required when:

a. The AIS hardware or software configuration changes at the

component level, not board level.

b. The AIS is relocated to another area, building or room.

C. The security mode of operation of the AIS changes.

d. The classification of material processed by the AIS is
changed.

e. The AIS is being connected to a network not previously
connected.

6. Rescinding Accreditation. The DAA may cancel the accreditation
of an operational AIS if violations are found in the operational
status of the AIS. However, there are acceptable reasons for
operational changes that do not normally constitute rescinding
accreditation. Accreditation is not rescinded for:

a. Substitution of components while components are in
maintenance. However, if the original component is not returned to
the AIS when repair is completed, then an update must be
accomplished to reflect the current serial number.

b. Relocation of an AIS providing the accreditaiion package
is updated to reflect the relocation and providing the relocation
was accomplished IAW established procedures.

C. Addition of new terminals or peripheral devices providing
the accreditation package is updated to include the new devices.

7. Three Year Anniversary Review. Each accreditation will be
reviewed every three years. The ISSO is responsible for ensuring
the recertification of each accredited AIS upon its three-year
anniversary. If undocumented changes have been made to the AIS an
updated package will be sent to the DAA.

8. The Accreditation Package. The following accreditation
checklist has been automated and is the basis of the dBase Ill Plus
Accreditation Package. It is imperative that the information be
accurate and the format strictly followed. It consists of two parts:

466

a. Cover l,etter. The fi rst sheei of an accredi tat ion package
is a cover letter. II conta ins a s I a t clue it by tlie cogn i-za, t
cert i fy ing, authorit ics that thie AIS meets minimumll requirements of
all security directives, it permits ve r i fi cat ioon by t lie commitande r
and re flects thie requ i red coordinat ion. It must be signed by tie
(CSO, the TI'IMPS'i officer, and thie Commander. The cover leI icr is
!NCLASSII:II;I) when remoed from tlie classified accreditation package.

b. Accreditation Checklist. The checklist applies to all
commaind A I S s whether office informal ion systems, s Ianda I one
computers, small dedicated AISs, or large mainframes. The checklist
is usual 3Iy classi flied CONIFIDI'ENT IAIL when completed, but may range
f rom unc lass if ed t o h igh ly c las s if i ed.

9. Accreditation Package Accountability. Two data elements are
used account ing and t rack tig accredit at ion packages in both manual
and automated systems at various command levels. These are
covernames and package numbers.

a. Covername. The covername is one or more words, no longer
than fifteen characters, which is assigned as a local system
ident i ficat ion (SYSID). It must NOT relate to thie use of or to the
name of the AIS. The covername (SYSIID) is centered on the top of,,: covc rsh•• fl"d nh P•-.-d t• i r •, orlz ,

b. Package Number. The package nuniber is a minimum of four
concatenated fields: the MAJCOM (EStC) ; tIle unit ; t a one-up serial
it umb e r w it h in t ie year; and , a subordinate kin i t if applicable.
ESC-6914-89001 is an example of the first package subimmitted by the
6914LS5 in 1989. LSC-l.ST--8900 I-ONINi is an example of a operat ing
locat ion "O MII"1, suhordinate uni t to a parent unit of FSC-EST. The
package numnbe r is placed oil the top-left corner of the coversheet
and the accreditation checklist.

10. Aitachments by Separate Submission: %%hen the requirement for r
all attachment to a package exists, it Imay be sent by a separate
transmit tal document . Ensure that thie docunment contains ihe AIS
cove maine and package numbe r . The fol loW inIg are cur rent
requ i reme it s :

a. Block Diagrams and Floor Layout Drawings. The DAA
requi res block diagrams and or floor layouts on AIS dependiing upon
the complexity of the AIS and its connectivity. The following rules
apply:

(I) For personal computers located i ai an office
environment, neither a drawing or block diagram is required.

(2) For Office Informalion Systems located in an office
environment, a block diagram is required.

(3) For large AISs installed within all IPC, a scaled
drawing or configuration chart showing tile location of the AIS major
componiernts is required. Include information on all communication

467

lines to oIher computers, networks, and peripherals. Indicate the
location of all black phones. Terminals located in the user areas
do not have to be shown since their loca ion is already documented
in the package.

b. Risk Analysis. AI"R 205-16 states that the DAA determinies
the amount of information needed for issuingn approval-to-process on
an AIS and outlines the procedures for performing a risk analysis
relative to the AIS operating environment in a bu ilding. For
clarificationi, "building" includes any building where entry is not
controlled by an armed guard on a constant 24-hour-a-day basis and
does not have a restricted fence. The following requirements for
risk analysis exists:

(1) Any AIS located in a building outside of a secure
environment which processes TOP' SL'CRiT requires a risk analysis for
the AIS itself.

(2) Any AIS located in a building outside of a secure
envirooment which processes SECRFT or CONFIDENTIAL requires one risk
analysis for all similar AISs within the same office complex within
the same building. Any secure facility where entry is controlled by
a armed guard and has no restricted area fence are exempt.

(3) An aiialysis is considered valid until sonic building
configuration change impacts upon its documented security measures.

c. Provide other attachments as necessary. The DAA may
require any of the referenced documents in the answers.

SAMPLE ACCREI) I TAT ION PACKAGE

The following is an extract of khe questions found in an
accreditation package. As a sample, it does not contain all the
information presented to the DAA. Due to the nature of the
ope ations of ESC, some questions have been eliminated for security
reasons. However, the sample is indicative of the detailed
documentation presented to the DAA in order to obtain approval-
to-process.

ACCREDITATION PACKAGE FOR (Covernaine)

PA,7KAGE: (Command)-(Uni t)-(Year-Serial)-.(Srbordinate unit)

1. Unit Identification. Enter the complete address for the
organization and location of the activity for which the AIS
accreditation is being requested.

2. Information System Security Officer (ISSO). Enter the name
(with rank), title, organization/office symbol, phone numbers, and
message address of the ISSO who will be responsible for the AIS(s)
when operational.

468

3. Mission Statement. Describe the role of the AIS(s) documented
in this package in support of the organization's mission. Include a
description of any network connectivity requirements.

4. AIS Identification. Enter the local system identification,
assigned package number, system nomenclature, trusted computing
base, number of systems in the package, and whether the system is
connected to a local area network and/or external communications.
More than one AIS may be included if type accreditation is being
requested for standalone AISs or if the package represents a cluster
of AISs being networked on its own network device.

5. Operating System and Commercial Software. List all software
installed and operating on the system(s) in this package. Include
all operating system(s), data base system(s), communications
software, security software, off-the-shelf software, etc.

6. Security Mode of Operation. State the AIS's security mode of
operation; Dedicated, System High, Compartmented (Partitioned), ot
Multilevel, and the kind of processing required; continuous or
periodic. If periodic, indicate the time period; hours and number
of days per week.

7. User Cle-rance L ew e State the formal clearance, formal
access, and need-to-know requirements of all users, both direct and
indirect, which are anticipated to be authorized access to the
AIS(s) contained in this package.

8. Data Classification Level. Estimate, in percentages by
category, the amount of information which is anticipated to be
processed on the AIS(s) in this package. Indicate percentages for:
Unclassified, Confidential, Secret, and Top Secret.

9. Facility Accreditation. List all buildings and rooms in which
all components of all system(s) in this package are located, If
located in a secure facility, provide the accreditation authority
letter date or message DTG authorizing storage. If the AIS(s) does
not process classified and is not located in a secure facility,
enter the date, title, and number (if any) of the local-unit
physical security policy used to protect the AIS.

10. Hardware Environment. List all hardware components installed
and operating on the system(s) in this package. For each hardware
component enter: the building number, room numbtr, manufacturer,
model number, type of component, and serial number.

11. Audit Trails. Describe the audit trail procedures used to
record data and facilitate review. List the names of the data
elements recorded and whether these functions are manual, automated,
or a combination of both.

12. User Identification. Describe how each user is identified as
approved, with an established need-to-know.

469

13. User Authentication. Describe how the AIS authenticates each
person attempting access. The mechanism for doing this may include
software, hardware, and other measures such as user-identification
and passwords, to validate the identity, and file-access authority
of the AIS user. Also, describe how user-passwords are generated,
disseminated, and controlled.

14. Product Control. Describe the labeling procedures for output
products, including hardcopy, magnetic and transportable media.

15. Sanitization. Describe the sanitization procedures for
storage and transportable devices. The statement "lAW (regulation
or procedure name, date)" is acceptable.

16. Risk Assessment. Has a Risk Assessment been performed on the
AIS? If so, enter the date of the assessment, assessment report
title or number (if any).

17. ST&E or Certification. Has a Systems Test and Evaluation
(ST&E) or Certification been performed on the AIS? If so, enter the
date of the ST&E/certification, report title or number (if any).

18. Configuration Management. Who performs configuration
management and under what authority?

19. Security Education. What are the security education
procedures for the initial training of the AIS users for both using
the systems and security procedures? What recurring training is
done to continue security awareness?

20. Emergency Destruction Procedures. Refer to procedures for
emergency destruction in the event of evacuations, natural
disasters, hostile actions, etc., to prevent the compromise of
sensitive information.

21. Contingency Plans. Refer to the contingency plans to be used
for file recoveries, systems backups, auxiliary power, off-site
storage of critical materials, etc.

22. Previous Security Incidents. If a reaccreditation of an AIS,
describe any security incidents or spillages experienced in the
previous three years.

23. Maintenance. Provide a complete summary of the maintenance
procedures and state the clearance level of all contract personnel.

24. Network - Host Connectivity. List all network connectivity
being utilized by the system(s) in this package. For each host
connection enter: the host name, the reason for the connectivity
(e.g., bulk data transfer, electronic mail, remote query, data base
update, etc), and the classification level of the connectivity.

470

CQNCiIUS ION

1he data base structures enable the DAA and other users to produce
many reports: management products by organization; by facility; by
type of equipment; by types of software; by classification level; by
security mode; and, many others.

An automated accreditation package is a great security tool. As the
ESC DAA, I am promoting the use of an automated accreditation
package, but I do not beli2ve that the promotion of such a security
tool should simply stop within ESC. It is needed throughout the
Department of Defense and the government. It tends to solve other
problems such as hcost-tenant agreements which often require
different accreditations for the different services, sometimes
duplicative. I am convinced that its use is just beginning to
unfold and its development could potentially be one of the "most
significant" impacts on ISS for many years.

471

A STRUCTURED APPROACH TO RISK ASSESSMENT:

AN INNOVATIVE CONCEPT

(DESCRIBED BY A CASE STUDY OF THE CONCEPT AS APPLIED TO
THE LEPARTMENT OF ENERGY'S RISK ASSESSMENT REQUIREMENTS)

June 30, 1.989

Submit''--o-d in 111son ct 4-L.- '12th Z"O¶0P'- Cal 1 -j~: '7 ape,,;

Topical Category: Management & Administration
(Managing Risk)

Prepared by:

Jennie A. Stevens
&

Richard E. Weiner
Booz, Allen & Hamilton Inc.

4330 East West Highway
Bethesda, MD. 20814

Office _2e. No. (301) 951-2071

472

A STRUCTURED APPROACH TO RISK ASSESSMENT:
AN INNOVATIVE CONCEPT

Prepared by:

Jennie A. Stevens & Richard E. Weiner
Booz, Allen & Hamilton inc.

Bethesda, Maryland

ABSTRACT: The purpose of this paper is to present a newly
developed concept for computer security risk assessment that was
developed in 1988 and 1989 by Booz, Allen & Hamilton Inc. The
concept, when effectively applied to an organization's risk
assessment needs, provides significant cost savings, promotes
management involvement, and provides a framework for performing
non-labor intfnsive updates over the life-cycle of a given system.
In order to iLlustrate the application of this new concept to a
real world situation, the paper examines a case study of its
application to the Department of Energy's risk assessment needs.
While it should be noted that the concept must be customized to an
organization's "culture," way of doing business, etc., it has broad
utility and application to a majority of organizational types:
governmental (federal or Local), commercial, and international.
Using our concept risk assessment guidelines and the actual

pet ormneeof risk assessment-s can bereadily adapted and proviJde_
a cost effective way to assure high levels of computer systems
security. Booz, Allen is currently investigating development of
structured approaches for use in preparing contingency plans and
security plans, as well as for guidance to support the complicated,
often poorly-executed processes of certification and accreditation.

1. INTRODUCTION: AN OVERVIEW OF THE BOOZL ALLEN CONCEPT

Booz, Allen & Hamilton, under contract to the Department of
Energy's Office of ADP Management and the Computer and Technical
Security Branch, recently developed improved risk assessment
guidance for use by DOE and DOE Contractor organizations. The new
tool is entitled "The DOE Risk Assessment Guideline -- A Structured
Aroroach, and was developed based upon Booz, Allen & Hamilton'
concept.

The concept is, in essence, the framework upon which an
individual organization's customized guideline is built. The
concept provides a systematic structure and approach to the various
evaluations and searches for information. lt simplifies the risk
assessment process by recognizing existing security initiatives and
providing much of the necessary data and decision-making processes
that comprise a risk assessment. The intent of the guideline is to
provide, in one package, all information necessary to conduct and
record the results of a risk assessment. Through application of
this concept, in addition to required documentation, a useful
end-product -- an Executive Summary -- results. The concept can be
applied to develop a comprehensive guideline for most organizations
in the government and private sectors.

473

The approach consists of six specific steps, each of which is
guided by specific instructions and special worksheets. The
worksheets are supported by informational resource tables. The
worksheets solicit specific types of information necessary to
support an organization's risk assessment process. The resource
tables provide the majority of data and information necessary to
complete the worksheets. Data sets provided in the resource tables
are customized to suit the needs and "culture" of the organization.

The concept also allows the user to go "off-line," if desired,
to use any risk assessment tools that have proven useful in the
past, and to enter the results of such off-line analyses in the
appropriate section(s) of the Executive Summary. Further, the
concept encouraqes the use of an organization's other, already
available computer security documentation as input to the process
or as supporting documentation. (Such existing documentation mignt
includ- inventories, security plans, threat statements, etc.).
Finally, the Pxecutive Summary, supported by the completed
worksheets produced as an end-product of this approach has multiple
utility. This is because it partially or fully addresses many
areas that are covered during security inspections, compliance
reviews, audits, certifications, accreditations, etc.

Use of this structured approach can greatly expedite and
simplify the process of risk assessment. It allows those
responsible for computer security to develop a comprehensive, sound
assessment without the whcel_-opin--ing and do.Lar waste Of i...a.y. .
the currently used methods. Forther, its use by a Government
agency can provide the benefits of: significantly lower agency
expenditures in terms of manpower; greater accountability by
program staff; enhanced computer security awareness and training;
and a greater assurance for management that the required process is
being completed in a consistently meaningful and effective manner.

2. THE DOE CASE STUDY

There were two fundamental objectives that were established at
the start of the DOE project: 1) to determine the "sense" of those
individuals familiar with risk assessment requirements as to their
likes and dislikes about the process and available methodologies
and 2) to help install a greater appreciation for risk management
as a way of doing business through use of the products of this
effort.

Security professionals in both the Government and commercial
sector were interviewed to identify what "worked" and what didn't
"work" with respect to risk assessment. Consensus among the
interviewees was strong that risk assessment is NOT beneficial if
it is:

Excessively detailed and lengthy -- making it a paper
exercise rather than a beneficial management and security
awareness process

474

Overly quantitative in approach, thus resulting iii an
end-product that is difficult to interpret (if not
useless)

Not oriented towards the true "bot-tom-line": "What is it
going to cost to fix the problems identified?"

Did not directly support the budget process

Not geared to providing a management level "buy-in" for
any remedies required or acceptance of any identified
risks.

A thorough review with the persons interviewed of their
organization's computer security culture, environment, and unique
ADP applications was also undertaken. Again, views regarding the
utility of risk assessment underscored many of the same concerns as
were expressed above. Risk assessment had become a paper process
divorced from the management decision-making process. It was also
felt to be important to recognize that the risk assessment must be
integrated with the management process in ordel to achieve
accountability for accepting a system's current risk profile and/or
for allocating additional security resources.

A limited survey of DOE computer security professionals also
IUI1dt-LSOor U that several otlhc of .cm c- 1me t
process were problematic. Most of the DOE professionals surveyed
indicated that they had difficulty in determining the scope of a
risk assessment; many were unclear about the amount of
documentation they should develop to support the process; and a
majority of them felt that it was difficult to realisticall.y
identify risks to and place a value upon intangible, subjective
assets.

Upon completion of the community wide interviews and DOE survey
and review, our analysis resulted in the development of a set of
comprehensive objectives for the DOE Guideline. Based upon our
findings we recommended that the Guideline for DOE should be:

Simple to understand and use

Generally consistent with and useful for both unclassified
and classified environments

Cost-effective in terms of preparation of the Guideline
and the amount of personnel time that would be required to
perform the actual risk assessment

Self-contained for ease and speed of utilization

Appropriate for use at various facilities or applications

An information source and training aid

475

Non-labor or time intonsiVe for the use-

Capable of providing accountability and reasonable
documentat ion

Adaptable for use/integration with currently used risk
assessment metLhodologics (software and documentation typo)

Flexibly stiuctured to permit use of existing computei
security related documenLation as input into the risk
assessment framework (i.e., inventory, cost data, threat
statements, etc.)

Useful in providing assessments and recommendations of
value to managers responsible for accepting risks or
planning and funding computec security improvements

Supportive of the budget and initiatives justification
processes.

The approach to conducting risk assessments as would be
suggested by this Guideline was developed with these objectives
firmly in mind. The Guideline's structured approach fully meets
the risk assessment requirements imposed on Federal Agencies and
DOE ADP systems by Federal and Department computer security policy.
In fact, the need to develop such an approach is given impetus withý-C publ i c t r 1e e aS.... - •v,1JJ I-,1 Vvio ',. cLui• A- , :management o e e a

Information Resources," which places additional emphasis on
conducting risk assessments of all types of Government computer
systems. Appendix MII of A-130 underscored that such assessments
are to provide the basis for making informed management decisions
related to accepting identified risks or for implementing
appropriate cost-effective countermeasures. This is why it was
essential for us to develop management involvement and support as
an integral element to our approach. A-130 also allows for varied
approaches to lulfill the risk assessment requirement; risk
assessments may vary from "an informal review of a microcomputer
installation to a formal, fully quantified risk analysis of a large
scale computer system." This variation consideration is also
appropriately handled.

The Department's 1988 publication of DOE Order 1360.2A,
Unclassified Computer Securit_y Pro__gram, and DOE Order 5637.1,
Classified Computer Security Program, also reflect the need to use
the risk assessment process as an effective management tool for
properly allocating security resources. In fact, the DOE
Unclassified Computer Security Program urges those conducting risk
assessments to carefully select the risk assessment approach that
i-s best suited to theii- particular needs: "When used
inappropriately (i.e., selecting an inappropriate methodology just
to satisfy a general policy requirement), risk assessments can be
costly and ineffective for all involved."

476

3. OPGANIlZIVI'ION 01 TlE GUIDE'LINE

The Guideline may best. be visualized as oiganizcd into two
major paits whiclh ca'i be divided into two separate voltmics: (1
Volume], Guideline Supporting Documentation, which includes
general intioductioens and reference materials and (2) Volume 11,
Guidelino, which is the main body of the Guideline. Vol ume I
consists of Preamble, .'orewoid, an IntroducLion, a completed
sample, Bibliography, and a Glossary. Volume 11 consists of the
Executive Summary, the 6 steps of the structured approach,
including Worksheets and Resource Tables for each step, and a
complete set of the Guideline worksheets to be used for copying.
Table ol Contents are included in both of Volume I and Volume 11.
The contents and purpose of each of the Guideline's elements if it
is assembled as described are as follows:

(1) Volume 1 of the Guideline:

INTRODUCTION: The introduction describes the Guideline's
background, its underlyinq philosophy and objectives, and
the mechanics involved in using the Guideline. it also
provides general instructions for Guideline use. The
introduction is meant to provide the user with a brief
understanding of how to approach the assessment using the
guidelinc.

k-OMIPLETE'D SA.. .. P],: A comi.plet.ed sample or sa-mp. i•,.-
important to include since it illustrates how the
worksheets and Executive Summary are to be completed. A
description of an ADP system/installation is provided, and
t.hen the Guideline's approach is used to conduct a risk
asse:'sment of this sample system/installation application
that is appropriate to the organization.

AiNNOTATEP BiBLIOGRAPH Y: The annotated bibliography, is a
living document covering the period 1983 - to the present,
it consists of ten main topical sections on key areas of
concern to those conducting risk assessments, from thireat
and vulnerability-related articles to literature on
specific countermeasures for coping with various types of
threats. Special interest sections on viruses and
networks are also included. In addition, the bibliography
contains references to numerous U.S. Government. computer
security guidance documents. This is an important element
of the guideline's utility as an information source and
t raining aid.

(2) Volume II of the Guideline:

VOLUME 1 INSTrUCTIONS: The overview of the risk
assessment process summarizes the instructions that will
be followed to perform the risk assessment, and includes a
"fan-out" chart showing the risk assessment steps, and
identifies the elements of the Guideline that supports the
step (e.g., worksheets and resource tables). The
"fan-out" chart also shows the relationship between the
steps.

477

E X - CUTI , E SUMMARY: The :EC(-utive Sullmlar-y pi~ovidus a
pagr set o'- summary szheets- for use in recording the
re',-uits cf each stepofa thie i- sk asstessmcent, anid foi-
ojtA-aining managemient signl-at u for the end-re2sults anidai
I Csult ing recommilenidat ionls. This sumlmaluy canll use-ful I*-

a Ileadquarter1-s luvel foi- keeping track of the Lisk
a~sesmentlil reguir1eiflenlt-S

6 ýýTLA) APL'ROACII: The 6 steops provide the stLiucLur-ed
approaCh1 1for co1ductin~g the(risk assessme(nt- itself. Each
step foccus es on a I-,arti-cul ar1 a rea 01 con1cern; t-11e Rotcc
Tables3 anid Work),sheet-s thlat accompany'11ý each ste prov0.i de
niecessary data sets in an organized ioi-mat to addreSs eac,':.
of the areas of concerni. Exhibit 1 pr-esents an ovoi~viow
of the 6 steps anid their main a-rieas of locus. it. a1lso
lists the workshieets anid zesources tables that are used -c
support each step. A detailed discussion of how the
process works--is ecais-is rentdn ctn
3 b-elow.

FOR -COPY-ING: The "For Copying" Section provides a
complete duplicate set of the worksheets used to complet-e
the assessment, and are set aside to promnote easy ccpying
anid keep) the guideline document intact.

FXHIBIT 1
N - TmE CONCEPT -

APPLYING THE BOOZ, ALLEN CONCEPT:
___________AN OVERVIEW ________

TYPE CAPAENUTIES CONNECTIONS COMPONENTS

~iS'VTrM CHARACTER~ISTIC,

*SYSTE M VALUE USER RELIANCE NUMBER OF USERS
DATA SENSITIVITY IMPACT IF UNAVAILABLE OURAflON OF OPFRATIONS

SMAL&JS1MPLE SSAW xPEXSYSTEM
*MINIMAL USERIS MULTIPLE USERS
*STANDALONC OR LAN4 MULTIPLE CONNECTIVITIES
*LOW REPLACEMENT COST, HIGH RIEPLACEMENT COST

IBASEI VIE SECURITY REOU1RAEMIENTS

ASASESSMENTS EN REU AS SSMN

F K81 MAAE ENET ACONAIT

&LI ~ ~ *SPPORT14DAAW REOCETINGU AOUMNDTATION ~ IMT

VUZRAI~r N T~ATPOILSDAAS478TTWMM10

GLOSSAIY; The 9 ossl y p Iuv i des a I o I u compi IIdi uen o1
ti[ms common to tlio iisk assessmenit piocuss and in u.•c by
a pai ticula- agency. Ioi o .xamplo, thincc DOE sourcos wul.o
used as a st-aiting lpoiint Ioi developing tlhc qlossaiy.
Thles wr to t •hun editud to suic thu n(udeds oi t hi Guidel inc
and additional 1lev, aiit. teinms weic added to ensuie
coverago ot all key tCims montioned hulciic.

4. DESCtiPTION OF THiE GUIDIELINE'S ME CItANICS

The Guidel ino pi ovidus a syst cmat ic, st i uctured apir oachl to tiho
various evaluat ions asnd docision making pi ocesss thIat cowpi is, ,i
risk assessment. Trhe intent is to provide an appi oach thlat allows
you -- whethei your system or application is i an unclassified or
classified environment or wheth•ur it is a PC or large system -- to
readily identify and, whoerever possible, have availible in one
package, all information necessary to conduct a risk assessment.
Thle Guideline may be applied to existing or planned sysLtms.

(1) STEP 1: DEFINE YOUR SYSTEM.. The purpose of Step 1 is to
produce a general definition of your system by looking at several
key system features: composition, connections, size, cost (s), and
back-ups. There are several uses for this description including
the documentation for future analysis and as a source of
information to evaluate system importance. First, the current
configuration of your system is estab]ish•ed to ensure that you h'.ave
tully identitied all major system components and connections. Use
of a system configuration diagram provides you a visual opportunity
to record and review your system's current configuration. It al so
allows you to visualize potential vulnerabilities that may exist as
a result of your system's connections, data flows, and physical
atti ibutes. Second, Step I helps you in developing a general cost
estimate for your system so that you are able to appreciate how
much it. would cost to rep' ace valuable components or the entire
system. it is also important to have a general appreciat ion for
the cost of youi- system in order to decide which countermeasures,
if any, are justified based on system cost. Step 1 also reviews
the type of software and data used by your system, with the
objective of understanding approximately how much labor went into
the development of each and whether back-ups are available and
necessary.

The end products from Step 1 are: (1) A system configuration
diagram which depicts your system's major components and
connections, (2) a curient, listing of your system's major
components, and (3) rough cost est imates for replacing your
system's hardware, software and data.

(2) STEP 2: CIHARACTLRIZE YOUR SYSTEM, SOFTWA.RE AND DATA. The
purpose of Step 2 is to characterize your total system in terms of
several key characteristics. Questions in two primary areas are
answered in this Step: (1) Does your system process any classified
information or sensitive unclassified information? If so, what
types/levels? Responses to these questions provide the basis for
selecting what type(s) of security precautions (countermeasures)
are required for your system, software and data; and (2) How

479

imporLant is your system, its operations, software and data to its
users and their organization? Responses to this second question
will help you determine the relative importance of the system,
software, and data, and provide the basis for determining or
validating your contingency planning needs.

The end-products produced in Step 2 are: (1) An assessment of
the relative importance of your system, software, arid data to their
users and organization; and (2) an identification of what types of
information you are processing (e.g., unclassified, sensitive
unclassified, or classifie,!).

(3) STEP 3: REVIEW BASELINE SECURITY REQUIREMENTS (BLSRs) AND
IDENTIFY THOSE NOT MET OR PARTIALLY MET. This is by far the most
critical step when applying and adapting our concept to a
particular agency or business. The purpose of Step 3 is to
determine whether your system's hardware, software, and data -- as
they exist today in their current operating environment and
utilized by you and your organization -- meet the minimum Baseline
Security Requirements (BLSRs) set forth in all applicable orders,
guides, or procedures. We perform a careful security requirements
analysis so that we may restate Baseline Requirements in readily
understandable terms and within known security categories. Once
rationalized in this fashion, an analyst performing the risk
assessment will be able to quickly discern if the system facility
or application under review is protected according to established
requirements. It is important to note that this piocess allows for
the recognition of security initiatives that may already be taking
place for other reasons that solve computer security related
problems. In the previous step you identified whether your system
was involved in sensitive unclassified or classified processing.
In this step, you are asked to review brief lists of security
countermeasures (baseline security requirements) that MUST be in
place.

Step 3 will result in an assessment of your current security
profile in terms of: (1) whether you currently have met the
minimum baseline security requirements that apply to sensitive
unclassified and classified ADP processing; (2) a list of any noted
deficiencies that must be corrected; and (3) target dates for
correcting them. It also allows yc~u to note any areas where you
desire to supplement the countermeasures currently in-place if you
feel it is justified based on Step 1 and Step 2 results.

Further, for the majority of small/simple systems (as defined
in Step 2 of this process), the Step 3 results provide an adequate
assessment of the current risks to your system. Therefore, Step 3
also documents the decisions made to accept or upgrade your current
risk profile, and provides the basis for obtaining management
sign-off for these decisions. For these small/simple systems, the
risk assessment process is complete.

(4) STEP 4. REVIEW THREATS AND VULNERABILITIES AND IDENTIFY ANY
WHICH AFFECT YOUR SYSTEM. The purpose of Step 4 is to conduct a
more extensive review of the threats that might affect your
system's hardware, software and data through exploitation of

480I

specific vulnerabilities in your system and its operating
environment. in this step, you are asked to record from existing
reviews and/or provided worksheets which specific threats could
impact your system due to existing deficiencies in your security
profile. Further, the Step also addresses the likelihood that a
given threat could arise at your site or in your locality. (An
uncomplicated probability scheme is provided for your use in order
to accomplish this.) Finally, the Step also allows you to specify
the priority in which the identified threat(s) should be treated.

The end-products that result from Step 4 are: (1) a threat and
vulnerability analysis of your system, facility, and its assets
within its operating environment. It will also (2) allow you to
identify which of the applicable threats are: very likely to
occur, likely to occur, or unlikely to occur. Finally, Step 4 will
provide the basis for determining which vulnerabilities should be
corrected, and in what order, based on the simple probabilities
identified for threat occurrence.

(5) STEP 5: REVIEW AND SELECT COUNTERMEASURES OR ACCEPT CURRENT
RISK PROFILE. The purpose of Step 5 is two-fold. It provides an
opportunity to review appropriate countermeasures in each of the
security discipline areas (th2 same areas as the BLSRs were sorted)
and decide which ones are appropriate for implementation to counter
the threat impacts identified in Step 4. However, if your review
of the threat impacts does not result in the identification of any
new concern.s And confirms that ynor security program ' U11' treats

all possible threat scenarios for your system and site, then Step 5
also allows you to acknowledge this by accepting your current risk
profile.

Step 5 results in (1) a prioritized list of countermeasures for
implementation in each of the security discipline areas; or (2) a
formal acceptance of your current risk profile based on a
documented review and analysis of possible threat impacts to your
system.

(6) STEP 6: PROVIDE FOR ACCOUNTABILITY AND OBTAIN REVIEW:
MANAGEMENT UNDERSTANDING OF YOUR RISK PROFILE AND COUNTERMEASURES
REUIRED. Step 6 is the last and final step in the risk assessment
process. It is a highly critical step, one that is often
overlooked or neglected. The purpose of Step 6 is to obtain
management review and provide accountability for the decisions and
choices made throughout the risk assessment process. It provides a
mechanism for briefing, reviewing, and discussing the risk
assessment results with management and planning for resources
required for implementing the countermeasures identified. This
provides a mechanism to help management in the budget/justification
process by providing a readily understandable and defensible
approach to choosing countermeasure initiatives.

The Executive Summary Block for Step 6, Obtain Accountability:
Management Understanding of Your Risk Profile and Countermeasures
Required, provides a sign-off area tor management to review the
results of the risk assessment, and accept the current risk
profile. There is an area on this form that provides for comments
to elaborate or- any special reasons for particular c]hoices. This
sign-off is the final end-product.

481

5. SUMMARY REMARKS

We believe that our development of the concept described above
and its ongoing refinement is making an important contribution to
the computer security community for several significant reasons.
Foremost, it simplifies and makes more logical a heretofore very
frustrating and time-consuming process. No less important,
however, is its place in reducing the inordinate waste of federal
(tax-payers) or corporate dollars on repetitious, inconclusive
assessments. Hopefully those organizations who will apply the
concept to their system risk assessment needs will share this
belief. The "Bottom Line' of this process is that you are provided
with carefully documented recommendations for countermeasures based
upon identified requirements that are not being met. It is for
only these requirements that are not met that it is necessary to
search for related threats or vulnerabilities. Key to the process
is that you only need to analyze what is necessary and do not have
to perform complex assessments to prove you are already satisfying
many security requirements.

482

LAVA'S DYNAMIC THREAT ANALYSIS

Suzanne T. Smith
Los Alamos National Laboratory

Safeguards Systems Group, MS-E551
P. 0. Box 1663

Los Alamos, New Mexico 87545

Introduction

LAVA (the Los Alamos Vulnerability/Risk Assessment system) is
an original systematic approach to risk assessment developed at
the Los Alamos National Laboratory to deal with risks inherent in
massive, complicated systems. Characteristics of such systems are
huge bodies of imprecise data, indeterminate (and possibly unde--
tected) events, large quantities of subjective information, and a
dearth of objective information. The impetus for developing LAVA
was the existence of Federal requirements for periodic risk assess-
ments of a variety of systems, coupled with the need for an inex-
pensive, reusable, automated risk assessment tool firmly rooted in
science [1]. When the LAVA project began in 1983, there was no
such to~l [21; LAVAk was cG -d to fill that gap [31.

LAVA is an alternative to existing quantitative methods, pro-
viding an approach that is both objective and subjective, and pro-
ducing results that are both quantitative and qualitative. In
addition, LAVA could be used as a self-testing aid in preparing
for inspections, as a self-evaluating device in testing compliance
with the various orders and criteria that exist, and as a certifi-
cation device by an inspection team.

LAVA is a three-part systematic approach to risk assessment
that can be used to model a variety of application systems such as
computer security systents, communications security systems, infor-
mation securi.ty systems, and others, The first part of LAVA is
the mathemati(:al mode] based classical risk assessment [4,5], hier-
archical multilevel system theory [6,7], decision theory [8-11.]
fuzzy possibility theory [11-14], expert system theory [15,16],
utility theory [17,.8], and cognitive science [19,20]. (The math-
ematical model has been presented at other technical meetings [21-
23], and generally will not be addressed in depth in this paper.)
The second part is the implementation of the mathematical risk
model as a general software engine, written in a commercially
available programming language for a large class of personal com-
puters. The third part is the application data sets written for a
specific application system. LAVA provides a framework [24] for
creating applications upon which the software engine operates; all
application-specific information appears as data.

Copyright 1989 Suzanne T. Smith

483

We use the LAVA system to develop a hierarchical structure
and sets of fuzzy analysis trees for modeling risk assessment for
a variety of systems associated with computer and information secu-
rity. With LAVA, we build knowledge-based expert systems to assess
risks in application systems comprising a subject system and a
safeguards system. The subject system model is sets of threats,
assets, and undesirable outcomes; because the threat to security
systems is ever-changing, LAVA provides for an analysis of the
dynamic aspects of the threat spectrum--the dynamic threat analy-
sis [25] is the subject of this paper. The safeguards system model
has three parts: sets of safeguards functions for protecting the
assets from the threats by preventing or ameliorating the undesir-
able outcomes; sets of safeguards subfunctions whose performance
determines whether the function is adequate and complete; and sets
of issues, appearing as interactive questionnaires, whose measures
(in both monetary and linguistic terms) define both the weaknesses
in the safeguards system and the potential costs of an undesirable
outcome occurring.

The user need have no knowledge of formal risk assessment
techniques. All the technical expertise and specialized knowledge
are built into the software engine and the application system.
LAVA applications include the popular computer security applica-
tion [26-293 and applications for nuclear power plant control
rooms [301, embedded systems, survivability systems, transborder
data flow systems [31], property control systems, nuclear process-
ing plant safeguards systems [32], and others. LAVA application
systems have been in use by Federal government agencies since 1984.

LAVA Application Models

The General LAVA Application Model

Using LAVA, we build knowledge-based expert systems for
assessing risks in applications systems. There are two parts that
define an application model. The first part is composed of the
following elements: the hierarchical structure and trees that
define the framework of the model--the threat, asset, and outcome
sets; the fuzzy outcome possibility matrix; the safeguards func-
tions for each threat-asset pair, based upon the kinds of inter-
actions that might result in one or more of the outcomes; the safe-
guards subfunctions for each function.; mitigating factors for out-
come severity; and the contributing factors, both linguistic and
monetary, to the potential cost of a successful attack. The second
part is the set of questionnaires, implemented as data sets on
which the general software engine operates: the vulnerability
assessment questionnaire, the outcome severity mitigation question-
naire, the dynamic threat questionnaire (if applicable), and the
monetary and linguistic impact (or cost) questionnaires.

The vulnerability assessment questionnaire for a given appli-
cation is concatenated from a library of category questionnaires

484

that come from specific security orders, inspection criteria,
interviews with various experts in the field, and general good
security practice. The questions themselves represent individual
safeguards (called "safeguards elements") or portions of safeguards
(called "safeguards attributes") that are related through a data-
base structure to one or several of the safeguards subfunctions.
The vulnerability questionnaire can comprise from a few hundred to
several thousand questions, depending on the required analytical
depth.

The other questionnaires are all considerably smaller than
the vulnerability questionnaire. The outcome severity mitigation
questionnaire inquires about the presence and estimated effective-
ness of any mitigating situations that might be pertinent. If
intelligence information is available and analytical detail about
the dynamic threat is required, the dynamic threat questionnaire
seeks information about the motivation, capability, and opportunity
of the current known threat and about the attractiveness of each
asset set to the threat; if such information is not available, the
user estimates a relative attractiveness factor for the asset sets
and whether the dynamic threat is the same as or, in varying de-
grees, larger or smaller than the background (static) threat. The
impact questionnaires ask cost-related questions in either linguis-
tC ic .or LIULWL&Laiy LtLILrb YfL-k LI1 Elie x etieJ L±l' Oft LIIC0 ±±'&,.tll ge..

based dynamic threat questionnaire, all of the questions in these
questionnaires number in the single or double digits (usually not
more than a dozen or so questions).

Users are not required to be expert risk analysts to use a
LAVA application--that mathematical and analytical expertise al-
ready exists as a part of the mathematical model and its general
software engine. Expert knowledge about the structure and char-
acteristics of safeguards and security systems is a part of the
specific application model. The only knowledge required of users
is information about that which they know best: their own facil-
ity, organization, assets. equipment, policies, procedures, and
security practices. The LAVA software system elicits this infor-
mation by means of the automated questionnaires administered to
evaluation teams whose members have diverse backgrounds and respon-
sibilities. LAVA generates both general reports for management
and detailed reports for operations staff from information obtained
from the questionnaires.

LAVA/CIS: The Computer/Information Security Model

For our computer/information security application model,
LAVA/CIS, we postulate four assets: 1) the facility, including
physical plant and personnel; 2) hardware, including all computing
and ancillary pre- and post-processing hard wire; 3) machine-inter-
pretable information, including software, input and output files,
and databases; and 4) human--interpretable information, including
documents, screen displays, graphs, charts, film output, and so

485

forth. The model's threat set consists of three threats: 1) na-
tural, random, and environmental hazards; 2) direct or onsite
humans, including the authorized insider; and 3) indirect or off-
site humans. Figures 1-2 show the hierarchical structures for two
of the threat categories with respect to the four asset categories;
included in these hierarchies, and discussed later in this paper,
are representative safeguards functions and subfunctions associated
with each threat-asset pair. Figure 3 shows how this relates to
the entire model.

There are six undesirable outcomes considered in the computer/
information security model: 1) unauthorized access or use; 2) mod-
ification or tampering; 3) damage or destruction; 4) theft; 5) un-
authorized disclosure; and 6) denial of use. It is important to
note that a single event can result in the simultaneous occurrence
of more than one of the outcomes. Figure 4 shows the outcome
possibility matrix for the threat-asset combinations; a value of
zero indicates that the outcome is impossible for that threat-asset
combination, and a value of unity means the outcome is possible
for that threat-asset pair; greater granularity can be achieved by
assigning values lying between zero and unity.

Once we have established the threat, asset, and outcome sets
and the outcome possibility matrix, we then address what consti-
tutes the ideal safeguards system for preventing the threats from
attacking the assets and achieving the postulatted outcomes. Fo.
this we define a set of safeguards functions for each of the dis-
tinguishable threat-asset pairs (nine T-A pairs, in this applica-
tion) in such a way that the relative importance of each function
within the set of functions for each T-A pair is about the same.
Then, for each of the individual safeguards functions, we define a
set of subfunctions that provide performance criteria for the
adequacy and completeness of that safeguards function; each of the
subfunctions is devised so that the relative importance of each
subfunction within a specific function is about the same. Again,
Figs. 1-3 show the safeguards functions and subfunctions for each
distinguishable threat-asset pair.

The Dynamic Threat Analysis

Both government and corporate organizations may be the targets
of a variety of hostile agents [33,341, and the intensity of the
threat may change with time and circumstances. The dynamic threat
strength can be analyzed if the subject system is extremely sensi-
tive to a changing threat and if the subject organization has
access to the kinds of information the analysis requires. The
dynamic threat analysis takes into account possible threat agents
and their potential attack goals with respect to the target(s) of
the attack.

486

NATURAL OR RT

RANDOM THREAT

HAZARDS

ALL ASSETS ASSETS

r

MAJOR FIRE WATER HVAC POWER EMRNCHOATGE EMERGENCY MAINTENANCE SAFEGUARDSDMAJOE FE WAE VC OUTAGE SRIESFGAD

HAZARDS DAMAGE DAMDAMA GAMAGE DAMAGE SOROICE
DARAGE CONTROL I CONTROL CONTROL CONTROL CONTROL FUNCTIONS

1. EXPOSURE 1. PREVENTION I. PREvEI4TiON 1. PREVENTION I. PREVENTION 1. EMi. ALERT 1. PREVENTIVE
2. RESISTANCE 2. DETECTION 2. DE1TECTION 2. DETECTION 2 DETECTION 2 . RESPONSE MAINT.

3O ATMRNISTR./ 3. MITIGATION 3. MI 3. MITIGATION 2.HOUSE-ALRSKEN SAFEGUARDS
4. MITIGATfION ILSUBFUNCTIONS

FiQ. 1 Niatual hiazardL 'J. 1Ld.c.•Lb V-.LrA. 1L-....4 .. JL .

security application.

DIRECT (ONSITE THREAT
HUMAN THREAT

MACHINE- HUMAN-
FACILITY HARDWARE READABLE READABLE ASSETS

INFORMATION INFORMA11ON

1. REACHABIUT 1. REACHABILITY 1. REACHABILI' 1. REACHABILI

2. ACCESS 2. ACCESS 2. ACCESS 2. ACCESS SFGAD

3. PERSONNEL 3. AUDIT 3. APPL. USE 3. ERR.CORR/ FUNCTIONS

BACKUP
L 4. AUDIT 4. DISTRIBUTIO

SAFEGUAROS SUBFUNCTIONS BRANCH FROM EACH SAFEGUARDS FUNCTION.

Fig. 2. Direct (onsite) human threat hierarchy for computer/
information security application.

487

Threat-Asset Safeguards Outcome Consequence
Pair Functions of the Attack (of the Outcome)

SOFTWARE REACHABILITY

Per'imeter MONETARY

Building UNAUTHORIZED
Area A -CCESS OUS- 4 NONMONETARY
Roam

MONETARY

SOFTWARE ACCESS M.,O FQI-ATIONOR TALMPERIN
0AMRIQN-G-- NONMONETARY

Identification. MONETARYAuthoriz~tion,

DIRECT HUMAN / Authentication DAMAGE OR
SOFTWARE AuthenticiNONn JNETARY

Operating_

Systems Proc. MONETARY

SOFTWARE I DISCLOSURE
APPUCA11ONS NONMONETARY

I MONETARYSoftware Use THEFT M

Development and NONMONETARY
Program Ch.nge MONETARY

Error Prevention DENIAl.

and Detection OF USE NONMONETARY

Correction and
Backup

SOFTWARE AUDIT

Internal Audit

Data Traceability

Fig. 3. Direct human/software scenario analysis tree.

Unauthorized Modification Domc~ge Disclosure Theft Denial
Access or or of use
or Use Tampering Destruction

Natural Haozords
- Facility o0 0 0 1

Natural Hazards
- Hardware O 1O 0 1

Natural Hazards
- Software I 0110 0 1

Natural Hazards
- Documents/

Displays 0 1 1 0 0

Direct Human
- Fa -ility I 1 1

Direct Human
-Hardware I 1 1

Direct Human
- Software I 1 I

Direct Human
- Documents/ I 1 1

Displays

Fig. 4. Outcome possibility matrix for comouter/information
security application.

488

The threat component measures the relative strength of iden-
tifiable threat agents in terms of asset attractiveness, motiva-
tion, opportunity, and capability with respect to the spectrum of
assets, the corresponding safeguards functions, and the -.et of
possible outcomes. Asset attractiveness to the threat agent is
different from asset value to the organization, reflecting the
different value structure of the threat agent; it is a rough indi-
cator of attack likelihood in that a threat agent is unlikely to
mount an atLack on an unattractive asset. Motivation is a measure
of how much effort or what part of his resources a threat agent is
willing to expend on an attack and how dedicated he is to carrying
out the attack. Capability is a meavure of the resources--knowl-
edge (training), information (intelligence), funds, skills, equip-
ment, armament, personnel--the threat agent has at his disposal.
Opportunity is a measure of how easy it is for the threat agent to
achieve an enabling proximity for an attack: how easy it is for
him physically to reach the object of attack, how easy it is for
him to attack or to access the object, how easy it is for him to
travel undetected (both in the neighborhood of the object of attack
and from afar to get near the object), and so forth. Opportunity
is ,ceparate and different from potential site vulnerabilities.
Figure 5 illustrates the analysis structure for the dynamic threat
analysis.

ASSET :ATTRACTIVENESS MOTIVATION CAPABILITY OPPORTUNITY

NO OPPORTUNITY

NO CAPABILITY
_NO OPPORTUNITY

NO MOTIVATION NO OPPORTUNITY

ASETNO CAPABILITY

NO OPPORTUNITY
YES DYNAMIC

NO I - THREAT
_____ LO OPORUNITY STRENGTH

NO _ _ _ _ _ _

ASSET NO CAPABILITY
ATTRACTIVENESS NO OPPORTUNITY_

NO MOTIVATION [NO OPPORTUNITY

NO CAPABILITY
NO OPPORTUNITY

Fig. 5. Analysis structure for dynamic threat.

489

There are several broad categories of threat agents having a
variety of goals. Possible categories of threat agents might be,
for example:

a) information gatherers (e.g., spies or hostile intelligence
services),

b) terrorists,
c) pro- or anti-."X" radicals or extremists (where "X" could

be almost anything!),
d) representatives of organized crime,
e) other criminals (non-malicious criminals and pranksters),
f) insiders (employees, contractors, etc.),
g) outsiders with acces,, and
h) Mother Nature.

The dynamic aspects of the natural hazards may or may not be
of interest; these include both random natural hazards, such as
volcanic eruptions or earthquakes, as well as the natural hazards
more cyclic in nature, such as hurricanes, tornadoes, torrential
rains, and the like. The human threat agents in each of these
categories all act for different reasons, so they may differ widely
in motivation, capability, and opportunity. Similarly, the goals
of the attacks may vary, but all categories of goals may be used
by all categories of threat agents. Some possible goal categories
are

1) information and/or material collection (e.g., espionage
or theft of nuclear materials),

2) sabotage,
3) theft, embezzlement, fraud--generally for monetary gain,
4) damage or destruction,
5) extortion,
6) disrupting business or mission, and
7) surmounting an intellectual challenge.

Clearly, more than one of the categories may be the goal of a
single attack, and a single attack may be perpetrated by more than
one category of threat agent.

The approach to assessing the dynamic part of the threat com-
ponent by considering categories of threat agents and possible
categories of attack goals is parallel to the approaches used for
both the vulnerability analysis and the general consequence analy-
sis. Potential scenarios are modeled implicitly as the relation-
ship between the threat-asset pairs and the safeguards functions
in the vulnerability analysis, and as the relationship between the
assets and the threat elements (asset attractiveness, motivation,
capability, and opportunity) in the threat assessment. Similarly,
the attack goals are modeled implicitly in the capability component
of the dynamic threat measure and are approximately equivalent to
the outcomes used in the ronsequence analysis.

490

I "" ' : I • "I 'I..

An interactive questionnaire models the contributors to the
dynamic threat in terms of specific threat groups. A fuzzy degree
of strength is calculated for each group based on asset attractive-
ness, motivation, capability, and opportunity relative to a spe-
cific [threat, asset, safeguards function, outcome] quadruplet. A
relational database keeps track of which threat groups can affect
each quadruplet so that an overall or total value for the dynamic
threat strength can be calculated for each quadruplet, which is
used subsequently in the loss exposure calculations.

Conclusions

LAVA's capability to assess the dynamic aspects of the threat
spectrum makes it an ideal tool for modeling applications of in-
terest to the intelligence and military communities. It would
also be highly applicable in the business community in situations
ripe for industrial espionage.

Using the LAVA approach for risk assessment has benefits that
do not accrue from the use of other mpthods. First, the automated
report generators produce results that ire immediately usable, both
to managers who must make major, far-Leaching decisions and to the
security personnel in the field whose job it is to maintain an
acceptable level of safeguards. Seconu, because LAVA produces both
qualitative and quantitative results, users feel more comfortable
with the results because they understand both the results and the
information that produced those results. Third, because LAVA does
not require the user to generate probabilities (often unfounded)
for its operation but instead relies on a natural-language user-
friendly interface to acquire its data, users are more willing to
act upon its results. Fourth, LAVA includes a way to assess the
changing, or dynamic, aspects of the threat spectrum. And finally,
because of the team environment in which an assessment is performed
and discussions that arise among team members, using a LAVA appli-
cation has proved to be an experience that both raises the secu-
rity consciousness of the users and enhances the overall working
environment at the facility.

References

[1] S. Katzke, "National Bureau of Standards Perspective on Risk
Analysis: Past, Present, and Future," presented at the ist
Federal Risk Analysis Workshop, Montgomery, Alabama, January
1985.

[2] S. T. Smith, "A Government-Wide Overview of Risk Analysis
Methodologies," presented at the 8th DOE Computer Security
Group Conference, Richland, Washington, April 16-18, 1985.

491

13] S. T. Smith and J. J. Lim, "An Automated Procedure for Per-
forming Computer Security Risk Analysis." in Proceedings 6th
Annual ESARDA Symposium onSafeuards and Nuclear Material
Management, 1984, ESARDA 17, pp. 527-530-

[4] N. J. McCormick, Reliability and Risk Analysis: Methods and
Nuclear Power Applications. New York: Academic Press, 1981.

[5] W. D. Rowe, An Anatomy of Risk. New York: John Wiley & Sons,
1977.

[6] M. D. Mesarovic, D. Macks, and Y. Takahara, Theory of Hier-
archical Multilevel Systems. New York and London: Academic
Press, 1970.

[7] Y. M. I. Dirickx and L. P. Jennergren, Systems Analysis by
Multilevel Methods. New York: John Wiley & Sons, 1979, pp.
10-82.

[8] P. C. Fishburn, Decision and Value Theory. New York: John
Wiley & Sons, 1964.

[9] R. .L. Keeney and H. Raiffa, Decisions with Multiple Objec-
tives: Preferences and Value TLadeoffs. New York: John Wiley
& Sons, 1976.

[10] R. Schlaifer, Analysis of Decisions Under Uncertainty. Hunt-
ington, New York: Robert E. Krieger Publishing Company, 1978.

[II] R. E. Bellman and L. A. Zadeh, "Decision-making in a Fuzzy
Environment," Manaqement Science. Vol. 17, No. 4, pp. B141-
B164, December 1970.

[12] A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arithmetic:
Thery and Applications. New York: Van Nostrand Reinhold
Company, 1985.

[13] L. A. Zadeh, "Fuzzy Sets as a Basis for a Theory of Possibil-
ity," Fuzzy Sets and Systems, Vol. 1, pp. 3-28, 1978.

[14] C. V. Negoita, Expert Systems and Fuzzy Systems. Menlo Park,
California: The Benjamin/Cummings Publishing Company, Inc.,
1985, pp. 72-58, 74-88, 95-112.

[15] P. H. Winston, Artificial Intelligence. Reading, MA: Addison-
Wesley, 1984, pp. 251-288.

(16] R. Jain, "A Procedure for Multiple-Aspect Decision-Making
Using Fuzzy Sets," Int. J. Systems Sci., Vol. 8, No. 1,
pp. 1-7, January J977.

492

iL7] P. J. H. Schoemaker and C. C. Waid, "An Experimental Compari-
son of Different Approaches to Determining Weights in Additive
Utility Models," Management Science, Vol. 28, No. 2, February
1982.

[18) E. M. Johnson dnd G. P. Huber, "The Technology of Utility
Assessment," IEEE Trans. S-s., Man, Cyber., Vol. SMC-7, No.
5, pp. 311-325, May 1977.

[19] L. A. Zadeh, K.-S. Fu, K. Tanaka, and M. Shimura (Eds.), Fuzzy
Sets and Their Applications to Coqnitive and Decision Proc-
esses. New York: Academic Press, 1975.

120) S. Sudman and N. M. Bradburn, Asking _Questions; A Practical
Guide to Questionnairo Design. San Francisco: Jossey-Bass,
inc., 1982.

[21] S. T. Smith and J. J. Lim, "An Automated Interactive Expert
System for Evaluating the Effectiveness of Computer Security
Measures," presented at the 7th Department of Defense/
National Bureau of Standards Computer Security Conference,
Gaithersburg, Maryland, September 24-26, 1984.

[22] S. T. Smith, J. R. Phillips, R. M. Tisinger, J. J. Lim,
D. C. Brown, and P. D. Fitz(erald; "JAVA: A Conceptiiua! Fralmn-
work for Automated Risk Analysis," presented at the 1986
Annual Meeting of the Society for Risk Analysis, Boston,
November 9-12, 1986.

[23] S. T. Smith, "LAVA: An Expert System Framework for Risk Analy-
sis", presented at the ist International Computer Security
Risk Management Mode) Builders Workshop, Denver, Colorado,
May 24-26, 1988.

[24] S. T. Smith and J. J. Lim, "Framework for Generating Expert
Systems to Perform Computer Security Risk Analysis," Proceed-
ins First Annual Armed Forces Communications and Electronics
Association Symposium and Exposition on Physical and Elec-
tronics Security, 1985, pp. 24-1 - 24-7.

[25] S. T. Smith, J. R. Phillips, D. C. Brown, and P. D. Fitz-
Gerald, "Assessing the Threat Component for the LAVA Risk
Management Methodology," presented at the Ninth DOE Computer
Security Group Conference, Las Vegas, Nevada, May 6-8, 1986.

[26] S. T. Smith and J. J. Lim, "An Automated Method for Analyzing
Computer Security Risk," presented at the Seventh DOE Computer
Security Group Conference, New Orleans, April 17-19, 1984.

[27] S. T. Smith and J. J. Lim, "An Automated Method for Assessing
the Effectiveness of Computer Security Safeguards," presented
at the IFIPS Second International Congress on Computer Secu-
rity, Toronto, Canada, September 10-12, 1984.

493

[28] S. T. Smith ard J. J. Lim, "LAVA: An Automated Computer Secu-
rity Vulnerability Assessment Software System (Version 0.9),"
Los Alamos National Laboratory document LA-UR-85-4014, Decem-
ber 1985.

[29] S. T. Smith et al., "LAVA for Computer Security: An Applica-
tion of the Los Alamos Vulnerability Assessment Methodology,"
Los Alamos National Laboratory document LA-IJR-86-2942, 1986.

[30] S. T. Smith and J. J. Lim, "Assessment of Computer Security
Effectiveness for Safe Plant Operation," Trans. Am. Nucl.
Soc., Vol. 46, pp. 525-526, June 1984,

[31] S. T. Smith, J. J. Lim, and J. Lobel, "Application of Risk
Assessment Methodology to Transborder Data Flow," in Handbook
on the International Information Econom . Springfield, Vir-
ginia; Transnational Data Report, November 1985.

[32] S. T. Smith and R. M. Tisinger, "Modeling Risk Assessment for
Nuclear Processing Plants with LUVA," Nucl. Mater. Manage.,
Vol. XVII (Proceedings Issue), pp. 315-318, June 1988.

[33] N. R. Bottom, Jr., and R. R. J, Gallati, Industrial Espionage:
intelligence Techniques and Countermeasures. Boston: Butter-
worth Publishers, 1984.

[34] R. Eells and P. Nehemkis, Corporate Intelligence and Espio-
naqe: A Blueprint for Executive Decision Making. New York:
Macmillan, 1984.

494

Anomaly Detection: Purpose and Framework

by

G.E. Liepins
MS 6207 Bldg 4500N

Oak Ridge National Laboratory
(615) 576-5238

H. S. Vaccaro
MS E541

Los Alamos National Laboratory

This work has been supported in part by US DOE Office of Safeguards and Security.

ABSTRACT

This paper places anomaly detection of computer use in the framework of overall
computer security. A balance of physical security, access security, anomaly detection,
misuse detection, and database management is proposed to provide the maximum practical
security for computer systems. The fundamental concepts of the anomaly detection module
Wisdom and Sense (V'&S), including rule representation, rule generation, rule pruning, and
evidence combining are presented.

INTRODUCTION

Computer security has become a volatile issue. Misuse needs to be prevented without
compromising system performance or user productivity. Traditionally, security has been
addressed through physical and access security, with additional sporadic review of audit logs
by security officers. However, with increasing hacker sophistication and insider misuse,
these measures are no longer sufficient. Physical and access security by themselves cannot
fully protect a system from misuse. As a result, an ever increasing responsibility falls on
the shoulders of security officers. Unfortunately, security officers are sorely overburdened.
A typical audit log of VMS image termination data for 100 users can generate upwards of
20 megabytes of data per week. More detailed data collection could result in as much as
a thousand megabytes per week for the same 100 users.

Typically, nearly all system use is appropriate. Any evidence of misuse is generally hidden
by large quantities of routine usage patterns. In principle, the difficulty of detecting misuse
is eased somewhat by the recent proposed development of misuse detection expert systems,
systems that incorporate security officers' knowledge (Denning, 1987; Sebring et. al., 1988).
To the degree that computer secui ity experts are able to articulate what constitutes misuse

495

and specify how such misuse might be detected, misuse detection modules could relieve
much of the drudgery of audit log review.

Unfortunately, experience in misuse detection is limited; currently known rules are thought
to be able to identify only a small fraction of potential misuse. This lack of expertise and
experience points to the need for anomaly detection, the detection of usage that is at
variance with historically established, appropriate patterns (Clyde, 1987; Denning et. al.,
1987; Hansen and Messier, 1986; Lunt et. al., 1988; Lunt, 1988; Smaha, 1988; Tener, 1988;
Vaccaro and Liepins, 1989).

This paper introduces the formal framework of the anomaly detection module Wisdom and
Sense (W&S) developed at Los Alamos National Laboratory (LANL) (Vaccaro and
Liepins, 1989) and discusses it from the perspective of overall computer security. The
interrelated roles of physical security, access security, anomaly detection, misuse detection,
and database management are briefly reviewed. The three major challenges facing any
anomaly detection module are introduced: the need to summarize the vast quantity of
historical data, the need to extrapolate from a small sample of the nearly limitless variety
of possible computer transactions, and the need to deal with mixed, yet predominantly
categorical data.

W&S addresses these issues by generating a "forest" of decision rules together with
clustering of continuous data. The generation of the forest of rules is described. Rule
representation, generation, and pruning are described. Rule strength, combining evidence,
and post processing are further detailed.

BACKGROUND

Computer secuiity anomaly detection identifies unusual transactions. Generally, unusual
transactions arise both from appropriate use as well misuse. Indeed, some misuse may
actually be common. Presumably, common misuse will already be known to the security
officer and could be culled out by a misuse detection module. Much of the remaining
misuse will manifest itself as unusual activity. Thus, the legitimate goal of anomaly
detection is to filter raw audit data by two to three orders of magnitude without
overlooking that misuse which is unusual. A good anomaly detection system balances these
two opposing objectives. It lowers the probability that a legitimate transaction needs to
be reviewed, and simultaneously provides high assurance that unusual misuse will not pass
undetected.

A!l transactions flagged by an anomaly detection system should be reviewed by a security
officer, and those determined to be indicative of misuse entered into a data base. The
data base should also summarize how the security officer determined that a flagged
transaction represented misuse and what additional information he needed to make this
determination. Such a data base would serve to periodically upgrade the misuse detection
module of an overall security system.

496

An overall security system would incorporate physical and access security, an audit data
collection capability, an anomaly detection module, a misuse deiection module, the security
officer, and a database of findings and rules. All transactions would be screened by both
anomaly detection and misuse detection modules. Of note should be the separation of the
two detection modules; they serve different, yet related, purposes. Misuse detection
identifies usage patterns already known to have a high probability of being inappropriate.
Anomaly detection applies statistical methods to identify "exceptional" transactions and
system's conditions. Subsequent review of the anomalous transactions and conditions could
well result in the addition of rules to the misuse detection module.

The components of an overall computer security system are illustrated in Figure 1, below,
and are discussed in greater detail in the following paragraphs.

physical security

access security

4
data collection

anomaly .4-. data ... _rmisuse
deiucii~l L-1a, aoct--

L security
officer

Figure 1. High Level Architecture of an Overall Computer Security System

At the level of detail concomitant with Figure 1., neural networks and statistically based
techniques are both advocated for anomaly detection. W&S is one possible
implementation of a statistically based anomaly detection system, and operates at the level
of individual transactions. On the other hand, a neural network approach is considered to
be best suited for anomaly detection in terms of recognition and comparison of keystroke
patterns.

Administrative rules, expertly determined rules, and automatically generated rules are
suggested to be the constituent components of the misuse detection module, a module
whose purpose is to identify those transactions (frequent or infrequent) that represent
inappropriate use. Administrative rules are of the form, "No-one but the system's manager
should access file XV. Expertly determined rules are rules that encode the security officer's
knowledge about types of usage patterns that are likely to be indicative of misuse.
Automatically generated rules would be generated by machine learning methods (Michaiski,
Carbonell and Mitchell, 1983 and 1986) from the database of confirmed misuse. This

497

database would be updated as the security officer either independently uncovered misuse
or determined that an anomalous transaction was inappropriate.

The separation of the anomaly and misuse modules is somewhat artificial. Analytic
tractability, and ease of development and testing of the two modules are two reasons for
the sepaiation. Yet at the same time, the separation may help provide an indication of
the "holes" in the anomaly detection system, and could bring to light commonly occurring
misuse patterns insofar as these would be flagged by the misuse detection module but nct
the anomaly detection module. Common misuse would signal the need for either review
of the counterpart rules in the misuse detection module, or else the need for measurZ5 to
prevent such misuse. Comparative review between the two modules is desirable, and such
a consistency checking capability between modules is being developed in conjunction with
W&S.

The data base would include confirmed records of misuse, what auxiliary data has been
required by the security officer to resolve anomalies, and several (or more) gen,'rations of
the anomaly detection rule bases (and possibly misuse detection rule bases). , .-mparison
of rule bases over time would allow the detection of gradual encroachment on the system
over time, no one step of which would be individually noted as anomalous. (For example,
a user might slowly increase his unauthorized privileges.) As previously stated, this data
base would be used to update the intrusion detection module, and would provide a basis
for deciding what (if any) additional system or user parameters should be monitored.

Anomaly Detection

The goal of all anomaly detection modules is to identify the set of least frequent (lowest
probability density) transactions such that the sum of their expected frequency (cumulative
probability density) is !ess than some arbitrarily specified threshold (say 5%). In practice,
the rules that would enable this identification need to be generated from a small sample
of all possible transactions. Moreover, these rules need to be encoded in a succinc;t
manner (to fit within the memory of modest computers) so that anomaly detection can be
applied in real time. These constraints are by no means trivial. On the one hand, it is not
atypical to generate anomaly detection rules on the basis of a sample that represents one
one-millionth to one one-billionth of all possible transactions. On the other hand, this
small (relatively) sample might include as many as several hundred thousand transactions
(Vaccaro and Liepins, 1989).

A further complicating factor is that the majority of the variables are categorical, that is,
their numerical values are arbitrary (such as port number) and any derived Eucl.dean-
distance is meaningless. Moreover, those variables that are continuous certainly do not
satisfy the normality assumption of classical statistics. The significance of these
observations in conjunction with the large quantities of historical data is that anomaly
detection cannot be implemented by simply checking how frequently a transaction of
interest has been seen in the historical data base nor by parametric statistical estimation
techniques. Some sort of nonparametric density estimation approach is required.

498

W&SApproach

W&S solves the density estimation and mixed data (categorical data present with
continuous data) problems by first clustering the continuous variables so that they can be
treated as categorical. (For example, all the observations x satisfying the inequality 1.3 <
x < 6.7 might be placed in the first cluster.) Next, based on the historical observations,
a judiciously pruned forest of conditional rules is generated. Rules specify legal values
(commonly observed values relative to the others) of "test fields" conditioned on the values
in one or more of the other fields. For example, a rule might state tlat if the user is
"gunar", the time is between 8:00 AM and 5:00 PM, and the day is Wednesday, then the
legal ports are portl and port2. (In this example, the test field is "port". As in this
example, each rule has only one test field.) Consider a current transaction with "gunar"
logged in Wednesday at 12:20 PM on port3. This transaction violates the previously stated
rule, and therefore the rule contributes some evidence that the transaction is an anomaly.
For any test field (subject to the pruning conditions and sufficient number of observations)
rules ! e generated with all possible c(ibinations of the other fields in the conditional
side. Thus, rules will be formed that predict port on the basis of any combination of user,
time-of-day, and day-of-week (individually or in combination); time-of-day on the basis of
the other fields; and so forth. In this way, W&S can be thought to extrapolate the
available information of what value combinations can be expected to be common and
which are unusual: For each field individually, the corresponding tree of the W&S rule
forest effectively partitions the space of possible transactions into compleinmetaiy
"rectangular" regions (of arbitrary dimension) that suggest evidence for or against the
transaction being an anomaly (conditioned on the available information in the other fields).

Th : clustering algorithm and partitioning are illustrated in Figures 2. and 3. The clustering
algorithm of Figure 2. produces separate categories whenever intervals of high density are
separated by intervals of low density, and conversely. Figure 3. partially illustrates the
partitioning of "anomaly regions" for time-of-day, conditioned on user and port jointly.
Three groups of regions are illustrated: those conditioned jointly on "hank" and portl, those
conditioned jointly on "gunar" and port1, and those conditior.td on "gunar" and port2.

density
n onjno

onomorCus

catogory 0 1 T21 -3 1 4 1 . 1 6

F:igure 2. Illustration of W&S Clustering Algorithm

499

anomaly regions tar
time-of-day conditioned

A oan user = 'hank', port =

user oe port I

hank/
hank f.anomaly

regiors forgun time-of-day conditioned
gona or user "ggunara port

rport 2

par

tme of day
anomaly regions for
time-of-day conditioned
on user = 'gunar', part
part 2

Figure 3. Anomaly Regions for Time-of-Day Conditioned on User and Port

The justification for a multiplicity of rules (rule redundancy) specifying the value of any test
field is that at the time of rule generation, it cannot be ascertained at what level of detail
an incoming transaction might match the conditional side of a rule. Ideally, applicable
rules should be maximally specific, but the historical data may not support equal levels of
specificity in rules across all users, ports etc. Thus, the following three rules might be
generated from the historical data:

rulel: if 10:30 AM - 1:45 PM; then either portl, port2, port3, or pori4.

rule2: if "gunar", 10:30 AM - 1:45 PM; then either portl, port2, or port3.

rule3: if "gunar", 8:00 AM - 5:00 PM, Wednesday; then either portl or port2.

A later transaction with user "gunar" at 12:20 PM on Thursday matches rules I and 2. A
transaction with user "gunar" at 12:20 PM on Wednesday matches all three rules. A
transaction with user "hank" at 12:20 PM on Wednesday matches only the first rule; hank
probably did not have enough historical transactions on Wednesday to generate a
counterpart to rule3. This is further addressed in the paragraph on rule pruning in the
section on W&S details.

W&S Details

The approach as described to this point still leaves a number of important questions
unanswered. How exactly is the rule forest grown and pruned? Once a rule forest is
generated, a transaction under investigation will typically match a number of rules. Which

500

of the rules should be considered in the L.etermination of whether or not the transaction
is an anomaly? Moreover, how much weight should be given to the various rules? Should
passing rules be considered as well as failing rules? The rules in the rule forest address
individual fields. How should evidence for or against a transaction be combined from the
evidence about the individual fields? How can evidence about individual transactions be
combined to help make decisions about user (logon) sessions or about the computer system
as a whole. (For example, whether a distributed attack is being mounted)? What assistance
might be provided to the security officer to aid in the interpretation of W&S output?
These questions are briefly addressed in the remainder of this section.

W&S generates rules specifying legal values for each "test" field conditioned on all
previously observed values in arbitrary combinations of the other fields (subject to the
pruning rules). Legal values are specified by a set-wise complement: the historically
observed values minus those of least frequency whose cumulative frequencies most nearly
approach a given threshold. Thus, if a rule were being generated for port, conditioned on
the user being "gunar" and the time-of-day being 8:00 AM to 5:00 PM, the following ports
and corresponding frequencies might be observed in the historical data: portl, 60
observations; port2, 25 observations; port3, 11 observations; and port4, 4 observations. If
the threshold were set at 0.05, the rule would specify: if gunar and 8:00 - 5:00, then either
portl, port2, or port3.

Rule forest pruning is done in two stages. The first stage consists of stopping criteria
which specify that a given rule be dropped and that the corresponding branch of the tree
of the rule forest no longer be expanded. The second stage prunes out the "uninformative"
rules left by the first stage. The first stage criteria are triggered by the following conditions:
1. too many legal values in the test field., 2. insufficiently many historical observations to
support the rule, 3. an arbitrary depth cut-off, 4. conditioning on values previously
cl-ttermined to be anomalous (by rules earlier in the forest). Post pruning includes the

:ning of descendent rules which specify the same legal values as their antecedents. For
ample, if two rules both specify legal values for the same test field, and rulel is given
.,b,c:f; and rule2 as a,b,c,d:f; then rule2 would be pruned (unless it had substantially

greater strength -- see the next paragraph). Similarly, rules which do not constrain the
legil values are pruned.

Onm of the most subtle issues in W&S is the determination of the strengths (weights) to
be _oigned to the rules. Ideally, the strengths should reflect the confidence that the rules
flag transactions that should be flagged, and don't flag those that shouldn't. For example,
consider the rule a,b:c. If this rule were based on 1000 historical transactions, one would
have more confidence in it than if it were based on 20 transactions. Rules are assigned
"passing" strengths and "failing" strengths. The passing strength is used in combining
evidence if a transaction passes the rule; the failing strength is used upon rule failure.
These strengths are determined as finite sample corrected maximal likelihood estimates
(Howard, 1970). Thus, if N historical transactions matched the rule (the conditional --"if'
-- side of the rule) and A of these transactions failed the rule, then the failing and passing
strengths are determined to be proportional to (N+2)/(A+l) and (N+2)/((N-A+1),

501

respectively. This strength assignment remains a focal point of continuing research.
Currently, evidence from all matched rules is used in the determination of anomalies. This
has some distinct disadvantages, the principle one being the multiple counting of dependent
evidence. An alternative under investigation is the use of directed graphs. For example,
for the test field f, a large number of rule: potentially apply. These rules can be partially
ordered in a directed graph as illustrated in Figure 4., below. (In this figure, the node "

0 " refers to the unconditioned rule for field f -- (0:f) -- , the node "a" refers to the rule
for field f conditioned on a specified subset of values of field "a", and so forth.) A current
transaction would be evaluated in terms of the "maximal elements" of the directed graph
that it matches. Thus, if the transaction matches nodes 0, b, c, d, bc, bd, cd, bed, e, de,
and g (nodes corresponding to bcde, bcdeg .. are to have been pruned by the pruning
rules in this hypothetical example), and fails all but g, then the evidence for and against
field f would be computed in terms of the failing strengths at nodes bcd and de, and
passing strength at node g. This directed graph approach to combining evidence helps
acsure that only "independent" evidence is combined.

b d d e 9

bc bd cd de

bcd

Figure 4. An Illustration of a Directed Graph (for Field f)

For each test field, a "figure of merit" (FOM) is calculated in terms of the standard error:
Let E() and std-dev() be the expectation and standard deviation operators respectively.
Then for a transactioni T of interest and field f,

FOM(f,T) = (F - E(F))/std-dev(F)

where F is determined as the difference between the failing strengths of the (maximal)
rules (of the f-field directed graph) failed by the transaction T and the passing strengths
of the (maximal) rules passed.

Whether or not a transaction is flagged as an anomaly is determined in terms of the sum
of the figures of merit for the various fields (perhaps weighted by the "importance" of the
field). The "fields" of an anomalous record are those with the largest figures of merit.

The "incongruity" of a session is determined by the cumulative figures of merit associated
with an uninterrupted (fixed) user-port combination. Overall system activity is monitored
by the determination of figures of merit summed over system attributes such as ports or
input-output activity.

502

Currently, the determination of the rules failed and passed, the computation of the figures
of merit and the various measures of session incongruity are all computed within W&S.
Under consideration is the separation of functionality: determination of raw evidence by
W&S; processing of this evidence by a postprocessor. In this way, W&S could be tailored
to have varying sensitivities towards different users and threats (based on the security
officer's experience with the users and threats).

SUMMARY

'The concept of an overall computer security system has been introduced the role of
anomaly detection in such a system has been described. One approach to anomaly
detection W&S has been reviewed. Although W&S cannot yet be described as a mature
system, W&S's overall framework engenders considerable confidence that the module can
be tuned to perform as desired. Nonetheless, the details of the actual implementation are
continually being modified as experience is gained. For example, issues currently under
review include the best formulation of the clustering algorithm and the most suitable
functional form for the assignment of the rule strengths. On the other hand, even with
some ambiguity regarding the best W&S configuration, performance to date has been
encouaging. In every test to date, W&S hass uncovered previously unknown inappropriate
system activity and security shortcomings, such as for example, a process continuing after
an electrical storm disrupted a remote connection. Efforts are continuing to integrate
W&S into an overall security system and to further establish its soundness through rigorous
analysis. To this effect, W&S is currently in beta test at LANL, Oak Ridge National
Laboratory (ORNL), and other test sites.

REFERENCES

[1] Clyde, A. R., (1987). "Insider Threat Identification Systems," Proceedings of the 10th
National Computer Security Conference, 343-356.

[2] Denning, D. E., (1987). "An Intrusion-Detection Model," IEEE Transactions of
Software Engineering, vol SE-13, no. 2, 222- 232.

[3] Denning, D. E., D. E. Edwards, R. Jagannathan, T. F. Lunt, and P. D. Numan,
(1987). A Prototype IDES: A Real-Time Intrusion-Detection Fxpert System.

[4] Hansen, J. V. and W. F. Messier, (1986). "A Knowledge-Based Expert System for
Auditing Advanced Computer Systems," European Journal of Operational Research
26, 371-379.

[5] Howard, R. A., (1970). "Decision Analysis: Perspectives on Inference, Decision, and
Experimentation," Proceedings of the IEEE, vol 58, No. 5, 632-643.

503

[6] Lunt, T. F., R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P. G. Neuman,
H. S. Javitz, and A. Valdes, (1988). "IDES:Then Enhanced Prototype, SRI
International," SRI-CSL-88-12.

[7] Lunt, T. F., (1988). "Automated Audit Trail Analysis and Intrusion Detection: A
Survey," Proceedings of the 1lth National Computer Security Conference, 65-73.

[8] Michalski, R. S., J. G. Carbonell, T M. Mitchell (eds.), (1983). Machine Learning,
Tioga Publishing Company, Palo Alto, CA.

[9] Michalski, R. S., J. G. Carbonell, T M. Mitchcll (eds.), (1986). Machine Learning,
Volume II, Morgan Kaufmann Publishers.

[10] Quinlan, J. R., (1983). Learning Efficient Classification Procedures and their
Application to Chess End Games, in Michalski, Carbonell, and Mitchell (eds.),
Machine Learning, Tioga Publishing Co., Palo Alto, CA., 463-482.

[11] Sebring, M. M., E. W. Shellhouse, M. E. Hann, and R. A. Whitehurst, (1988).
"Expert Systems in Intrusion Detection," proceedings of the 1 lth National Computer
Security Conference, 74-81.

[12] Smaha, S., (1988). HAYSTACK: An Audit Trail Analysis System for Intrusion
Detection, Tracor Applied Sciences, Inc., Austin, TX., personal communication.

[13] Tener, W. T., (1988). Discovery: An Expert System in the Commercial Data Security
Environment, TRW Information Services Division, Orange, CA., personal
communication.

[14] Vaccaro, H. S. and G. E. Liepins (1989). "Detection of Anomalous Computer
Session Activity," IEEE Symposium on Research in Security and Privacy.

504

Computer Based Instruction for Computer Systems Security
Officers - An Example by the Air Force

Cryptologic support Center
Kelly AFB, San Antonio, Texas

BACKGROUND

This presentation will describe the Computer Based
Instruction (CBI) effort done for the Air Force Cryptologic
Support Center (AFCSC) at Kelly AFB, San Antonio, Texas. The
need to reach Major Commands (MAJCOMs), Direct Reporting Units
(DRMs), Special Operating Agencies (SOAs) and other Air Force
personnel prompted AFCSC to explore a cost effective means to
provide computer security awareness training.

Introduction

An increased need for computer security awareness training
is a direct result of technological advances in automated
systems. The wide use of computers in defense installations and
par•icularly the Air Force requires the prudent application of
security policies and procedures. The increasing connectivity of
systems that are spread geographically has introduced new
security complexities and issues that need to be addressed by a
standard distributed training program.

Through the 1970's and 1980's computer assisted and managed
instruction, which together equate to Computer Based Instruction
(CBIi, received increasing attention in Government, the military
and industry. CBI has now become accepted as a viable training
alternative offering reduced student and instructor time and
resulting cost savings. With the availability of authoring
languages and computer technology the training professional has
many alternatives tc select the alternative that best meets the
training requirements.

Rurpose

This presentation is for the purpose of: (1) describing the
requirements analysis needed for effective CBI, (2) demonstrating
the credibility of the approach by referencing an effort being
implemented by the US Air Force Cryptologic Support Center. The
paper describes a methodology consisting of requirement analysis,
hardware/software environmen' , CBI benefits as applied to a
particular military setting. The techniques examples, and
learning experience from this should be useful to those who are
planning the acquisition or who have recently implemented a CBI
system. An actual demonstration of the AFCSC CBI Courseware will
be accomplished.

505

CBI DEVELOPMENT METHODOLOGY

A systematic approach was taken to identify the training and
education requirements (TERs) and required skills and knowledge
(S/Ks) for MAJCOM Computer System Security Managers (MCSSMs) Base
Computer Systems Security Officers (BCSSMs), Computer Facility
Managers (CFMs), Computer System Security Officers (CSSOs) and
Terminal Area Security Officers (TASOs). The above positions
represented the targeted audience as prescribed by Air Force
Regulation (AFR) 205-16 entitled Communications Computer Systems
Security Policy, Procedures and Responsibilities. Figure 1
depicts the process used to define the training education
requirements from the reference material. The Instruction System
development model utilized by the Air Force provided the
foundation for the actual courseware development methodology.
The ISD process is shown in Figure 2.

Information was gathered in the following sequence:

1. Identify appropriate computer security reference
materials. Consult references for complete listing of
documents.

2. Analyze the high level topics and identify appropriate
subtopics for clarification of information content,
noting the source of supporting information.

Interviews/
Guidance CSSO CSSO

Rogulations Documents Course Handbook

Training/Education

•Requirements |MCSSMV

CCSSO

__ •. Sources /

Knowledge /Skill
6Requirements Requirements /

- CS99-468
Figure 1. Requirement Identification

506

3. Analyze the high level topics and identify appropriate
subtopics for clarification of information content,
noting the source of supporting information.

4. Review high level topics and subtopics to deter-minc it
additional topics were required based on engincering
experience, interviews with Air Force personnel and
further analysis of reference materials.

5. Identify requisite S/K's for each identified TiKP. Thiis
information was derived from an analysis of the -ouircc
information for each high level. topic and associated
subtopics.

6. Identify training requirements for each security officer
as either Core Knowledge or Specific Training
requirements. The criteria used for the core or
specific training determinations were based on analysis
of AFR 205-16, other reference materials, and personal
interviews with Air Force personnel.

Analyze Define Develop
CBI - Tralning/Educatlon -- Instructional

Requirements Requirements Objectives

Feedbackl

Snteraction

Conduct _Plan
and

ondEuate Develop CBIand Evaluate 1 InstructionCourseware Modules

CS9-469

Figure 2. CBI ISD Methodology

507

7. Enter data into DBMS for manipulation and ruport
generation. Databases were created containing the
following:

o Training/Education Requirements (TER's)
o Information Source References (REF's)
o Skill/Knowledge Descriptions (S/K's)
o Cross reference files showing the

relationships of TER's to S/K's, and TER's to
REF's

MODULE IDENTIFICATION

Methodology Used To Identify Modules

The field of computer security is complex and ever changing.
To develop the candidate CBI modules we explored two methods that
offered a means to tap and pool the Project Teams judgment and
expertise. The Delphi technique was used to prioritize and
determine the logical sequencing of course material by topical
area. Once the results of the Delphi were complete, the Nominal
Group Technique (NGT) was utilized to finalize the logical
sequencing of the CUose LUuodules. The results of the NGT, as to
module sequencing for CBI Courseware, are presented in Figure 3.

Module 01 Overview of Security
Module 02 Analysis of Security Architectures
Module 03 Security Requirements Analysis
Module 04 Overview of Certification/Accreditation
Module 05 Determining System Treats/Vulnerabilities and

Countermeasures
Module 06 Details of Risk Management/Risk Analysis
Module 07 Security Incident Determination and Reporting
Module 08 Security Management of Communications Systems

and Networks
Module 09 Management of Media in Security Environments
Module 10 Security in Day-to-Day Operations

Figure 3 - Order of Presentation and Development Modules

Once the module sequencing was established behavioral
(enabling) objectives were established for each module. The
objectives were based upon the training/education requirements
and associated skill/knowledge requirements for module topics.

508

CBI Module Objectives

In Module 01, Overview of Security, the student will
understand the reason for being concerned with security in
automated environments and what the monetary costs of security
violations can be. The student will also get a preview of the
other CBI training modules that are available. The student will
be able to describe the roles and responsibilities of the various
positions involved in computer security, interpret computer
security requirements, describe the requirements for planning and
implementing a security program, describe the content and use of
various security documents, and identify and prepare appropriate
security training based upon requirements.

For Module 02, Analysis of System Architectures, the student
will be ab].e to describe security operations analysis, describe
facility Risk Analysis/Certification Administration and the
impacts of the environment. The student will also be able to
describe computer facility requirements for processing
classified/sensitive information for various system
architectures, explain applicable security measures for various
system architecture, interpret security impacts on small computer
operation architectures, identify and use network/communication
checklists and guides, and UndeLýtsad tlhe r'1sii. anaI±- L-si

for network architectures.

Module 03, Security Requirements Analysis, will enable the
student to describe AFCSC services, interpret data derived from
the architectual analysis of the sample system, understand the
OMB, DoD, FIPS, AF and other security related publications for
policy, procedures and guidelines. He/she will be able to
interpret the implications of the evaluation criteria including:
closed versus open environments, classes of systems, and use of
tables to determine minimum user clearances and risk index,
describe security modes of operation, and determine the
applicable security mode for a sample software/hardware/data
architecture.

In Module 04, Overview of Certification/Accreditation, the
student will be able to identify and understand the use of
security checklists and threat vulnerability guides, understand
the requirements and components for preparing an accreditation
package, understand the risk analysis process and documentation
required for certification/accreditation of a system, prepare and

execute a security test and evaluation plan, understand and
determine residual risks of a system.

For Module 05, Determining System Treats/Vulnerabilities and
Countermeasures, the student will be able to identify and
understand the use of threat/vulnerability checklists and guides,
identify and use a specific checklist/guideline for a particular
security situation.

509

Module 06, Details of Risk Management/Risk Analysis, the
student will be able to define and explain the risk management
life cycle, explain the concepts, types of risks and the steps
involved in completing a risk analysis, perform a Ysk assessment
of a system, identify and perform the steps assoc Lated with a
security test and evaluation, and describe and detc-mine residual
risks for a sample system.

In Module 07, Security Incident Determination and Reporting,
the student will learn to describe rules and requirements for
security monitoring, describe and understand the different
methods of active versus passive monitoring, use the threat
monitoring and severity/likelihood checklists, describe and
understand methods for access control including: reasons to deny
access, and file protection mechanisms and control, use access
control mechanisms and file protection procedures, describe
password management and protection requirements. The student will
also be able to identify fraud, waste and abuse (FWA), and use
methods to prevent FWA.

In Module 08, Security Maragement of Communications Systems
and Networks, the student will be able describe the security
... ut.....LirAeiTetS fot itLwurki, describe the security requirements for
communications, describe and interpret the Network Evaluation
Criteria, describe and use the methods for monitoring in a
network environment, describe procedures of and conduct a CSESP
IAW AFR 56-50, use network/communications threat/vulnerability
guidance, describe data encrypti.on/COMSEC requirements, describe
types of cryptographic equipment and keying material.. He/she
will be able to describe and understand security requirements for
LANs including protection methods, use of terminals on LANs,
audit trails for LANs, access control of LANs, set LAN access
attempts parameter, describe security requirements for long--
haul/wide-area networks including: protection of dedicated lines,
use of dial-up lines, audit logs, and network access control
procedures, describe and know how to perform a network Risk
Analysis, describe the procedures for networks used inter/intra
commands/services/agencies, describe security requirements for
using electronic mail systems and telephones including ones with
displays, describe methods of protecting communication lines,
describe types and understand use of PDS/PWDS and approved secure
fiber optics, describe TEMPEST requirements to control
emanations, apply procedures and interpret reports in TEMPEST
required operations.

In Module 09, Management of Media in Security Environments,
the student will be able to describe the magnetic media control
requirements of CSC-STD005-85 and Guideline 06, identify the
types of magnetic media to be controlled, describe the media
labeling requirements of DoD 5200.I-R/AFR205.-l and other
guidance, describe the proper methods to mark media, describe and

510

understand the implications of the media storage requirements of

AFR 205-16 Attachment 14, describe the criteria and reguirements

for backup/recovery of media, and describe the requirements of

CSC-STDO05-85 for declassification, degaussing, and destruction

of media.

For Module 10, Security in Day-to-Day Operations, the

student will be able to describe major computer operations

security provisions of AFR 125-37, describe the use of

configuration management in computer operations, use guidance to

produce configuration control practices, describe sound safety

practices, describe and understand the security implications of

maintenance requirements, prepare a maintenance schedule,
describe the requirements for transporting classified

information, describe and understand the implications of the

personnel security requirements of DoD 5200.2R/AFR 205-32, and

know methods and events to look for in identifying potential

system abusers.

The function of the CBI training material is to augment

standard Air Force security training. The behavioral objectives

for each module form the focus of the material presented.

Each of the ten (10) modules were designed with the

following considerations:

a. Each module will require approximately thirty (30)

to sixty (60) minutes to complete, assuming a minimum of

remediation learning required.

b. Brevity - Are the displays simple and well-organized?
Do the displays provide high information transfer?

c. Consistency - Are the displays consistent from one

display to the next, thus developing user confidence in
the module?

d. Flexibility - Does the module adapt to individual
differences in background?

e. Compatibility - Does the module focus on the subject to

be learned, or does the student focus on operating the
learning system?

f. Responsiveness - Is immediate feedback provided to the

student (except in the case of module tests where the

student must complete the test before receiving his
feedback)?

511

g. Does the computer managed instruction provide the
trainer or supervisor with sufficient information so he
can monitor the student's progress?

HARDWARE/SOFTWARE ENVIRONMENT

The CBI courseware is designed to operate in the USAF's
standard Zenith AT compatible hardware environment. This basic
hardware configuration consists of those items defined in Figure
4. Figure 5 presents the two types of Cathode Ray Tubes (CRT) or
monitors that may be used.

Model No. Description Quantity

ZFX-243-50 Zenith AT compatible computer 1
ssystem

HE-150-192 360KB floppy disk drive system 2

HE-181-5188 j 80286 8MHZ CPU Card w/ 512KB RAM I 1

HE-181-5187 j Input/Output Card 1 !

Z-439 j Enhanced Display Adapter 1

Z-304 I Sync/Async Serial Card 1

HE--150-234 I Floppy/Hard disk controller J1

HE-281-32 Z-200 Keyboard Assembly I 1

OS-63-41 (MS-DOS 3.2 1

Figure 4 - CBI Target Hardware Configuration

Model No. Description Quantity

ZVN-1380 RGB Color Monitor with EGA Board I

ZMM-1470-G Monochrome Monitor

Figure S - CBI Supported CRT Output Device

512

REOUIRED SOFTWARE CONFIGURATION

The CBI courseware consists of a set of floppy diskettes.
One diskette contains the programs required to run the lessons
and the remaining diskettes contain the introductory material and
the individual courseware modules. Except for the need of the
MS-DOS operating system, no other software is required. The
design was on a dual floppy 360k system as the AF has over 14,000
CPU'c with this configuration. The courseware will also run on a
single 360k floppy with a hard disk.

R4SULTS

An actual demonstration will portray the CBI courseware that
was described in this paper.

513

REFERENCES

Reference materials used in defining the training/education
needs of Air Force security personnel include:

1. AFR 205-16, ADP Security Policy. Procedures and
Responsibility (Draft), 28 August 1987.

2. DOD-STD-5200.28, DOD Trusted Computer System Evaluation
Criteria (Orange Book), December 1985.

3. CSC-STD-002-85, DOD Password Management Guideline, 12
April 1985.

4. CSC-STD-003-85, Computer. Security Requirements, Guidance
for A_ pli .the DOD Trusted Computer System Evaluation
Criteria in Specific Environments, 25 June 1985.

5. CSC-STD-004-85, Technical Rationale Behind CSC-STD-003-
85, Computer Security Requirements. 25 June 1985.

6. NCSC-WA-002-85, Personal Computer Security
Consideratious. December 1985.

7. ESD-TR-86-277, Risk Analysis Environments Guidelines_
September 1986.

8. AFSEC Guideline 01F, Computer Security Incident, 27
January 1986.

9. AFSEC Guideline 02A, Security in Mission Critical
Resources Acauisition, 1 February 1985.

10. AFSEC Guideline 04, Guidance in Performing a Risk
Analysis. 1 March 1985.

11. AFSEC Guideline 08, Control and Prevention of Computer
Abuse, 18 May 1981.

12. ATC-Student Text, Computer Systems Security. 3 April
1987.

13. ATC-Student Handout, Computer Systems Security ADP
Security Guideline, 5 January 1987.

514

COMMUNICATIONS-COMPUTER SYSTEMS SECURITY
VULNERABILITY REPORTING PROGRAM

(CVRP)

CAPT LEE SUTTERFIELD
CAPT GREGORY B. WHITE

Networks and Computer Systems Security
AFCSC/SRE

Kelly AFB, TX 78243-5000
(512) 925-2386

1.0 INTRODUCTION

The Air Force Cryptologic Support Center (AFCSC) designed the
Communications-Computer Systems Security Vulnerability Reporting Program
(CVRP) to respond to several security problems facing the Air Force. The
contents of this paper form the core of the official Concepts of Operations
for the Air Force CVRP currently being implemented. The AFCSC, in its role
as executive agent for COMPUSEC, COMSEC, and TEMPEST for the Air Force, has
established the CVRP to focus limited security resources where they are
needed most. Several aspects of the CVRP represent a departure from the pri-
mary emphasis of the past few years in each of the security disciplines.
However, the CVRP will comply with all national policies and directives for~~Lv v • ... =*•T MPFST.
UUIKLS LU, V M CL*J,.and &TL

The CVRP is a combination of administrative controls, reporting proce-
dures, specially developed software, research and development (R&D) efforts,
and special survey and analysis capabilities designed to identify and develop
countermeasures to knowrn risks to Air Force coi munications-computer systems.
It will provide a forum to identify and analyze system susceptibilities, se-
curity environment, and vulnerabilities. The CVRP will also establish a
single office to identify and validate the threat to computer systems and
report findings in a timely manner throughout the security chain of command.
It will also direct the development and implementation of countermeasures to
specific risi in the field.

Part of the basis of the CVRP is Department of Defense Instruction (DODI)
5215.2.. The Computer Security Technical Vulnerability Reporting Program
(CSTVRF), as described in DODI 5215.2, requires Department of Defense (DOD)
personnel to report all security vulnerabilities of DOD-owned computer sys-
tems. The CVRP will satisfy all of the reporting requirements of the CSTVRP.
However, the CVRP is different from the CSTVRP in that it will address com-
puter security (COMPUSEC), TEMPEST, and communications security (COMSEC) as
an integrated effort.

In tb. - ., L" I. compktnr security effort has concentrated on the de-
velopment and deployment of the Trusted Computing Base (TCB) as described in
DOD STD 5200.28. If the Air Force were able to field large numbers of TCBs
soon, many of the more pressing computer security problems facing the Air
Force would be solved. However, after many years of work through the
National Computer Sec; '*ty Center, the government has stimulated industry to
produce only a handft, i TCBs of limited applicability.

515

Even if large numbers of TCBs were available tomorrow at a reasonable
cost, the total cost to the Air Force to replace all operating systems would
be prohibitive. While the TCB concept holds great promise, it will not meet
the security needs of the Air Force for at least 7-10 years. In addition, a
basic assumption of the CVRP is, even if TCBs are put in place, there will
always be a need to report, analyze, and develop countermeasures for new vul-
nerabilities and incidents as they are discovered. In other words, if secu-
rity features can be built, they can be broken.

The most important lesson learned about communications-computer security
in recent months is, even though many of the issues are highly technical in
nature, most of our security problems originate with people. First, educa-
tion and awareness is all-important. We can avoid most communications-
computer security incidents if system managers practice very simple security
techniques. Second, we need door rattlers, No matter how good the education
and awareness program, people will leave doors unlocked, physical, digital,
and otherwise. We must have the ability to walk the digital hallways and
close the doors when needed. The CVRP will provide a formal, organized pro-
cess for doing that. Third, and by no means least, we must collect the in-
formation necessary to help plan the distribution of our limited
communications-computer security resources for long term security.

The CVRP is a new approach to securing Air Force computer systems. AFCSC
devlovped the GVRP as a direct result ot recent lessons learned from the
growing volume of computer security incidents along with the need to inte-
grate the disciplines of COMPUSEC, TEMPEST, and COMSEC.

2.0 THREAT AND SECURITY ENVIRONMENT PERSPECTIVE

Each aspect of the CVRP is the result of practical lessons learned from
the analysis of recent communications-computer security incidents as well as
an evaluation of communications-computer and network technologies. A list of
the most important of those lessons and background on each is described
below.

2.1 Sensitive Unclassified Systems

The Department of Defense must now secure sensitive unclassified systems.
Until recently, we directed the majority of the computer security program
toward securing only classified systems, and much of that effort was expended
on the development of TCB technology. However, in recent years it has become
clear that we can no longer ignore the large number of unclassified systems
processing highly sensitive information.

In addition, there are several categories of sensitive unclassified sys-
tems, each of which has unique security requireoents. For example, life-
critical systems may take priority over mission critical systems depending on
the circumstances. We must also provide special protection for Privacy Act
information. All of these special requirements makes security decisions re-
lated to these systems more complicated.

The National Telecommunications And Information System Security Committee
(NTISSC) published NTISSP No. 200, 15 Jul 87, stating all government systems,
including those systems processing sensitive unclassified information, must

516

provide a C2 level of trust as described in the DOD STD 5200.28 by 1992.
There is currently a limited number of evaluated TCBs and a long lead time is
necessary to develop and successfully field a TCB. In addition, the Air
Force has limited resources available to change a large portion of existing
Air Force computer operating systems to TCBs.

The lead time for fielding large numbers of TCBs with higher levels of
trust (i.e., BI, B2, etc.) will be at least as long as for C2 systems.
Therefore, we must concentrate on providing equivalent C2 capabilities out-
side of the TCB via procedures, controls, and other security practices. In
addition, recent experience clearly shows that TOBs are often installed and
used incorrectly. Installing a TCB is no guarantee of security. We must
still deal with a constantly changing environment and technology.

The requirtment to secure all Air Force computer systems, while desir-
able, is not possible if TCBs are to make up the core of the computer secu-
rity program. Recent security incidents have shown that the security of ex-
isting computer systems, most of which are not trusted, can be greatly en-
hanced by using the security features that are already available on current
systems. The following section will describe in some detail the findings of
several case studies involving the security of Air Force systems. It will
also provide some perspective on the weaknesses in the Air Force computer se-
curity program that the CVRP will address.

2.2 Connectivity of Computers and Networks

The growing connectivity of networks and computers has clearly changed
the nature of the threat posed to Air Force systems. The Air Force is con-
necting computers that process information about operations, logistics, per-
sonnel, administration, finance, medical, and other subjects vital to daily
Air Force business in ever-increasing numbers via local and wide area net-
works. Recent experience suggests that the connections between computers are
incteasing so fast that users and system managers are not always sure of ex-
actly who can obtain electrical connection to their system or files. Often a
particular computer system may be accessible through a second, third, or
fourth level of connectivity that isn't apparent to the owner of that system.
Couple this problem with lax security discipline, and the environment is ripe
for serious exploitation of systems.

For example, personnel at the Lawrence Berkeley Labs (LBL), Berkeley,
California, monitored a systematic attack on 450 computers connected to the
Defense Data Network between late 1986 and late 1987. The intruder obtained
some degree of access to over 60 of the computers he attacked through MILNET.
He was able to obtain access to a programming environment on about 18 of the
systems, and he gained full system manager privileges on 9 of the systems at-
tempted. Only 2 system managers out of the 450 systems attacked are known to
have detected the attack themselves.

2.3 Simple Hacking Techniques

All of the attacks in the LBL hacker case were conducted using very
simple hacking techniques. This ebservation can't be over-emphasized. The
hackers gained access through security holes that should have and could have
been closed by system managers. Often, once the attacker obtained simple

517

access to a system, he would seek information on who was currently logged on
to the system. He would latcr use this list of valid users of the system to
log in with their valid user names and try to guess passwords. About 36 of
the attacker's attempts were successful in obtaining such user information.
lie usually tried only 4 guesses per computer and successfully penetrated 60
of the computers attacked.

2.4 Poor User Disciljne

Once the LBL Hacker penetrated a system, lie would search the users' per-
sonal files for information about other computers to which the users had au-
thorized acess. Unfortunately, many users kept files listing up to 20 other
computer systems or networks that they regularly accessed. These files con-
tained telephone numbers, system IDs, user IDs, and passwords. Although most
system managers regularly remind users not to keep such information in their
computer files, the attacker was able to gain access to many systems by ex-
ploiting this classic security error.

2.5 Poor System Manager Discipline

Computer system managers are the first line of defense for the security
of Air Force computer systems. However, they are often poorly trained in the
use of existing security features of an operating system. In addition, they
are usually under pressure from users to minimize the impact of security on
the opelrability of the system. Most external hreak-ins to computer systems
happen because hackers exploit security holes in operating systems that can
t)e closed by motivated and well-trained system managers.

For example, the intruder in the LBL case often accessed systems by en-
tering standard user names looking for open maintenance accounts. For exam-
ple, UNIX systems often have accounts for <guest>, <ingres>, and <uucp>,
while VMS computers usually have <system>, <user>, and <systest>. System
managers should close such accounts when no one is using them.

2.6 Operating System Vulnerabilities

Hackers can quickly exploit weaknesses in operating systems because of
the increased connectivity of Air Force systems through both military and
commercial networks. The following incident is described as an example of
the potential danger in not quickly correcting operating system vulnerabili-
ties in today's high-connectivity environment.

In 1988, a group of hackers exploited a technical vulnerability in a com-
mercial operating system via worldwide networks. They used the Space Physics
Analysis Network (SPAN) and the High Energy Physics Network (HEPNET) to
attack a large number of Digital Equipment Corporation computers running ver-
sion 4.4 of the VMS operating system. The flaw in the system allowed a user
to gain access to the file that controls the system user access and privilege
data. Once the intruders gained access to that file, they gave themselves
full system manager privileges. This group was able to plant a sophisticated
Trojan Horse program within the operating systems of over 100 computers. The
connectivity allowed them to exploit a simple but devastating operating
system vulnerability on a worldwide scale within months of the discovery of

518

the vulnerability. Clearly, we must be able to determine countermeasures for

vulnerabilities quickly in today's networked environment.

2. 7 Security Monitoring

During the 12 months of attacks in the LBL case, less than 3 percent of

the attacked sites noticed any attempts at unauthorized access. Although

it's easy to watch for network log-in attempts, only a few system managers do

so. Few managers look for warnings of problems and even fewer act upon these

warnings. However, if Air Force system managers were trained in what to look

for and how to respond, the security of Air Force systems would increase dra-

matically. This has been proven at several locations in the Air Force and

within other government agencies.

2.8 Security Incident Procedures

Part of the CVRP will address the need for centralized threat and vulner-

ability assessment. It will also provide clear guidance for system managers
in the field about countermeasures for security incidents. For example, an-

other lesson learned from recent incidents relates to the way a system man-

ager should handle a break-in attempt. At one point during the LBL investi-

gation, the system manager at LBL notified the system manager of a particular

Air Force site that the intruder had accessed the Air Force system and had

obtained full system manager privileges. LBL explained that they had been
rrackIng this hacker for 10 months and asked that- the Syste' ,SL a, the
Air Force site not alert the intruder. LBL asked the site system manager to
shut down the system gracefully, perhaps using routine maintenance as an

excuse, and assess the situation.

Unfortunately, the Air Force system manager took a parochial view of the

situation and simply closed the hackers' accounts. It was clear from his ac-
tions that the system manager had detected the intruder. Fortunately, the

hacker did not realize that LBL was monitoring his actions. If he had, the
LBL investigation would probably have stopped and 10 months worth of work
lost.

Although the Air Force system manager was following existing guidelines,
he almost closed the most revealing case of potential computer espionage ever
documented. He, like all other Air Force rystem managers, hasn't been given
clear instructions regarding such situations because we have yet to form a

clear policy for such incidents. The CVRP will provide that policy.

2.9 Tracing of Illegal On-Line Activities

The last major lesson from these recent security incidents highlights the
need for a point of centralized coordination to trace unauthorized queries of

Air Force computer systems back to their point of origin. Through the CVRP,
the Air Force can use the same technology hostile groups use to illegally
access and damage systems and catch them in the act. The LBL investigation
took over a year to complete. The need to coordinate with up to ten organi-
zations and agencies in several countries, plus the lack of clear policy re-
garding illegal access to on-line systems, caused unneeded delays. In this
environment the hacker has the advantage. He is working on his turf against
one poorly trained system manager at a time. If the current situation con-

519

tinues, he will becohie increasingly successful. The goal of the GVRP is to

organize all communications-computer security resources available and direct

them where needed and when needed.

3.0 CVRP BACKGROUND

Each function of the CVRP is designed to meet at least one of several

constraints. First, the CVRP is a "threat-driven" program. Each major

action through the CVRP will be directed at existing vulnerabilities for

which there is a "validated threat" on record. The next section outlines

this requirement. Second, the GVRP will provide for the DOD level reporting

requirements mandated by the CSTVRP. Third, the CVRP will integrate the re-

porting and analysis functions of COMPUSEC, TEMPEST, and COMSEC.

The primary emphasis of the CVRP in the early stages will be on COMPUSEC

since our greatest vulnerabilities exist in this discipline. Although TEM-

PEST and COMSEC are integral parts of the CVRP, each discipline has long

standing procedures for handling the analysis and reporting of vulnerabili-
ties that will not change overnight. These two disciplines will be phased

into the formal reporting requirements of the CVRP as soon as possible. How-

ever, the performance of countermeasure assessments, electronic security sur-

veys, and other functions of the CVRP will address all three issues as appro-
priate.

3.1 Threat-Driven Program

Implementation of the CVRP will require coordination at all levels within

the Air Force and with several agencies and organizations outside the Air

Force. The CVRP will facilitate the deployment of countermeasures in three

different disciplines. All three disciplines have developed separately over

the years and they each use key words and phrases in very different ways. In

addition, the CVRP will deal with the intelligence community on a regular

basis. This multi-disciplinary nature of the CVRP caused considerable confu-

sion in the early days of the integration of communications-computer secu-

rity. The CVRP will use a set of definitions that will satisfy all three se-

curity disciplines and the intelligence community.

3.1.1 Definitions. The most important definitions are referenced here in-

stead of in a glossary because of the need for a clear understanding of cer-

tain concepts that are fundamental to the CVRP. These definitions were coor-

dinated with several organizations outside the Air Force to "test the seman-

tic waters" and adopted for the CVRP.

Threat--The potential for the exploitation of an existing vulnerability

by a hostile entity.

Service Interruption Hazard--The chance that an action may occur which

would have a detrimental effect on the operational. integrity of a system.

Susceptibility- -The lack of the ability of a system to prexent: 1) an

electronic compromise of National Security Information or, 2) detrimental

effects on its operational integrity.

520

Security Environment--Environmental security factors, in a particular in-
stallation, which could allow a system's susceptibility to be exploited
and/or deactivated.

Vulnerability- -A product of susceptibility and the security environment.
A measure of the possibility of a successful exploitation.

Risk--A product of validated threat and vulnerability. A measure of the
likelihood of successful exploitation of a system.

Countermeasures--Adjustments made to system susceptibility and/or the se-
curity environment which reduce the system vulnerability to a level
which, with the threat, equals an acceptable risk.

3.1.2 CVRP Risk Model. The CVRP risk model will be used to develop and
deploy countermeasures to confirmed risks to Air Force systems. Using the
definitions given above and Figure 1.0, an explanation of the CVRP risk model
follows.

In the past, most decisions about the deployment of countermeasures for
communications-computer security problems were made based on identified sus-
ceptibilities of systems. For example, in the TEMPEST arena, we used consid-
erable resources to minimize all compromising emanations even if the exploi-
tation of those emanations wasn't likely. This led to wasted security dol-
lars. The CVRP risk assessment model should help avoid slnillar waste in the
future in all three security disciplines. Use of this model will be modified
as necessary to comply with specific policy requirements. However, adhering
to the primary CVRP goal will guide our actions.

The goal of the CVRP is to field countermeasures based on clearly identi-
fied risks to specific systems. A risk must have the following three parts.

First, there must be a confirmed vulnerability of the system in question.
A vulnerability is a system susceptibility that can be exploited because of
the security environment in which the system is used. For example, suppose a
given computer system radiates compromising emanations UD to 20 feet, but the
security environment is such that 100 feet of controlled space is available.
A vulnerability does not exist because the physical access needed for exploi-
tation is controlled.

Second, the sensitivity of the information will determine the level of
risk. The Air Force must protect classified information and little risk can
be accepted. We must also protect information subject to the Privacy Act and
information that is critical to the operational security of the Air Force.

Third, there must exist a validated threat to a system before risk
exists. In the past, the development of security countermeasures for
communications-computer systems did not require validated threat position. A
basic premise of the CVRP is that the Air Force must use its limited security
resources where the exploitation of a given vulnerability is most likely. A
validated threat position produced at the Air Force level and at the Defense
Intelligence Agency will justify each major expenditure for communications-
computer system security countermeasures.

521

THREAT-DRIVEN PROGRAM

F SUSCEPTIBILITIES

KVULNERABILITIE

.t 7 -COUNTER-LSECURITY ENVIRONMENT RISK MEASURES

VALIDATED THREAT--_V 711
LIMMINENT L KNOWN

THREAT E XPLOITATION

CVRP RISK MODEL
FIGURE 1,0

There are two types of validated threat to Air Force communications-
computer systems. The first type of threat is any known exploitation of ex-
isting Air Force systems by hostile organizations or persons, often referred
to as the "smoking gun". The second type of threat is "imminent threat".
Imminent threat will exist if a hostile organization has the technology, the
organizational assets, and the demonstrated intent to exploit a known vulner-
ability. If a countermeasure has been effective it should significantly
reduce the vulnerability and therefore the risk to an acceptable level.

3.2 CSTVRP

As mentioned earlier, DODI 5215.2 established the Computer Security Tech-
nical Vulnerabilities Reporting Program (CSTVRP) under the direction of ASD
(031) as a means for reporting all demonstrable and repeatable technical v-11-
nerabilities of computer systems. The CSTVRP provides for the collection,
consolidation, analysis, reporting or notification of generic technical vul-
nerabilities, and dissemination of corrective measures.

The program focuses on hardware, firmware, and !Ioftware wearknesses and
design deficiencies in commercial products acquiced by the DOD and those al-
tered computer system products supporting standard military applications.
Air Force participation in this program is expanded to include products de-
veloped by Air Force, other DOD, or private sources used on Air Force stan-
dard communications-computer systems. Responsibility for correcting vulnera-
)ilities in commercial products will be assigned by a national level agency,

522

usually to the owning vendor. The Air Force Cryptologic Support CenCter is
responsible for ensuring vulnerabilities in Air Force standard products in-
cluded under the expanded Air Fozce reporting program are corrected.

3.3 CVRP Mission Oblectives

The Communications-Computer Systems Security Vulnerability Reporting Pro-
gram (CVRP) includes all of the requirements for the CSTVRP plus the capabil-
ity to handle hacking incidents, virus incidents, technical vulnerability re-
porting, and security surveys, and to organize the development of specific
countermeasures for standard and embedded systems. Administratively, the
CVRP will meet all the reporting requirements of the CSTVRP but AFCSC will
provide specially developed software to facilitate participation of Air Force
Computer Systems Security Officers (CSSOs) in the program. Details of the
operational and functional requirements of the CVRP and its software will be
described in Section 4.0.

The CVRP will direct its limited communications-computer security re-
sources to prevent the exploitation of the most critical Air Force
communications-computer resources where the greatest risk exists. The CVRP
will provide a forum for the identification and analysis of system suscepti--
bilities, security environment, and vulnerabilities; identify and validate
the threat to computer systems; perform sacurity surveys of organizations and
network;, report those findings in a timely manner throughout- the security
chain of command; and facilitate the development and implementation of coun-
termeasures to specific risks in the field.

4.0 THE CVRP PROCESS

4.1 Overview

The CVRP process will involve the collection and analysis of three types
of information. The details of the methods of collecting these data will be
outlined in paragraph 4.2.

First, AFCSC will collect sufficient data on each accredited Air Force
computer system to identify that system, the key personnel responsible for
the security for that system, and pertinent technical and environmental in-
formation. AFCSC will use this data to handle security incidents that may
have Air Force wide implications and to conduct analysis of the overall com-
puter security posture of Air Force organizations and systems. Computer Sys-
tems Security Officers (CSSOs) will forward this data to AFCSC through the
MAJCOM Computer Systems Security Manager (MCSSM).

Second, AFCSC will collect vulnerability information and maintain a vul-
nerability database. This vulnerability data base will also satisfy vulnera-
bility reporting requirements mandated by DODI 5215.2 for the CSTVRP.

Third, threat information, as defined in the earlier definitions section,
will b9 collected and analyzed. This information will be all-source intelli-
gence validated at the Air Force level as a minimum.

523

The three types of Information mentioned above will make up the CVRP Da-
tabase. AFCSC will use the GVRP Database to conduct Security Posture Assess-
ments (SPAs), Vulnerability Report (VR) analyses, arid countermeasure develop-
ment. The focal point for all aspects of the CVRP is AFCSC/SRV.

4.2. Data Collection for CVRP Data Base

The collection of accreditation and vulnerability data starts with the
performance of the risk analysis by the CSSO as shown in Figure 2.0. The Au-
tomated Risk Evaluation System (ARES) is the primary risk analysis tool for
Air Force use. The system security officer performing the risk analysis will
forward selected accreditation data up to the IIAJCOM/SOA/DRU CSSM via the
Communications-Computer Systems Security Management System (CMS). The CMS is
a software tool designed to help the MCSSM manage the MAJCOM communications-
computer security program. The CMS will also manage the collection of vul-
nerabiliry information for the Air Force Vulnerability Data Base (AFVDB).
(Paragraph 4.2.2 describes the CMS in more detail.) The CMS will also manage
the collection of accreditation information which will be kept in the Air
Force Accreditation Data Base (AFADB). The Air Force Threat Data Base
(AFTDB) will contain validated threat information from all-source intelli-
gence resources. These three data bases make up the CVRP Data Base main-
tained by AFCSC. Subsets of portions of these data will reside in the CMS
program at the MAJCOM/SOA/DRU CSSM offices. A more detailed description of
the above items follows.

4.2.1 Automated Risk Evaluation System (ARES). The backbone of the Air
Force Communications-Computer Systems Security Program is the requirement for
the completion of a formal risk analysis. AFR 205-16 requires that the user
of a computer system perform a risk analysis before the Designated Approving
Authority (DAA) can approve the operation of a particular computer system.
The number of man-hours expended to satisfy this requirement Air Force-wide
is considerable. Yet none of the resultant data generated during this pro-
cess is available to plan the development of needed countermeasures and to
assess the overall security posture of Air Force communications-computer sys-
tems resources.

ARES is an automated tool designed to make the risk analysis much easier
for the average user to perform. In addition, ARES will provide additional
functionality needed by the field user to maintain the overall security pos-
ture of the computer system at the highest possible level. ARES will. descrlbe
to the user in detail what his responsibilities are in support of the CVRP,
such as the reporting of technical vulnerabilities and hacking incidents. It
will also provide a convenient tool to maintain an automated list of systems
and authorized software for each system as part of the control for personal
computer environments.

The ARES program will generate a number of reports needed for the accred-
itation process. It will also generate the Accreditation Data File (ADF) to
be forwarded to the MAJCOM for the Accreditation Data Base (ADB). The MAJCOM
will periodically forward an ADB update to AFCSC to update the AFADB.

When the risk analysis is done, the CSSO will download the ADF to a sepa-
rate disk and forward that data to the MCSSM. The MCSSM will use the CMS
software to manage the process. The MCSSM will forward the updates to the

524

CVRP DATA BASE
(AFCSC)

ACCREDITATION VULNERABILITY THREAT
DATA BASE DATA BASE DATA BASE

VRs SSRs _____

CVRP PROCESS ALL SOURCE

AFCSC/SRV INTELLIGENCE
ADFs SPARs_-

rSECURITY VULNERABILITY COUNTER-
POSTURE REPORTS MEASURE

ASSESSMENTI .. DEVELOPMENT
L_ ___ _ __ __ ----

CVRP DATA COLLECTION
FIGURE 2.0

ADB once each quarter to AFCSC. AFCSC will then load the data into the
AFADB.

The data in the ADF provided by ARES will consist of the f(ilowing fields
as a minimum. The ADF will contain all of the information necessary to iden-
tify each computer system, its software, its peripherals, and the security
environment that a given system security office- is responsible for. This
information is consolidated by the ARES program during the risk analysis
phase of system accreditation.

The file has two parts. Part 1 contains all the information needed to
identify the organization and persons responsible for systems covered by a
single risk analysis effort. F rt 2 contains all the information needed to
identify each compuLer system and all its components.

4.2.2 Communications-Computer Systems Security Management System (CMS). The
CMS is designed to support MAJCOM/SOA/DRU CSSMs in performance of GVRP-
related duties as well as other Communications-Computer Systems management
functions. The CMS provides support to collect and organize accreditation
and vulnerability data (two of the inputs to the CVRP process). It will also
produce two of the GVRP outputs- -Security Posture Assessment Reports (SPARs)
and Vulnerability Reports (VRs) for the owning MAJCOM.

AFCSC will issue the CMS software to MAJCOM/SOA/DRU GSSMs (see
Figure 3.0). These offices can then issue copies of CMS to subordinate units

525

CMS DISTRIBUTION

AFCSC 1
SPAs (SRV)j

MAJCOMs SOAs DRUs
S.../ ... __ I-L __

AFs I .???

L WNG. S 7??

GROUPS ADFs

./ V VRs

UNITS 4i....n - - ARES

CMS DISTRIBUTION
FIGURE 3.0

within their organization who will act as a point of data consolidation for
the accreditation data and vulnerability data being forwarded to AFCSC. The
security classification guide for the CVRP will provide clear guidance on the
classification of the CMS and other portions of the CVRP.

4.2.3 Validated Threat Information. AFCSC will direct all-source intelli-
gence resources in the collection and production requirements for gathering
all-source intelligence data. They will assist certain organizations in the
Scientific and Technical Intelligence Analysis furnztion. They will also
build and maintair, the AFTDB in support of the Communications-Computer Sys-
tems Security Program.

4.3 Security Posture Assessments

AFCSC/SR will also produce periodic and special SPAs as part of the CVRP.
An SPA will be a report that provides perspective on the direction and status
of the security posture of Air Force communications-computer systems. For
example, they should be able to use the AFADB to determine the number of sys-
tems of a particular hardware/software suite that process classified informa-
tion in the system high mode. AFCSC will use this information to evaluate the
potential impact of a given policy decision on overall Air Force security and
resources. As another example, specialized SPAs may describe the number of
computers of a certain type and the connectivity of those systems. It will
also include data from the AFTDB and the AFVDB as needed, Such an SPA would

526

provide perspective on the scope and scale of effort needed to impact the
security posture of those systems Air Force-wide.

The primary customers of SPAs will be Air Staff, MAJGOMs, SOAs, DRUs, and
AFCSC itself. Each MAJCOM will be able to produce SPAs based on its own ac-
creditation data base for their local DAAs when needed. AFCSC will assist
the MAJCOM with these efforts when access to 0b1 whole GVRP Data Base is
needed.

4.3.1 Electronic Security Survey Teams. The overall security posture of Air
Force communications-computer systems is only as strong as the weakest link.
Because of the extensive connectivity between DOD computer systems, the more
weak links we leave, the more hidden "back doors" will exist. If we spend
too many resources on one organization, then we will have less resources to
spend on others. As we close all vulnerabilities in the first organization
we will leave the "front doors" open at several other organizations.

The Electronic Security Survey Teams (ESSTs) will function as the primary
source of on-site vulnerability analysis and security posture evaluation for
all three security disciplines. They will concentrate on first level vulner-
abilities caused by technical vulnerabilities of the hardware or software,
poor user discipline, poor system manager discipline, inadequate administra-
tive procedures, physical security, system connectivity, or technical secu-

rity sitsceptibilities.

The primary mission of the ESSTs will be to test and assess the overall
electronic security posture of an organization; they will concentrate on

breadth of activity, not depth. They will look for first level vulnerabili-
ties that are most likely to be exploited or lead to security incidents, not
an in-depth analysis of all technical vulnerabilities. The teams will con-
centrate on performing security surveys at as many locations as possible.

The ESSTs will be requested by a unit commander through their MAJCOM CSSM
via the submission of a Security Survey Request (SSR). The SSR will be re-
viewed by AFCSC and assigned a priority based upon the results of an SPA.
All requests for surveys will be forwarded to the ESSTs who will schedule the
surveys according to resource availability and the priorities assigned by
AFCSC.

4.3.2 Special Test and Evaluation Capabilities. AFCSC will provide several

forms of special test and evaluation capabilities. These resources will
exist in the Product Evaluation Resource Center (PERC), TEMPEST Test Cham-
bers, Advanced Techniques Lab, Prototype Lab, and the TEMPEST Test Teams.
All of the resources above will be used to conduct in-depth analysis of tech-
nical vulnerabilities. The functionality of each may evolve over time to
provide an integrated service to the field (that is COMSEC, COMPUSEC, and
TEMPEST).

4.4 Vulnerability Reporting and Incident Handling

The second major function of the CVRP is Vulnerability Reporting. This
function of the CVRP will require considerable technical resources. Some of
those resources will be available within AFCSC and some will be available
from other organizations such as Army, Navy, Department of Energy, Computer

527

Emergency Reaction Teams, National Institute for Standards and Technology and
others.

AFCSC will perform two types of actions under the heading of Vulnerabil-
ity Reporting. First, AFCSC will act as both the clearing house and central
repositrnry for all technical vulnerabilities of Air Force communications-
compute. systems. Second, AFCSC will act as the central point of coordina-
tion for the handling of communications-computer systems security incidents
to include hacking incidents and virus outbreaks.

4.4.1 Vulnerability Reports. During a risk analysis or normal operation of
a system, the user may identify a technical vulnerability in the system.
Under the CVRP he is required to submit a formal report of that vulnerability
to his MCSSM. The ARES program will provide the format of the Vulnerability
Report (VR). The user will write the VR and submit it through the channels
designated by the MCSSM. The MCSSM will conduct an initial analysis of the
vulnerability and forward the VR with their perspective to AFCSO.

AFCSC will conduct a detailed analysis of the vulnerability and forward
the final draft of the VR to a national level agency. An assessment of the
technical validity of the report is essential. AFCSC will delegate that re-
sponsibility according to the nature of the vulnerability described. As part
of that validation process, AFCSO will conduct a Countermeasure Assessment
(C-) and recommend specific. uo-utermeabureb fo.r tue VU.LLIt 1- U.L.lJY.. The CA
will take into account all aspects of risk as described above in the CVRP
risk analysis mode].. All of the CVRP data bases will be used, the AFADB,
AFTDB, and AFVDB.

CAs will begin with an analysis of the susceptibilities of the system in
question. This will require a detailed look at the hardware/software to de-
termine the technical requirements necessary for an effective countermeasure.
Next, to determine if the vulnerability has applications throughout the Air
Force, AFCSC will examine the environment in which the system operates. This
may require an SPA to provide that perspective. The exact nature of the val-
idated threat to the system will then be determined. Action will be taken
only if exploitation of the vulnerability seems likely. Countermeasures will
be developed as resources permit. The Air Force Consolidated Communications-
Computer Systems Security Research and Development Program, headed by AFCSC,
will initiate an R&D effort if appropriate. This process will be the same

for COMPUSEC, TEMPEST, or COMSEC vulnerabilities.

Anyone at any level can initiate a vulnerability report, but AFCSO will
make the final Air Force verification of the vulnerability and issue the
final VR to a national level agency. Again, the threat to the system must
also be sufficient to warrant an extensive use of resources.

4.4.2 Security Incident Handling. AFCSC will perform special "on-line sur-
veys" in support of SPAs. As an example, suppose evidence is received that a
particular hostile organization is conducting illegal on-line activities and
exploiting a known vulnerability that exists in a commercial operating system
used in a number of Air Force computers. Also suppose that the SPA suggests
that a large percentage of these systems are processing sensitive unclassi-
fied information and are connected to wide area networks such as the Defense
Data Network (DDN).

528

A snail team could access the network and attempt to exploit each Air
Force system using the same techniques used by the hostile organization. if
a system is penetrated, the team could notify the system manager about the

vulnerabilities so he could take the appropriate protective actions immedi-
ately. At the same time, statistics of success for each attempL and details
of the successful techniques would provide invaluable security lessons for
everyone involved.

At this point it would also be possible to leave a select few computer
systems vulnerable and place special monitor systems on-line to alert system
managers when an attack hits their system. Once the intruder attempts to
attack a monitored system, the system manager would notify AFCSC who would
centrally coordinate the tracing of that attack back to the point of origin
to identify the culprit.

AFCSC will establish the necessary points of contact with the appropriate
agencies for this activity. Memorandums of Agreement or Understanding will
be established with these organizations as necessary.

4.5 Countetmeasure Development

AFCSC is the primary Air Force point of contact for the development of
countermeasures. It will have access to the all-source threat data that will
be necessary to validate that the vulnerability does give rise to a serious
risk. If the VR is verified as serious and countermeasures are needed, then
AFCSC will request the development of appropriate countermeasures. The coun-
termeasures may range from policy changes to new education and awareness ef-
forts to the development of new hardware or software solutions. If the most
effective countermeasures will require long-term efforts, then AFCSG will de-
velop interim countermeasures as soon as possible. AFCSC will publish the VR
with a clear explanation as Co the interim nature and limitations of those
countermeasures. If AFCSC doesn't have the expertise in-house to develop a
particular countermeasure, they will at least oversee and coordinate the de-
velopment and deployment of countermeasures as needed.

4.6 Research and Development

If a vulnerability has been identified and validated by AFGSC and a vali-
dated threat does exist, then countermeasures must be developed. If those
countermeasures require R&D, then AFCSC will sponsor special R&D efforts to
develop the required countermeasure. Depending on the nature of the R&D and
the potential applications, the validation of R&D requirements may involve
other organizations.

The Consolidated Communications-Computer Systems Security R&D Program is
directed by AFCSC under projects LEADING EDGE and FIRESTARTER. If a VR is
valid and no countermeasures exist, AFCSC will submit or coordinate the sub-
mission of an R&D requirement. Other requirements for the R&D program may
come as the result of SPAs that identify special countermeasures that have
wide applications throughout the Air Force.

529

5.0 CONCLUSION

As demonstrated by examples earlier in this document, the need clearly
exists for a consolidated effort tying together the disciplines of COMPUSEC,
COMSEC, and TEMPEST. With the proliferation of communications-computer sys-
tems in the Air Force and DOD, the CVRP is needed to organize the use of our
limited communications-computer system security resources.

REFERENCES:

AFR 205-16, Computer Security Policy, 28 Apr 89

DODD 5200.28, Security Requirements for Automated Information Systems,
21 Mar 88

DODI 5215.2, Computer Security Technical Vulnerability Reporting Program,
2 Sep 86

NTISSP 200, National Policy on Controlled Access Protection, 15 Jul 87

C. Stoll, "Stalking the Wily Hacker", COMMUNICATIONS of the ACM, May 1988

C. Stoll, "Wh,±t do you Feed a Trojan Horse?", Presented to the 10th National
Security Conference, Baltimore, MD, Sep 87

ACKNOWLEDGMENTS:

We would like t(, thank all of our colleagues who commented on the Concept
of Operations for the CVRP, the basis for this paper. We especially thank
Lt Glyn M. Runnels for his many hours of editing and layout work for both
this paper and the Concept of Operations for the CVRP.

530

TI

UNETHICAL "COMPUTER" BEHAVIOR: WHO IS RESPONSIBLE?

by LARRY MARTIN

Executive Secretary
Subcommittee on Automated Information Systems Security (SAISS)

Background

We live in a society that clearly believes that maturity and
responsibility come with age. This observation is supported by many of our
statc and federal laws which establish legal age for certain rights and
privileges. Some examples are:

1. Drive
2. Vote
3. Drink Alcohol
4. Enlist in Military
5. Marry
6. Serve as President of the United States

Parents also establish age limit restrictions on their children. They may
require them to be at least 16 before they can go out on a date in a car. They
may specify in their Last Will and Testament that the children must reach
age 25 before they receive any money held in trust for them. The bottom line
is that parents and society feel a high degree of confidence that the
individuals we've entrusted with certain privileges or resources will behave
in a mature and responsible manner when they understand and appreciate
the value of a resource or the possible ramifications if a privilege is abused or
misused.

The advent of computers has created a paradox for our society. We view
computers as an incredible learning tool and something our children must
master in order to be successful in the future. In order to give our children a
head start, we are introducing them to computers as early a b possible. We
give them access and the knowledge to operate a very powerful tool that can
be potentially damaging if used irresponsibly or in an unacceptable manner.
The paradox for our society is that we have not ed an age restriction to
the operation of computers. While we would consider it unconscionable to
sell a handgun to a 12 year old, or put a second grader behind the wheel of a
motor vehicle, we do, in fact, sell computers and modems to 12 year olds and
put second graders behind the keyboards of computers.

Thus, we have a dilemma. Do we give our youth a head start toward the
future or do we establish an age limit for the purchase and use of computers
to promote responsible and ethical use? What a choice - either to enhance the

531

learning abilities of our young or to create a nightmare for law enforcement

personnel?

The Educatonal stem

As early as possible, we teach children the basic rules that define
acceptab ehavior. These standards of conduct include such things as
respecting others, keeping our hands to ourselves, not taking things which do
not belong to us, and cleaning up after ourselves. They become the simple
foundation upon which the rules of acceptable or ethical behavior for mature
adults are built. This is the premise of a recent best-seller All I ReallyNeed
to Know I Learned in Kindergarten by Robert Fulghum. We start out with
simple and basic rules, then build as the mind becomes more capable of
comprehension.

As we have brought computers into the elementary school classrooms
and begun teaching these young impressionable minds about them, we have
been negligent. We have ignored the teaching, as early as possible, of those
simple and basic rules that define acceptable or et-h-•ap "computer" behavior.
These standards of conduct include such things as respecting other
computers, keeping our computer's "hands" to itself, and not taking data
which do not beIong to us. They become the simple foundation upon which the
rules of acceptable or ethical "computer" behavior for mature users are built.

We must develop audio-visual tools and techniques that clearly
demonstrate at an elementary level the harmful effects of unacceptable"computer" behavior on others and possibly on ourselves. I don't claim to
know what these techniques should look like, but I encourage the educators
to allocate some research and development funding to start finding the
answer. As we endeavor to teach our children the many positive and useful
applications of computer technology, we must delicately demonstrate cause
and effect, and instill in these young minds that computer users are both
responsible and accountable for their "computer" behavior and the effects
that they cause, the same as they are responsible and accountable for their
everyday social behavior.

Just as we have begun a grass roots effort in the elementar3y schools to
change other undesirable aspects of our society's behavior with "Say No To
Drugs" and "No Smoking" campaigns with the hopes of a future drug-free
and smokeless society, we must plant the seeds of acceptable "computer
behavior" into the elementary school curriculum to begin building the
foundation for professional ethics- We must show that the consequences to
the individual using a computer unethically are NOT more favorable than
the consequences of not using a computer unethically.

Video Game Vendors

Since computers have not been in schools for very long, I speculate that
most of us in today's workforce and most of the students in our nation's
colleges had our first experiences with hi-tech electronics with video games.

532

Think about the first time you played Pac Manl or Space Invaders. There
were no rules posted showing how to play the game. You simply dropped
your quarter in the slot and the game started. You learned the rules of the
game by trial and error, pushing levers and pressing buttons. In fact, a
recent stroll through the video arcade at the local shopping mall confirmed
that the same thing is still true. The games are much more sophisticated
with more spectacular graphics, but very few of the games have posted rules
or instructions.

The vendors of the pay-as-you-play games have a strong motivation for
this strategy. The longer it takes a player to learn the rules of the game, the
more quarters the player will deposit attempting to conquer the machine and
meet its ultimate challenge. Challenge is a very strong motivator and it
becomes addictive. It's a scary thought, but the profit strategy of some of
these video game vendors is not too unlike the profit strategy of the drug
dealer. Once you get the person addicted, the profits come rolling in!

A segment on the ABC News Magazine show "20/20" featured one of the
most recent video game crazes, Super Mario Brothers and Super Mario
Brothers II by Nintendo. More classic examples of trial and error would be
hard to find. The game is full of surprises and most are discovered by
accident. The challenge is so great that often the lessons learned by a player
the previous day dominate conversation on the school bus or at the lunch
table in the school the next day. There is even a newsletter that describes the
discoveries of others.

For Christmas 1986, a game was marketed called "Hacker." There
were no rules. You simply inserted the disk, got a blank screen, and
proceeded by trial and error to break into the "system." Was it a game or a
tutorial?

While their motive may be profit, I believe that the vendors of these
games have a responsibility to look at their role in influencing the behavioral
development of their users to determine if any modifications to their product
strategies are appropriate.

The Computer User

The ultimate responsibility to behave in an acceptable manner belongs
to the user. For those never taught computer ethics or for those who choose to
ignore them, I contend that this trial and error process, which the video game
players have become accustomed to, evolves into the mindset that whatever
the games allow you to do is within the rules and is, therefore, acceptable or
"ethical." This mindset can and does carry over to real computer systems.

As an example, I cite the case of Neal Patrick, the teenage member of
the 414 hacker club in Milwaukee that was named after the local area code.
Club members penetrated numerous computer systems including the Los
Alamos National Laboratory and the Sloan-Kettering Cancer Institute. The

533

I

club menibers were all taking computer courses in the high school and had
the system manuals for their school's computer.

Upon connecting to another computer via dial-up, the club members
would identify the computer as the same as the one in their school from its
welcome banner and log-on prompt. Using the system manuals, they
proceeded to enter the preset system passwords which are in the system for
installation by the Customer Engineers. The vendor system manuals and
most installation policies recommend and encourage the changing of these
Foreset passwords immediately upon acceptance of the installation. However,

r the systems that the 414's penetrated, these passwords were never
changed so the system not only allowed the hackers access but gave them
special Customer Engineer privileges.

When asked by a Congressman, under oath, at what point he realized
that what he was doing was wrong, Mr. Patrick responded, "when the FBI
was knocking at my front door."

Systems Managers, Developers & Security Officers

If my conclusions and assumptions are correct, then much of the
responsibility for prevention and detection falls solidly on the shouldei• of
the system manager, developer and/or security officer. These officials must
discourage and prevent any user, authorized or not, from abusing or misusing
the system. When, however, prevention is impossible, then detection is a
must. It is a given that if these management officials are negligent or
overlook something as simple as changing the preset passwords, then the
hacker or the authorized but unethical user is likely to exploit it.

I personally observed this phenomenon when I was an employee of
another Federal Government Agency over ten years ago. An employee in a
local office found that the system allowed her to make corrections for
claimants who were erroneously indicated as deceased. When a claimant
would come into the office to find out why they had not received their last
benefit check, she would access their record. On occasion, she would discover
that due to a data entry error, the system had terminated their benefits
because the claimant was deceased. She would enter a special "resurrection
transaction." The transaction would issue a one-time retroactive check back
to their "date of death". After executing a number of authorized
"resurrection" transactions, the employee devised a very clever scheme. She
went to cemeteries and looked for people who had been dead for at least five
years. She took her list of names back to the office and proceeded to execute
simultaneous resurrection and change of address transactions. The one)time
retroactive checks were sent to her Post Office box. Each day she would
query the system, checking for the code that indicated the check had been cut
and was in the mail. Once she saw that code in the record, she'd "kill" the
person off again and change the address back to what it had been. If the
person had been collecting $300 a month and had been dead for five years,
these checks would be for substantial amounts of money. She was doing what
the system allowed her to do about two or three times per month.

534

Why did the system allow her to do this? Unfortunately, the system
developers had overlooked something simple. There were no thresholds
established in the system that required supervisory intervention when a
specified period of time or dollar amount had been exceeded. What is the
likelihood that someone is going to come in and complain that they haven't
received their last 60 benefit checks? The system developers were obviously
very sharp to build into the system a way to resurrect and retro-actively pay
tho,.e who were erroneously deceased. However, they did not conceive of the
particular scenario, and therefore did not build in the necessary controls that
would prevent the transaction from executing when the time period or dollar
amount was unreasonable. The employee simply did what the system
allowed her to do.

Another example of a user doing what the system allows him or her to
do involved an employee of another local office who had the authority to
waive overpayments resulting from a claimant's annual redetermination.
This employee would, after hearing a claimant's justification for a waiver,
deny the request and set up a cash payment plan for the claimant to repay the
overpaid amount. The employee would accept an initial cash payment and
issue a phoney receipt to the claimant. After the claimant left the office, the
employee would enter a waiver transaction i-to the system clearing the
overpayment amount off of the books. As a steady stream of dutiful
claimants carne to this empioyee's desk with their payments, the employee
simply pocketed the cash. This is another example of insufficient controls
and a user doing what the system permitted. The situation was corrected
with a system generated notice to the claimant, that could not be suppressed
whenever an overpayment was waived. The notice would inform the
claimant that they did not have to pay the money back.

System managers, system developers and security officers are human
and, like everyone else, make technical and judgmental errors. We are all
familiar with Murphy's Law. If it's possible for an operational system to have
a flaw in it, then it will. They must recognize that they may, in many cases,
be dealing with users, both authorized and unauthorized, who are of the
mindset based on a false assumption that what the system allows them to do
is acceptable.

One answer for dealing with the user's false assumption is to eliminate
it. The posting of rules or electronic "No Trespassing" signs might serve to
caution all users at the beginning of their session. "No Trespassing" signs, as
we know them, protect physical property and generally cite a law and issue a
strong warning as to possible penalties and/or impending danger, such as the
"use of deadly force." While there is no pending physical danger with
trespassing into computers, if the user does find a flaw in the system s
security, he or she would have already been put on notice that certain
behavior is unacceptable and perhaps unlawful. If such notices also cited
appropriate sections and paragraphs of applicable Federal and State laws,
they would also be aware that they might be prosecuted and could be subject
to fInes and/or imprisonment. There could be no false assumption that

535

whatever the system permitted was fair game and, if ever prosecuted, intent
could be more easily established. There are steps that the system managers,
developers and security officers can and should take. They must share in the
overall responsibility.

Assuming that the system managers, developers and security officers
take the necessary steps, we are eliminating as much abuse and misuse as
possible and hopefully detecting the rest. However, detection means that
these people will get caught. Should our society make these people instant
celebrities and glorify what they did or should we punish them and let that
serve as an example to others? What responsibility does our society and the
news media have in the deterrence or proliferation of une.thical "computer"
behavior?

I previously referred to the member of 414, Neal Patrick. In addition to 4
testifying before Congress, something very few of us get to do in our lifetime,
Mr. Patrick also got his picture on the cover of Newsweek Magazine.
something even fewer of us achieve in our lifetime. And as the story goes, at
that time the movie "War Games" was popular and, as a publicity stunt, a
local theater manager where "War Games' was showing, paid Mr. Patrick to
sign autographs for movie-goers in front of the theater. All in all, quite an
accomplishment for a 17-year old. As a model for other teens, this incident
was more of an incentive than a deterrent.

Society

Again, we as a society have a paradox. While it is traditional of our
society to bestow punishment befitting the crime, the criminals in most of
these cases are young intelligent students who represent some of the most
brilliant minds n our country. It is these brilliant minds that we rely upon to
carry this country into the 21st Century,

Do we lock up these young intelligent students in prison with
murderers and bank robbers or do we find a way to channel their endeavors
into more positive and productive activity? Do we deny these people a college
degree when there are condemned murderers on death row earning college
degrees?

We must, as a society, recognize that we have a new criminal element
that has some of the familiar characteristics, but is in a class by itself. In the
same way that the use of computers has required change to the way we as a
society function, so too, has the misuse of computers required change to the
way we as a society deal with those who operate outsidc the established rules.
Are we making these changes timely and proactively or waiting for the
crimes to occur and then reacting'?

News Media

I believe the news media shares in the responsibility in helping to deter
computer crime, misuse ,nd abuse. I believe it would have been more of a

536

deterrent if the cover of Newsweek would have shown Mr. Patrick being
placed in the backseat of a police car with his hands cuffed behind his back
while other officers carried his computer equipment out of his house instead
of depicting him with a smug look as if to say "I showed you!"

Last November, when the Arpanet Worm brought the network down,
every television network and the front page of every major newspaper and
magazine carried it. as their feature story for days. One would have to have
been locked away in a monastery to have not heard about it. Yet on February
15, 1989, the day after Herbert Zinn, Jr., the 18-year old hacker who
penetrated AT&T and NATO systems, was convicted and sentenced to a year
in prison and a $10,000 fine, a one paragraph article appeared on the front
page of the Business Section of the local newspaper. Mr. Zinn was the first
conviction under the nev, Federal Law, known as the Computer Fraud and
Abuse Act of 1986. A true landmark in the computer security chronology and
it went practically unnoticed. Highlighting prison sentences, fines and other
negative results experienced by the perpetrators as well as the damage, pain
and suffering of the victims of computer crimes should at least make a
potential hacker or computer criminal think twice and examine the risks
before acting.

Victims

The victims of computer crimes often do not prosecute fbr fear of the
adverse affects of the negative publicity. This failure to prosecute
contributes to the temptation of would-be computer criminal because it
lessens the fear of reprisal. For the individual who may be contemplating a
computer crime, it may make the difference between right and wrong.
Therefore, I add victims to the list of those responsible for deterring the
computer criminal.

Parents

However, the list is not complete without including parents. Earlier, i
mentioned a game marketed during Christmas 1986 called "Hacker." Some
parents, no doubt, gave this "computer game" to their children for Christmas.
Those who got the game for Christmas had the next six months to become
proficient utilizing this hacker "-eIf-tutorial" in order to be ready for their
three-month summer vacation from school. Instead of hanging out at the
mail or on the street corner, they could simply spend their days and nights in
the comfort of their own bedrooms.

With the many everyday pressures from job and family, many parents
might relax and find comfort in knowing that their child is nice and safe in
their bedroom quietly "fooling around' with their computer, instead of
getting in trouble by hanging out with the wrong crowd. What they may not
realize is that their child may be attempting to penetrate any computer their
modem might bring them in contact with. Certainly Mr. Patrick's parents
and Mr. Zinn's parents were unaware.

537

If a child had a gun or other deadly weapon in their possession, then
their parents would surely want to know about it. Why should it be any
different with a modem? Many teenagers have their own money and have
the ability to make their own purchases. So it is not unreasonable that a
child could have a modem and the parents not know. There may be many
parents who are not computer literate and even if they knew their child had a
modem would not know what a modem is and what it does. Should we
require permits for modems? Should we restrict the sale to those 21 & over
unless signed for by a responsible adult after that adult has read the risks
associated with having a modem in the home? The bottom line is that
parents have a responsibility to know what their children are doing and to
help the children understand what is acceptable behavior and what is
unacceptable.

We've all heard the cliche "Do as I say and not as I do." We teach our
children by example. They tend to emulate our behavior. Our hi-tech world
makes it very easy for us to serve as bad examples for our children without us
even thinking about it. How many of us have copied a video tape on our
VCR's even though it has an FBI warning right in the beginning? How many
of us have made bootleg copies of copyrighted computer software? Why did
we do it? Simple, because we didn't want to pay for it. If we walk into a store
and take something and walk out without paying for it, we are stealing. But
if w copy a video tane or rnmptr znofware, we do not thin1k o it as stalg.
Perhaps it is not perceived to be as blatant, but someone ultimately suffers
from the loss of the proper purchase of whatever we copied. But surely the
loss of one measly sale will not bankrupt a large corporation. Are our ethics
now contingent upon the net worth of the potential victim? Have we then
become a modern day electronic Robin Hood? We take from the perceived"rich" (owner of the copyright) and give to the perceived "poor" (ourselves or
our children), Although we act with the best of intentions as loving parents
who want our children to have something that they or we may not otherwise
be able to afford, the intangible repercussions of our actions may be
ultimately hurting them. When our children observe this behavior, at the
very least they may be confused by what appears to be a double standard. It's
"very similar to the confusion of children of parents who smoke. The schools
are teaching that smoking is unhealthy for the smoker and those around him
"or her. When children see a parent smoking, they must either think that the
parent is unaware of the risks or must think that the parent doesn't care
about his or her own health and the health of those aroundghim or her. If they
try to tell the parent of the risks, it is doubtful such a reprimand from child to
parent would be well received. They might just think well Mom or Dad isn't
worried about it, so why should I? How can that p 'rent convince the child not
to smoke after teaching by example?

Who can say how far they will take the examples we set for them today,
as technology improves? Things we cannot even dream of today will be
achievable 20 years from ncw when our teenagers are in the workforce. We
must be conscious of our own actions and realize that if we exhibit
unacceptable behavior, our children are likely to do the same, We are setting
a precedent for society. So yet another piece of the ethics puzzle is the

538

parents, who must recognize their role in the ethical developmerit of their
children. I believe that we as a society need an awareness raising as to the
threats to our ethics by technology. We need to examine these subtle
capabilities made possible by technology that allow us to deviate
unconsciously from our normal ethical behavior. We may also need to raise
the public awareness of computer cause and effect much like the one
described earlier for the elementary schools, but of course, scaled accordingly
to the appropriate level of comprehension. Raising public awareness is
another possible role for the news media and the educational system in the
overall scheme.

Conclusion

While the schools, the video game vendors, the systems managers,
developers and security officers, the news media, the victims, the parents and
society as a whole share in the responsibility for the computer user's
behavior, the ultimate responsibility to behave in an acceptable .manner
belongs to the user.

There are many parallels between acceptable social behavior and
acceptable "computer" behavior as illustrated in the following table:

539

UNACCEPTrABLE SOCIAL BEHAVIOR UNACCEPTABLE "COMPUTER" BEHAVIOR

1. To knowingly inifect another To knowingly infect another person's

person with a communicable disease computer with a virus or worm

2. To enter another person's home To enter another person's system

or drive another person's car without without permission

their permission

3. To rummage through another To rummage through another person's

person's belongings database(s)

4. To shoplift or steal something To make copies of copyrighted software

that belongs to another

5. To keep the extra money ifa store To access another's system or data

clerk gives us back too much change because the system allows us to

or to pay a lower price because
merchandise is priced wrong

6. To lock another person out of his To deny someone the use of his or her

or her own household or car computer

540

It takes a long time to change society's behavior. Drunk driving is a perfect
example. With all of the attention it has received in recent years, the increased
penalties, and the increased police activity such as sobriety check poirts, there were
still over 34,000 drunk driving arrests in Maryland in 1988. That's nearly 100 per
day or one every 15 minutes. While the number of drunk driving arrests is on the
decline, one every 15 minutes is a very real indicator that the problem has not gone
away. And keep in mind that the 34,000 were only the ones that got caught.

I believe that drunk driving and computer misuse are the crimes that will
reflect the 80's. It was this ecade that raised the public awareness to the negative
iepercuss:ons of both and the parallels are quite interesting. They both represent
behavior which was tolerated until the potential dangers were realized. As
awareness grows, tolerance lessens. Behavior that was once considered prankishness
or mischievous is starting to be considered malicious and a criminal offense. How to
deal with these new type criminals who are not typical of the stereotype criminal
element has become an issue.

In Maryland, there was a recent proposal to build a separate correctional
facility just to house convicted drunk drivers who are given prison sentences. Our
prisons are already overcrowded and adding 34,000 drunk drivers would only add to
the problem. Such a facility would not only prevent the strain on the prison system
but would segregate the drunk driver from hardened criminal.

While many consider the computer security problem and solution to be
technical, I believe that the computer security problem is a people problem with both
a technical and a people solution. As we all know, it is not a pertect world and the
teaching of "computer ethics" will not eliminate unethical computer use or the user
who puts himself or herself above the law. There will always be some who, although
they know the rules, will disobey them. Our prisons are filled with former students
who were taught the rules of ethical social behavior and somewhere along the way,
have chosen not to obey them. As more and more laws are enacted that make specific
acts of unethical computer use unlawful, it will become more and more difficult to
distinquish between computer ethics and computer crime.

If the computer user behaves in a unethical manner. then the technical
solutions must be there. It is only when we can't trust the behavior of the computer
user, that we must have mechanisms and assurances that allow us to trust the
system instead. As I have tried to describe, all of us share in the responsibility for
and the consequences of unethical computer use.

541

MALICIOUS CODE: AN ETHICAL DILEMMA

Maj. (Select) Glenn D. Watt, Jr., C321
National Computer Security Center

Fort Meade, MD 20755

Introduction:
In the early 1980s, the city of Cambridge, Massachusetts, voted to petition Harvard University to
temporarily halt the construction of a very expensive laboratory for specialized genetics research. This action,
initiated and supported by distinguished members of the faculty, recognized the potentially dangerous
situation at hand. This example is typical of what professionals usually do when they encounter an immature
technology. The information about the atomic bomb and other such devices also was tightly controlled by
military professionals with an ethical standard that demanded control to assure the protection of the larger
community. A technology equally dangerous to the national compuler security community is malicious
code. It is a problem that has crossed international borders, awd threatens the integrity of every type of
system from personal computers to super computers. In 1985 J.M. Carroll and H. Juergensen performed
mathematicai proofs showing that any current state-of-the-art time sharing, multiprogramming environment
could not simultaneously support security and integrity without compromising protection, efficiency or both
[1]. The National Computer Security Center's (NCSC) Trusted Computer System Evaluation Criteria
(TCSEC) and Trusted Network Interpretation (TNI) guidelines do not specifically address viruses. In fact,
the Internet Virus of 1988 might have propagated on a B2 system and perhaps even on an Al. Will technology
alone solve the problem of malicious code? If not, how should we then compute?

The Problem:
Malicious'code can take the form of a virus, worm, Trojan horse, logic bomb or time bomb. No maaer what
!he form, each pice of code ne-eds to. ii-oOvis fiwl une sysLem to the next. in the past.
most malicious code resided on bulletin board systems (BBS) or portable magnetic media. This would
require an explicit download from a BBS or insertion of a previously contaminated floppy disk. Computer
networks, however, have made this form of transportation obsolete. Malicious code now can be written and
injected into the mainstream of computing without any human action required. The perception of the threat
from malicious code is somewhat analogous to the, past development history of the atomic bomb. Originally
the atomic bomb needed a rather large bomber and bombers could be shot down before they reached their
targets. In 1957 the Soviets proposed the idea that guided missiles could be used instead of bombers. Then
they launched Sputnik and demonstrated the potential capability. Now the world had a much more difficult
situation because delivering the bomb had suddenly become easier and faster. Similarly, thcre was a period of
time when computer professionals did not consider malicious code as serious a threat because the available
transport mechanisms limited the speed and to some extent the amount of damage. In the computer security
world now, however, malicious code is our atomic bomb and networks our guided missji1 es.

Should we freely and openly research this area in ordc, to solve the problems of today, or limit open research
until we better understand the situation and pr(oluce effective countermeasures. Perhaps a part of the answer
lies outside of a technological framework and in an ethical one. Lct's examine the issue of malicious code and
what can be done (o solve the problem.

L.. Eff.ect
Three fundamental effects - econumic, technological and psychological - flona the foundation for a disc.ssion
on the results of executing miicious code.

Econiomic Effect1 Thc economic infioence of malicious code can be brckcrt down into tGiree bn.-;c componeitki:
checkilg for damage, analyzing ile malicious code, and developinog or in.,alling fixes. C!:ckins fol daunagc
can be no snmall chore. Aii systems software and assoctated data must be :heckeed inmmcdiately. On a typical
systero that cou)d take anywherc from hours to days, with eight hour, being a good average. After samui~izing
the sysioni software, verification cf user progrpams begir.s. Although osually occomplished b'y th, e'd user,

5 4 2

the effect is still the same - wasted time. After damage assessment, analysis of the code and installation of
new safeguards begins. During a post mortem meeting on the effects of the Internet Virus of 1988, attended
by government arid academia, the cost of that malicious code incident alone was estimated at $2,000,000.
Congressman Wally Herger, coauthor of H.R. 5061 "Computer Virus Eradication Act of 1988", sent a letter
to the Information System Security Association stating there may have been 2500 malicious code attacks to
date at a cost of $20 million.[2] The economic effect is real and is not cheap!

Technological Effect- Malicious code also affects technology in terms of software. Software such as the
UNIX operating system grew to its current state largely because of the availability of source code in the
early days. Source code was readily available throughout the V6, V7 and PWB UNIX releases. Many
universities and research organizations modified it, shared it, and in a sense became responsible for its
debugging and maturation. Along with the benefits of having open software came the requirement, to use the
information responsibly. Unfortunately ever since it's inception people have been trying to break UNIX
systems. The reason is largely due to the fact that source code to the operating system was readily available
and used in numerous universities to teach systems fundamentals. With an intimate knowledge of the
operating system security attacks are greatly simplified. In response the UNIX community made the
operating system more secure by controlling the distribution of source code, and by implementing security
features such as limited "root" login access. To some degree, control is due to the vendors' desire to
standardize; however, security is playing a major role. However, it is distressing that future computer
scientists may not have the learning experience of pouring over the source code to a functicning operating
system while in school. Perhaps the cost of training our next generation of systems software gurus will
have to be born by industry and government after hiring.

On the positive side, the technology of state-machine models is actually improving because of the threat of
malicious code. The partial ordering known as simple security and the confinement property, set forth by
Bell & Lapadula, established a provably secure mathematical model in 1973. Although still used as one
model from which to develop secure systems, malicious virus code is promoting fresh louks at the Itoudel.

The question must be asked if AŽB "A dominates B" doesn't actually promote the spread of viruses from
lower security levels to higher ones. Malicious code is not only forcing this question to be asked, but also
the correction of the security model if it is found to be flawed.

Psychological Effect: The psychological effect is perhaps the most profound and yet the least addressed.
According university reports and this authors own experience, systems administrators, computer center
directors and end users all become paranoid after a malicious code attack. Systems that may have gone for
months without a backup suddenly receive undivided attention. Administrators who reveled in living
dangerously become the vanguards of security. It has been said, "In order to assure a person gets the message,
advertising has to be memorable."[3] Is there any more memorable way to get the security message across
than to tv. the victim of a malicious code attack.

The use of an attack can best be described by the analogy of having a home broken into and robbed. Before the
event, the residents feel safe and secure behind the locked doors and windows. After the event, shock sets in.
The security factor vanishes in the stark reality that locks can be broken and windows opened. Most will
install better security devices and fix the holes that are. now apparent, but some, albeit a small percentage,
will leave the area never feeling safe there again. In the computer security arena the same attitudes surface.

Most computer sites will recover from a malicious code attack, implement tighter security features and press
on. Some, however, will not recover. They will restore their systems and decide that it just isn't worth
being on a network, or using software of unverifiable origin. Although the cost, intellectually and
financially, may be great they will not risk another attack. In this case the perpetrator has inflicted
psychological damage.

The Internet VIRUS of 1988 provided an excellent example of the psychological effect. Soon after the
detection of the virus major sites throughout the net dropped off. Some managers went so far as to shut
down the servers and actually pull the plugs! The result was devastating, but continued for an extended
period of time. Even after many of the sites did return, many gateways were off. Now, managers should not
be saying "damn the torpedoes (or vinises) full steam ahead." Quite the contrary, quarantine is a good

543

approach to stop a virus. The psychological problem arises with sites that choose never to return, cancel plans
to connect, or severely modify their functionality within the system. For example, one site has stopped
receiving mail as a security precaution. In another situation, system managers implemented extreme measures
to make sure their software was virus free.

These varied and far reaching influences are also steering the computer community toward a more permanent
solution. That solution will involve both technology and ethics.

TheSolution:

-- Secure Computers and Computer Networks:

A former Director of the National Security Agency, Lieutenant General USAF (Ret) Lincoln Faurer recently
stated that "Only recently, with the advent of media reports about computer viruses and program tapeworms,
have computer security issues taken on a higher and more appropriate visibility."[4] The Computer Security
Act, signed by President Reagan early in 1988 provides another example of our society's growing demand for
professional protection. The millions of computer users, growing at a rate of roughly 70% annually, are
rapidly demanding protection. Admittedly, legislation, when used in conjunction with ethical leadership,
supports an effective part of the answer, but not the entire answer. Secure computers and computer networks
will play an important role in solving the malicious code security problem. Government and private. industry
are looking into secure network componentm for both local and long-haul networks. Research and development
in this area must not only continue, but increase. New technologies that are developed and manufactured as a
direct result of research, alongside well established data encryption, will provide a broad base of
protection. The problem of the next decade, systems integrity and denial of service, will require systems that
are in - j and oAppaiiioi, Apliyig systems integrity and denial ot service to
computer networks turns a two dimensional problem into a three dimensional one. The problem has been
portrayed as a bucket brigade trying to put out fires in sevcral modern high-rise buildings. Fortunately, a
great deal of work is currently being done in this area. A quick review of the proceedings of any security
conference will verify just how much is being done in the technological part of the solution.

-- Ethical Leadership:

According to a 1977 issue of the Harvard Business Review, legislation is an important part of influencing
business practices, but ethical codes would have a greater impact on executives and corporations.[5] This is the
other side of the issue. As professionals we must take an ethical stand and set an example for others to
follow. Since the world is becoming increasingly dependent on computers and computer networks, we need to
help in the establishment of a workable standard of ethics. Mr. Harry B. DeMaio, Information Security
Products Manager for Deloitte Haskins & Sells, recently said, "The organizations to which we normally look
for ethical leadership - church, school, government, home, the media - lack the technical knowledge, the
budget, and even the uwareness to deal with this subject in the electronic world of today and tomorrow." 16]
Perhaps, because so few professionals have tried to combine both computer science and philosophical ethics,
so little work has been done in this area. Nevertheless, it is imperative to develop a workable, consistent
standard from which to operate. There are several steps that should be taken. First, if we are serious about
the need for computer security, educating young engineers and scientists about the unacceptable ethics of
exploiting weaknesses in computer systems or networks for financial gain or personal satisfaction must be a
priority. College, and perhaps even high school, is an approprir",' place to start educating our future
engineers. Harvard Rusiness School aLneady has adopted this priority by announcing that all MBA students
must take a 3 week course in ethics,[7] Most universities are requiring students to take some form of a
computer course as a graduation requirement. Computer literacy is the desired goal, with some schools
requiring a beginner's knowledge of programming. If a university devoted several classes during the course
to computer ethics, perhaps the "wily hackers" of the campus crowd would be reduced. Having students
simply study several existing codes, such as the ones included in this paper, would provide a basic framework
about the behavior expected of computer professionals. For computer science and engineering majors, most

544

universities encourage tie studcnts to experimcnt and expand their understandinig on the hardware and
software. Thcre is nothing inherently wrong with this, unless encouraged withoUt an ethical ramnework by
which to judge what is right and what is wrong. Without that framework, the student soon discovers that
non destructive malicious code can bc a vehicle to personal recognition. The perpetrator, neither intending to
nor actually destroying data, assumes no harm is done; however, because of the previously mentioned effects,
that is simply not t-uc. The cost is non zero and is indeed higher than most people, and some professionals
would expect. A portion of these CosLs are a direct result of inadequate standards of conduct.

Second, an ethical standard of conduct must start with ethical leadership. It begins with management and
works its way down to the grass root engineer by enforcing what we already know to be proper. For
example, how many sites do you know of that have illegal copies of software. If we can't even keep our own
shops honest, why should we expect that of anyone else? In this example, a law governs what is right and
what is wrong. Laws are a gocd place to start, but they only provide a minimum standard that must be
adhered to. An ethical standard of conduct must go beyond the law. For example, considering it unethical,
a surgeon will usually not operate on a family member. Under the law, both relative and non relative are
equal, but the ethical standards by which the surgeon operates requires the physician to restrict practice when
it comes to family members. As a medical student, the future physician attends classes on medical ethics. As
an intern, he gets on-the-job reinforcement of those ethics from older doctors. At some point the physician
will, in turn, influence younger interns to adopt the medical ethics also. As computer scientists, we seem to
avoid such non scientific issues. The computer science community has taken the time to write down codes of
ethics. Now it is time to emphasize these codes in the workplace. Since disobeying an ethical code is not
important until people accept that code as a standard by which to-live, we need leaders who will teach and
reinforce standards of conduct for computer proressionals.

Third, professional societies, universities, government, industry, and religious institutions need to help in
reviewing, ani upgrading existing codes Iat uimi aptiicabie and wolkable today. "Jv"- the yUesU. "
good codes have been established[8], however, when they were drawn up. malicious code was Ior the most
part non existent. The Data Processing Management Association Code of ethics (Appendix A), provides sonic
of the strongest standards anywhere. Its members are encouraged by their obligation to society to protect the
privacy and confidentiality of all information, insure that products are used in a socially responsible way,
support, respect and abide, by the appropriate local, state, provincial and federal laws, not use knowledge of a
confidential or personal nature in aiy unauthori7ed manner or to achieve personal gain. As an obligation to
the employer, the membe should not exploit the weakness of a computer system for personal gain or
personal satisfa, tion. This code was endorsed in Taneary of 1983. Some older codes of ethics, like the ACM
and the IEEE standards aren't as strong in the area of maliciois code. This is not to say that their codes don't
promote ethical computing. Both the ACM and the IEEE codes of ,thics encourage their members to practice
computer science and eiginecring ii a dignified, professional manner. A revcw of these codes will show that
the primary concern of each code of ethics was misrepresentation by its members to their employers and
clients. Some preventative maintenance on these codes of ethics could bolster a professioral attitude towards
malicious code in a world that now encompasses personal computers, supercomputers and networks of
computers.

Professional societies can develop s'ronger standards to encourage the regulation of a computer's use. They
need to emphasize that research and experimentation is good, but doing it for the purpose of breaking security
codes, denying service to other users, or somehow compromising system integrity should be strongly
discouraged. Establishing a code will not assure compliance nor acceptance by every member .ut the society
in general will need to accept and promote the code before peer pressure will make it effective. "An ethic is
esoteric until it is put into practice."[9] The Data Processing Management Association, ACM, and IEEE all
have a good base from which to work, but developing an ethic is not the sole task of any one professvonal
society. Ideas, suggestions and guidance must also come from universities, govermnent, indust'y and
religious institutioims.

Gover iment and industry can begin to promote the development of specific ethical standards for their
computing emplo eces. These ethical standards could be periodically emphasized in much the same way as EEO

545

and sexual discrimination ethics are today. Government and industry also might follow the lead of Arthur
Anderson & Co.[10] who is funding a five year S5 million effort to promote and assist in getting ethics
courses into graduate and undergraduate business schools. If government and industry could promote similar
programs for science and engineering students schools would more amenable to offering computer ethics as
part of a curriculum.

Churches can provide a source of direction not usually considered. Throughout history religious institutions
have dealt with ethics and society. A study of history will show that religious leaders had answers to
societal problems derived from a totally different source. Often they had the answers to injustices when no
one else did. Unfortunately society had and has a tendency not to listen to them, because social problems
arer.'t religious in nature. In retrospect, today we see that they really did understand the implications of a
society's code of ethics. Church leaders have dealt with numerous ethical issues and should be consulted to
examine the issues and provide input for computer ethics. An understanding of how malicious code affects the
psychological aspects of another human being would be a good start for this institution. From an
understanding of the effects, ethical codes could be written to deal with the cause. There can be no doubt that
computer-based information is the new raw material of our present and future society. We must involve ali
elements of society in its safeguarding.

Conclision:

In the final analysis computer professionals should recognize that ethical standards are equally important as
technology when it comes to computer security and malicious code. An attack must be waged on two
fronts. An interdictive ethical attack needs to mounted as soon as possible to change attitudes. A change in
Gomnlnfing. ithicq woul,•d :.ea-ken the supply line of new malicious co,., writers. In pzuallu [ihe tcchiological
eftbots, which have been ongoing for some time now, must be fortified. A Pentagon commission report
stated that research in the area of security was in a deplorable state, while at the same time others like Dr.
Cliff Stoll emphasis that effective security must rest on a foundation of research.[ll] In a broader sense if
research is the foundation of security, than ethical computing is the mortar that holds it all together.

References

[1] J.M. Carrol, and H. Juergensen, Design of a Secure Relational Database, Proc IFIP/SEC 1985, pp.
1-15

12] Wally Herger, Member of Congress, ISAA Access, Vol 2 Issue 1 p13.
[3] Dennis Poindexter, Security Awareness: Making It Happen, Proc. 11th National Security

Conference, October 1988
[4] Lincoln Faurer, Building Secure Worldwide Communications Networks, Datamation Special Edition

on Computer Security Issues & Trends
[5] Harvard Business Review, January-February 1977
[6] Harry B. DeMaio, The Information Ethics Issue: It's Time for Management Action, Datamation

Special Edition on Computer Security Issues and Trendv
[7] Edwin B. Heinlein, Corresponding Committee on Law and Ethics, ISAA Access, Vol 2 Issue 1 p15.
[8] DPMA Code of Ethics, (Appendix A), ACM Code of Professional Conduct (Appendix B), IEEE

Code of Ethics (Appendix C)
[9] Douglas W. Johnson, Computer Ethics - A Guide for the New Age, p 115.
[101 Edwin B. 1leinlein, Corresponding Conimittee on Law and Ethics, ISAA Access, Vol 2 Issue 1 p2 7

11] Dr. Cliff Stoll, How Secure are Computers in the U.S.A. - An Analysis of a Series of Attacks on
Milnet Computers, Computers & Security December 1988

546

Attachment A

DPMA Code of Ethics, Standards of Conduct and Enforcement Procedures

Data Processing Management Association

Code of Ethics

I ACKNOWLEDGE:

That I have a obligaticri to management, therefore, I shall promote the understanding of information processing methods and
procedures to management using every resource at my command.

That I have an obligation to my fellow members, therefore, I shall uphold u,,- high ideals of DPMA as outlined in its international
bylaws. Further, I shall cooperate with my fellow members and shall treat them -,ith honesty and respect at all thnes.

That I have an obligation to society and will participate to the best of my ability iii the dissemination of knowledge pertaining
to the general development and understanding of information processing.
Further, I shall not use knowledge of a confidential nature to further my personal interest, nor shall I violate the privacy and
confidentiality of information entrusted to me or to which I may gain access.

That I have an obligation to my employer whose trust I hold, therefore, I shall endeavor to discharge this obligation to the best
of my ability, to guard my employer's interests, and to advise him or her wisely and honestly.

That I have an obligation to my country, therefore, in my personal, business and social contacts, I shall uphold my nation and
shall honor the chosen way of iife of my fellow citizens.

I accept these obligations as a pcr:•onal responsibility and as a member of this association. I shall actively discharge these
obligations and I dedicate myself to that end.

Standards of Conduct

These standards expand on the Code of Ethics by providing specific statements of behavior in support of each element of the
Code. They are not objectives to be strived for; they are rules that no true professional will violate. It is first of all expected
that information processing professionals will abide by the appropriate laws of their country and community. The following
standards address tenets that apply to the profession.

In Recognition of My Obligation to Managemert I Shall:

Keep my personal knowledge up-to-date and insure that proper expertise is available when needed.

Share my knowledge with others and present factual and objective
information to management to the best of my ability. Accept full responsibility for work that I perform.

Not misuse the authority entrusted to me.

Not misrepresent or withhold information concerning the capabilities of equipment, software or systems.

Not take advantage of the lack of knowledge or inexperience on tfie part of others.

In Recognition of My Obligation to My Fellow Members and the Profession I Shall:

Be honest in all my professional relationships.

547

Take appropriate action in rcgrd to eny illegal or tuicthifcal practices that come to my attention. Howevcr, I will bring ciarges

agaiiist any person only when I have reasonable baais for belicving in the truth of thc allegations wad without regard to

lei sonal interest.

Endeavor to share my sp-cial knowledge.

Cooperate with others in achieving understanding and in idenmtifying problems.

Not use or take credit for the work of others without specific acknowledgment and authorization.

Not take advantage of the hick of knowledge or inexpericnce on the part of others for tersonal gain.

In Recognition of My Obligation to Society I Shall:

Protect the privacy and confidentiality of all information entrusted to me.

Use my skill and knowledge to inform the public in all areas of my expertise.

To the best of my ability, insure that the pritucts of my work are used in a socially responsible way.

Support, respect and abide by thz' appropriate local, state, provincial and federal laws.

Never misrepresent or withhold infonruin.o that -s germane to a problem or situation of publit concern nor will I allow any suth

known inforumation to remain unchallengcA.

Not use knowledge of a confidential or personl raturc " e any unauthoriied iaincni vi to achi-eve pei.•uial gaill.

In Recognition of My Obligation to My Etmployer I Shali:

Make every effort to ensure that I have the most current knowledge and that the proper expertise is available when needed.

Avoid conflict of interest and insure that my employer is aware of any potential conflicts.

Present a fair, honest anti objective viewpoint.

Protect the proper interests of my employer at all times.

Protect the privacy and confidentiality of all information entrusted to me.

Not misrepresent or witithold informaton that is germane to the situation.

No! attempt to use the resources of my emnployer for personal gain or for any purpose without proper approval.

Not exploit the weakness of a computer s)stem for personal gain or l.rsonai satisfaction

From DPMA Code of Ethics. Staidards of Conduct and Enforcement Procedures. This Code includes d&unimnts

approved at the 1981 and 1982 hItemational Board of Directors meetings mid enforcement procedures eff-ctive
January 1,1983. Reprinted by .eanission of the Data Processing Management Association.

548

ATTACHMENT B

ACM Cod-ý of Professional Conduct
Procedures for the Enforcement

of the ACM Code of Professional Conduct

Association for Computing Machincry

([Code I

Preamble

RECOGNITION OF pkorESSIONAL STATUS hY the 17J.blic depends riot only on skill and dedication but also on adherence
to a rc~ognized code o- Professional Conduct. .ne following Code sets fort-h the general principles (Canons), professional
ideals (Ethical Cons'dcratior~s), and mandatory rules (Disciplinary Rules) applicable to epch ACM Member.

The vei, ..shall "(imperative) and -should'kencouragemm±t) are used purposefully in the Code. The Canons and Ethical
Considerations are not, however, binding rules. Each Visciplinary Rule is binoing on each individual Member of ACM.
F~ailure to observe the Disc-rlinary Rules subjects the Member to admonition, suspensior. or expulsion from the Association as
provided b.-y the Procedures for the Enforcarnent of the ACM Code of Professional Conduct, which are specified in the ACM
Policy and Pro.,edures Gu.idelines. The term "memlx'-(s)" is used in dth Code. The Disciplinary Rules of the Code apply,
however, only to the classes of membership, specified iii Article 3. Section 4, of the Constitution of the ACM

An ACM member shall act at all times w~th integrity.

Ethical Considerations

EC t.1 An ACM. member shall properly qualify himself when ettprcssing, an opi-tion out.ide his areassof competence. A mnember
is encouraged to expr~ess his opinion on subjects within his area of cornpeteicý..

EC1.2 An ACM member shall [reface xi~y paitiran stat'ments about information processing by ind~cating clea-ly on whose
behalf they are mnade-.
EC1.3 An ACM member shall ac faidtfull, on behalf of his employers
or clients.

Disciplinary Rules

".si.l.! An ACM member shall riot intentionally missepreseni his qu~jifications or credat~ials to piesent or prospective
1pioyers of clients.

1.1.2 An ACM member shall not ma-ke deliberately false or deceptive statoments as to die present or expected state: of
.jirs iii any aspc.t c-f the capability, delivery, or ust .z3 inforriat;uij pr,,ccssin,- systems.

DRI .2.1 An ACM member shall not intenT~onally conceal or misrepresent on whose behalf any partisan statements axe made.

DRI .3.1 An ACM mcmber acting or employed as a consultait shal', prior tol actcprepitg information from a I'crspactis'e clientL,
inform the client of all factors of which tlie memiber is aware which may affect the prope-r performance of the task.
DRI.3.2 An ACM memzer shall disclose any interest of which he is aware whicýh does or may conflict with his duty to a
present Or prospective nnploye:' Or clieiit.
DRI.3.3 An ACM member shall not use Lny conflidenfial informnation from atny employer or client, pRSt Or present, without prioi
permission.

Canon 2

An ACM memnber should strive to increase his ccvnpetence arid the competence and prestig.- of the profession.

549

Ethical Considerations

EC2.1 An ACM member is encouraged to extend public knowledge, understanding, and appreciation of information
processing, and to oppose any false or deceptive statrments relating to information processing of which he is aware,

EC2.2 An ACM member shall not use his professional credentials to misrepresent his competence.
EC2.3 An ACM member shall undertake only those professional assignments and commitments for which he is quadificd.

EC2.4 An ACM member shall strive to design and develop systems that adequately perform the intendad functions and that
satisfy the employer's or client's operational needs.
EC2.5 AN ACM member should maintain and increase his competence through a program of continuing education
encompassing the techniques, technical standards, and practices in his fields ot professional activity.
EC2.6 An ACM member should provide opportunity and encouragement for profassional development and advancement of
both professionals and those aspiring to become professionals.

Disciplinary Rules

DR 2.2.1 An ACM member shall not use his professional credentials to misrepresent his competence.

DR2.3.1 An ACM meniter shall not undertake professional assignments without adequate preparation in the circumstances.
DR2.3.2 An ACM member shall not undertake professional assignments for which he knews or should know he is not
competent or cannot become adequately competent without acquiring the assistance of a professional who is competent to
perform the assignment.
DR2.A.l An ACM member shall not represent that a oroduct of his work will perform its function adequately and will meet the
receiver's operational nee.is when he knows or should know that the product is deficient.

Canon 3

An ACM member shall accept responsibility for his work.

Ethical Considerations

EC3.1 An ACM member shall acce-pt only those assignments for which there is reasonable expectancy of meeting iequirements
or specifications, and shall perform his assignments in a professional manner.

Disciplinary Rules

DR3.1.1 An ACM member shall not neglect any professional assignmnent which has been accepted.
DR3.1.2 An ACM member shall keep his employer or client vxopetly informed on the progress of his assignments.
DR3.1.3 An ACM member shall not attempt to exonerate himself from, or limit his liability to clients for his personal
..,, "'jrartice.

DR3.1 ý An ACM member shall indicate to his employer or client the consequences to be expected if his professional
Judgeme.'1 is overruled.

Cawian 4

An ACiv, member shall act with professional respoxnsibility.

Ethical Considerations

EC4.1 An ACM member shall not use his membership in ACM improperly
for p:ofessio.-u advantage or to misrepiesent the aumority of his statements.
EC4.2 An ACM member shall conduct professional activities on a high plane.
EC4.3 An ACM member is encouraged to uphold and improve the professional standards of the Association through
participation in their formulation, estpblishmert, and enforcement.

550

Disciplinary Rules

DR4.1.1 An ACM member shall not speak on behalf of the Association or any of its subgroupG without proper authority.

DR4.1.2 An ACM member shall not knowingly misrepresent the policies and views of the Association or any of its subgroups.

DR4.1.3 An ACM member shall preface partisan statemernts about information processing by indicating clearly on whose

behalf they are mede.

DR4.2.1 An ACM member shall not maliciously in.ure the professional reputation of any other person.

DR4.2.2 An ACM member shall not use the services of or his membership in the Association to gain unfair advantage.

DR4.2.3 An ACM member shall take care that credit for work is given to whom credit is properly due.

Canon 5

An ACM member should use his special knowledge and skills for the advancement of human welfaie.

Ethical Considerations

EC5.l An ACM member should consider the health. privacy, and general welfare of the paibfic in the perfonnance of his work.

EC5.2 ACM member, whenever dealing with data concerning individuals, shall always conzider the principle of the

individuals privacy and seek the following:
To minimize the data collected

To limit authorized access to the duta
To provide propem security for the data

To determine the required retention period of the data

To ensure proper disposal of the data

Disciplinary Rules

DR5.2.1 An ACM member shall express his professional opini,;, to his employers of clients regarding any advers-

consequences to the public which might result from work proposed to him.

From ACM Code of Professional Conduct and Procedures fot the Enforcement of the
ACM Code of Professional Conduct, Used by Permission u.' the ACM.)

551

APPENDIX C
IEEE' Code of Ethics

Preamble

Engineers, scientists and technologists affect the quality of life for all people in our complex technological
society. In the pursuit of their profession, therefore, it is vital that IEEE ,zembers conduct their w-ork in an
ethical manner so that they merit the confidence of colleagues, employers, clienrtt and the Public. This IEEE
Code of Ethics represents such a standardl of professional conduct for IEEE members in the discharg2 of their
responsibilities to employers, to clients, ,o the commiunity and to their colleagues in this Institute and oiher
professional societies.

Article I
Members shall maintain high standards of diligence, creativity and productivity qnd orali:
1. Accept responsibility for their actions.
2. Be honest and realistic fin stating claims or estimates froma availarble data.
3. lUndeitake technological tasks and accept respo1'sibil~ty only if qualified by ta~ining or experience, or after full disclosure

to their employers or clients of pertinent qualifications.
4. Maintain their professional skills at the level of the state of the art, rind recoguize the importance of current evernts in their

work.
5. Advance the integrity and prestige)f the profession by practiring in a dignific-d manner and for adequate comnpcrsalioen.

Article 11
Members shall, in their work:

1. -ra 1!~l all eoieag ~nd co-workersregardles5 of 7r ae, religion. ~~, s -,g , toi ,41i-- Onig.-'.
2. Report, publish and disseminate freely information to others, subject to legal and proprietary restraints.
3. Ecuaecolleagues &nd co-workerjs to act in accord with this Code and support them when they do so.
4. Sek, accept and off~er hoaest criticism of work, and properly credit the, contributions of others.
5. Support and participate in the activities of their professional societies.

6Asitcolleagues and co-workers in their professional development.

Arti,;le IIl
F Members shall, in their relations with employers and clients:

1. Act as faithful agents or trustee for their employers or clients in professional and business matters. P,-cvidr-d such actions
conform with other pa-Its of this code.

2. Keep informiation of the business alfairs. or technical processes of an employer or client in c3nf-idence whil-- employed, and
later, until such information is properly released provided such actions conform with other parts of this Code.

3. In~form their employers, clients, professional smicitie-s or public agencies or private agencies of which they are memberb or
to which they may rnake presentations, of any cx:wrnstance that could lead to a conflict of interrnst.

4. Neither givJe nor accept, directly or indirectly, any gift, payment or service of more than riondrinal value to or from those
having a businress relationship with their emiployers or clients.

5. Assist and advise their empljoyers or clients irr anticipating the possible consequences, direet. and indirect, immediate or
remnote, of the ptojects, work or plans of which they have imowlcdge.

Article IV
Members shall, in fulfilling their responsibilities to the community:
1. Protect the safety. health brnd welfare of the public and spetak out against abuses in these areas affecting the publi,. inverest-
2. Contribute professional advice. as appropriate, to civic, charitable or other nonprofit oi'gani7.ahons.
3, Seek to extend public knowledge and appreciation of the profession and its achievements,

Portions of the I EEE Code of Ethics for Engineers are reprinltd with permission
fromn thc Ins~titute of Elecu icarl and Electronics Engineers. .(91979 IEEE)

552

INFORMATION SECURITY AS A TOPIC IN UNDERGRADUATE
EDUCATION OF COMPUTER SCIENTISTS

John C. Higgins
346 TMCB Brigham Young University

Provo, Ut. 84602

1. Introduction

This presentation will not attempt to argue the relative importance of information security
as a formal area of study. It is assumed that a substantial numbef of academically trained
computer scientists ought to be familiar with the major themes of this topic. There is no question
that this assumption would not meet universal approval in the larger community ot computer
professionals. However, it does seem reasonable that given the current level of concern about data
security issues a formal introduction to the subject ought to be availablE at a representative set of
universities. Additionally, it is at best mildly redundant to argue the merits of this particular
proposition in a forum such as this one.. Thus, assuming that putative computer scientists ought to
be exposed to the topic of data security as a formal requirement this presentation has two aims.
The first is to assess the current level of instruction in data security as it is reflected in the
published curricula of undergraduate departments of computer science. The second is to suggest
how the present curriculum should be amended or expanded to include this topic.

It is possible to argue that data security will not be a truly important area of focus until it
reaches the undergraduate curriculum. While this must surely sound presumptuous when stated
by an academic, there are serious reasons for believing this to be the case. The basis for this
assertion lies in the observation that to an increasingly large degree computer professionals are
currently obtained from the ranks of individuals trained in university departments of computer
science. Clearly, one need not regress too many years to find a time when this was not true.
Indeed, a few more years backward in time reaches a point where there were no university
departments of computer science at all. But that in not true now. University departments of
computer science exist. They graduate increasingly large numbers of students. These student,.
their training and attitudes define in a real sense mu h of the current state of this discipline. Any
topic ignored when training these student has an uncL rtain future a- an area of major focus in the
profession.

In a very real sense the larger community of computer science professionals is a victim of
its own success. The explosive growth in employment and the paraliel expansion of academic
programs have been treated as the mixed blessing they indeed were. The profession has organized
with surprising agility. Informal but apparently widely shared standards oi training have evolved
in a relatively short time. While there has been no formal structure for the imposition of these
standards across higher education, the extent to which these informal standards hve become the
implicit norm is both encouraging and curiously disturbing. That some level of standardization of
the curriculum has been achieved is encouraging. What is disturbing is that this standardization
has overtones of the kind of rigidity that makes even incremental change in curricula virtually
impossible in the more traditional disciplines.

An examination of the curriculum of university departments of computer science shows that
a substantial majority of departments have accepted the suggestions of dhe various informal
national committees. The courses, the content of the courses, the sequence in which the courses
are taken and the related training in supporting scientific and mathematical topics is surprisingly
uniform. The benefits of this uniformity are obvious.. It demonstrates that there is a valid core
of identifiable knowiedge thai is computer science. It furtlor suggests that academic departments

553

of computer science are actively attc ipting to conform to objective standards in the design and
implementation of courses of instruction. But there is a concurrent danger in any such
uniformity. A discipline as relatively new and dynamic as computer science is not well served
when the standards are established too early and especially when they become too rigid. The
underlying discipline changes far too rapidly to allow the formulation of a canonical curriculum.

2. TheStud

This study of information security in undergraduate education grew out of an attempt to
design an advanced undergraduate/graduate survey course in data security. In designing any such
course it seems reasonable to discover tihe current state of university course offerings in the
given area. A brief survey of university catalogs suggested that there were virtually no current
examples of course offerings at the level envisioned. This initial investigation led to a further
more comprehensive study based on available public information on curriculum and course
content.

In the study the published curriculum/course offering of 102 university catalogues were
surveyed. The curriculum was examined to see what if any courses relevant to data security
were taught and whether they were available to undergraduates. The prerequisites for those
courses offered were noted. The catalogues were systematically searched for any department
offering a course in the general area of data security. While the majority of such offerings were
found in departments of computer science, some applicable course were found in departments of
mathematics and in business related disciplines.

While nny such survey has subjective elements, the defined criterion was to include any
course offering that could by a knowledgeable teader be construed as treating in major part
data/information security issues. Those courses that seemed to briefly touch on such issues were
noted but not included.

The reason for carrying out the survey in the manner described are as follows. There are
,wo major reasons for using only public documents. First in conducting a survey that demands a
response, it is virtually impossible to obtain anything like the degree of compliance needed to
insure results that are comprehensive. The attitude of rany departmental administrators to
surveys is negative at best and actively hostile at worst. This is especially true if the survey has
no "official" standing in the sense of being actively sponsored by a national professional
organization. A second reason is that voluntary responses to surveys of this lype tend to be
extreme!y selective. In this particular instance one would expect a strong bias in response from
those institutions that do offer courses in data security. The purpose of the study is to determine
one dimension of education in data security over all members of a specific set of universities. For
these reasons it is best that the source of data in the study not be subject to the voluntary
compliance of those institutions surveyed.

As a source for detailed information on course content the general university catalogue is not
without its limitalions. Course descriptions tend to be telegraphic at best. Not infrequently it is
virtually impossible to divine the actual course content from the public description. However, in
assessing the coverage of data security in undergraduate education, the public description of
curriculum is probably the most accurate indicator of actual current attitudes. Thus, if an
instltuticn teaches a security course under the title of data base management or systems analysis
or discrete mathematics(in the case of cryptanalysis) it very strongly suggests that the actual
topic of the offering is somehow less than legitimate. If further, the public description of the
offering is so obscured as to render it invisible to a knowledgeable reader, it is effectively as if
the course does not in fact exist.

554

The 102 institutions surveyed include all 58 institutions listed in the 1982 National
Commission survey of Graduate Programs In Computer Science. 1 The coverage of these 58 major
graduate institutions is critical to the main conclusion of the survey. For any given year there
are a variety of estimates as to exactly how many university graduates claim to major in
computer science and exactly how many accredited colleges and universities offer a baccalaureate
degree in computer science. Virtually all such information is the result of voluntary response to
surveys and for that reason is at best stochastic. What is far more certain is the fact that
national standards for computer science education will continue to be established by the policies of
these leading institutions. It is granted that other institutions may offer equally good if not
superior training and in a variety of ways be more innovative than the major graduate schools.
But the fact remains that if these institutions in substantial numbers ignore a topic it is clearly
not yet a part of the accepted undergraduate curriculum.

3. Results of the Study

The results of the survey may be summarized as follows. Of the 102 institutions in the
survey 26 offered one or more courses on data security. Among the 26 institutions offering
courses, 21 offer just one course and 5 offer two courses for a total of 31 ccurse offerings. In
these 31 courses, 25 are given by departments of computer science, two by departments of
mathematics and one each by departments of management, business, accounting, and
administrative science. Of the 31 courses offered 22 were judged to be available to advanced
undergraduates by a generous interpretation of the course description. In those cases where the
course was offered as a portion of the undergraduate curriculum in computer science the status of
the course as to required, suggested, and optional was investigated. In no case was a security
course required. in three cases the security course was formally suggestecd as an option

It is interesting that of the 31 data security courses offered 9 are available only to graduate
students and 22 are listed as graduate courses.. Based on the admittedly brief descripliors
available it was judged that only five of the 9 restricted courses had content that would have
rendered them in actuality unavailable for almost any third or fourth year computer science
undergraduate. Four of the 9 seemed to have content that was quite similar to that of survey
courses offered at the undergraduate level.

Nine of the 31 courses on data security require no prerequisite course work. Six of the
courses require a course on data structures and five a course on operating systems as a
prerequisite.. Four require a course on analysis of algorithms. Five of the courss demand one or
more mathematics courses as a prerequisite. Two require linear algebra, two require discreto
mathematics, one requires applied algebra and one a course in mathematical analysis not furthsr
identified. Three of the courses have introductory statistics as a prerequisite Two of the couises
listed as prerequisite one or more courses taught in departments other than computer science,
mathematics and statistics. However from catalogue descriptions the content of these
prerequisites seem to be essentially similar in subject matter to standard computer science
courses . In all but three cases the courses listed as p,-erequisite are part of the undergraduate
curriculum requirements for all computer science majors.

The geographic distribution of the course offerings is rather interesting. Fourteen of the the
31 courses offered are to be found at universities clustered in just two major metropolitan areas,
San Francisco and Washington D.C. I suspect that this says something about demand and perhaps
something about trends in the education of computer scientists.

The reason for offering relatively elementary, in content, security classes at the graduate
level may only be surmiscd. There is, naturally, the issue of enrollment. Frequently classes will
not be taught if some standard level of enrollment is not met. These standards are always more

555

libf.rýal in the case of graduate cllsses. it is surely the case that, in Many insitlutions the
introduction of now courses at the undcrgraduziie level is diffiiult. 'There are often a variety of
bureaucratic hu.,dles and funding constraints thal. must be addressed. it is often easier to solve
these difficulties for a graduate. class than)r art undergraduale one. Also, the introduction of an
undergraduate- class USuLl31y demands o znodificatiorý of the, existi.ng urdergradluate CUrriculum.
This irnpnrges on territorial imrperatives within the department. In addition Viere are, those who
fee! that while security issues aie worth discussing they are not Central to the- education of
computer scientists. it is the notion of imprinting. Thcw tear is that if StUdent'S m(ee-t Ca topic 1o0
early in their education they may tend to attach to it an importance it does riot deserve. In this
case the implication is that !t is safe to offer security class,-es to graduate students since they have.
sufficient maturity to assess ile relative importance of topics.

It seemns evident that a substanIial majori 'ty of current university g-aduates in compuier
science have no formal introdluction to the issues of inforrnition security as a result of t~heir
university training. As stated earlier, it is axiomatic for the purposes of this discussion thla! such
a condition is to be deplored. It shouLd, in passing, be r,-,te~.d that the rapid standardization of the
undergraduate curriculum in computer science will increasingiy lead to a form of imnprinting Inat
wiii actively mnitigate against altracting brigh! yourig sciermisis lo this field. T'he reasion for this
is that as computer science education becomes mor' niforrm amnong the univ,e.-ities, the student
properly assumes that hie will be taught those anrd only those tooics tl-ia' fornm tht.. core- of comrputer
science. Any subject not included 'In this initial imrnpint~ng. is percýeived -is being uniniporlan'...
It requires act~ve anld sustained indoctrination to convince hirn oVterwisa. Thle exprnp!e of medical
education at the turn of the century is instructive in the ragard. A,; tire a,:.c.,editalion of meodical
schools mi-oved apace, the curriculumn of the schocls became ouitc, standard. In mfos;t rp-spec-ts th'is

19was a valuable improvement in the uaiyof madical education. The sdhools gr.avowae'd a.
standardized product tha~t was predictably exportable nationwide. However, subjects. such as
nutrition, tha~t were not of major concern at the timre the curriculum was stardwtdizedl becamne
ufinimportant. They remnained unimportant iong after serious sclentific investigaliun demonstirated
their roile in the provenition and treatirintn of disease.

In the case of data secu~rity it is not too late to address the relative paucity of exposuie of
cormputer scienmce, majors. It is not difficult to make a case for the relative importance of this
topic reiative to many others ciurrenli3' avaiiable at the Undergraduate level inl almost all
computer science curricula. That case should tbe made whenever the opportunity irisces.

Those members of the oerrera! university commrrunity interested in data security chould begin
to offer courses on the subject. It would be. best if these courses are offered at a relatively low
level and are wilbeto all undergraduate computer science(. majors with advan~ced standing.
Some effort Should be expended to see thaz thesen coutses are in-luded a.s viable options in? the
undergraduate curriCUIlum. Following the survey Course, upper ievel courses in) systemns s rt
and cryplanaiysis should be oftbred. These offerings need to be stwotured in such 2 way as to bL'
available to both graduate stucients and advanced-J undergraduates. Pt is unwise to attach long lints of
prerequiisites to such courses.I WNiL 111 is Unlikely 0ht eVOry institution Would dpvelop a variety of courses in security,
it is imrpc-tant that s,,ome iostitotions do it establishes and helps to mi-aintain the credibility of thve
subject and provides a nurcleus of students interesied in security topics. The most favorable

inteprettionof te suvey eemsto sggst Iiiat at present t ere are at best only two or three

such universities. in the entire nation

556;

The increasing importance of information security suggests that some coverage of the topic
should be included in the standard curriculum at a relatively early level. It is unliKely that
anothei required topic could be appended to the current list of essentials. The subject
co ,d,h,.wvver,be included in anyone of a number of required courses such as those on on systems,
homan factors, discrete mathematics, etc. To have this accepted as a standard portion of the
undergraduw.te curriculum will clearly demand the organized effort of those who feel that it
belongs there.

Thoss individuals in industry and government who would like to see rather more exposure to
data security in formal university education should take occasion to so state. To a far greater
externt than more traditional disciplines, computer science curricula are market driven. This is
especially true for the less prestigious inst;iutions. If it becomes clear that there is a market for
basic education in data security a variety of suppliers will arise to fill that demand. In this
regard it is important to note that the existence of curriculum offerings is as important as any
specific training available from those offerings. The offerings legitimize the topic which in turn
convinces even those who do not take the courses that the topic of data security is indeed worthy of
serious attention.

Befere neL

[! D.C. Rung, "Newest RanKings of Graduate Programs in Mathematics," Notices of the
Arm " M-athematicl SDie.Jy., Vol.30,Number 3, pp. 257-270, April 1983

5 57

COMPUTER SECURITY EDUCATION, TRAINING, AND AWARENESS:
TURNING A PHILOSOPHICAL ORIENTATION

INTO PRACTICAL REALITY

W. V. Maconachy, Ph.D.

U.S. Department of Defense
Fort George G. Meade, Maryland

Abstract

This paper discusses the scope of computer security
education, and presents a schema for differentiating among
Education, Training and Awareness activities.

Introduction and Overview

The mandate has been set down by Congress for the heads of
federal agencies to design and develop computer security
awareness, training and education programs for employees. In
signing Public Law 100-235, "Computer Seritlt Act F]QR7".
President Reagan set into motion requirements for the
protection of sensitive unclassified information in federal
computer systems. One of those requirements is the mandatory
periodic training of all persons involved in the management,
use or operation of federal computer systems. One and one-
half years later, what has been accomplished? A report has
been issued in the Fourth Annual Assessment of the National
Telecommunications and Information Systems Security Committee.
In that report the Committee states:

To ensure that all government employees and
contractors are aware of the INFOSEC considerations
inherent in their duties and responsibilities,
departments and agencies must continue to expand INFOSEC
education and training programs. The President's
National Security Advisor applauded the progress being
made in enhancing the COMPUSEC posture of the nation.
However, a more concerted effort in promoting security
awareness throughout the government and private industry
is required.

One problem associated with responding to the Committee's
challenge is the lack of definitive differences among
education, training and awareness activities. The schema
outlined below provides a frame of reference for defining and
building computer security programs on all three levels, and is
applicable in both go. :rnment and industrial environments,
because the learning programs established in response to PL
100-235 are oriented towards protecting sensitive unclassified
information. The noted criminologist Dr. Sherizen lists

557A

certain categories of information as sensitive enough to
warrant protection (Figure 1). These categories exist in both
government and industry.

Long Range or Contingency Plans
Major New Ventures

Acquisitioi, or Sale of Business Assets
Major Planned Curtailment of Operations
Business Strategy or Product Technology
Future Product Design or Developments

Customer Lists
Accounting Records

Competitive Assessments and Comparisons
Travel Plans of Top Executives

Personnel Records
Financial Arrangements with Suppliers

Figure 1: Particularly Important Information Which
Requires Protection

Building and Education, Training and Awareness Program

With that background covered, let's proceed to how
employee sensitivity to the need for security in a government-
industrial environment can be built. Before any awareness,
training or educational activities can be pursued, an agency
level goal should be developed and agreed upon. I suggest that
a generic goal would be to develop in each employee an
awareness for the need to make information security an integral
part of his/her workday habits, and motivate the employees to
develop the skills necessary to do so. These habits of
behavior should encompass all aspects of security.

The all important first step in any campaign to increase
the use of security practices is to obtain a commitment from
the very highest corporate levels. Ultimately, an information
security goal should be part of the written corporate
philosophy. As part of that philosophy a clear definition and
guideline must be provided which employees can use in
determining which types of unclassified information a
particular organization deems sensitive. Since PL 100-235
relegated this determination to each Federal agency, there will
be a wide range of interpretations. This range of
interpretation may influence the extent of education required
under PL 100-235, but it does not diminish the need for such
programs.

Once a corporate level commitment is obtained, the next
logical step in the campaign is to understand and differentiate
between security awareness, training and education. This is
critical, from a practical standpoint, because security is

557B1

always a hard sell. After all, where is the return on
investment? If managers do not differentiate between security
awareness, training and education programs early on in the
campaign for excellence in security behaviors, funding may very
likely be eaten away by education courses taken by employees in
the name of increased awareness, and security educators will
have little left to reach the greater number of employees not
privy to such focused and individualized educational
opportunities.

I offer the following continuum as a model for use in
reaching that differentiation. Yes, the middle ground is gray,
but the r del does serve several purposes;

A. As a point of departure
B. As a philosophical framework for operations
C. As a potential arbiter of bureaucratic lines (The

training Dept. vs. the security Dept. responsibilities)
AND
D. As a tool for planning awareness activities appropriate

for differing levels of thinking and learning.

LEARNING CONTINUUM

ACCOMMODATION
INTERNALIZATION

EDUCATION

TRAINING LONG TERM MEMORY
ACTIVE SEEKS MORE KNOWLEDGE

ASSIMILATION
DECISIONS (SHORT TERM MEMORY)

AWARENESS ATTENTION
FOCUS

STIMULATION

Figure 2: The learning Continuum

Awareness

Fundamental in this concept is the appreciation for the
unique attention-getting/stimulation aspects of an awareness
program versus the informational nature of education/training
programs. Where awareness relies on reaching broad audiences
with attractive packaging techniques, education and training
programs are generally more focused in nature and typically
restrict themselves to the so called, "sound educational
methodologies".

557C

The model presented here is based on a psychoneuronal
model of learning. A model already proven useful in planning
individual as well as a corporate stream of security
consciousness.

Stimulation is the very first phase in learning. At this
level some event triggers a basal level response that "wakes
up" the individual's nervous system. In many work places,
placing a security violation notice on the boss's desk manages
to get him/her stimulated posthaste. BUT THAT IS NEGATIVE
STIMULATION. Positiva stimulation is preferred! This is
achieved by a variety of techniques such as distributing an
announcement of cash awards for security suggestions. The key
is to use a color paper. or a style of announcement that is
unique only to announcing monetary awards for security
suggestions. One of the most common examples of focus is the
use of different color badges to indicate specific levels of
security clearance. Another common example is the use of
different color paper, while maintaining the same shape and
design for security information products which may change on a
yearly basis.

Last year many agencies were using COMPUSEC information
cards which were blue. When the content of the cards was
updated, the cards were deliberately changed to a bright yellow
so that uscrs, who had these cards by their computers would
know just by color if their cards were current. The idea
behind this form of motivation is that seeing a specific shape
or color, or hearing a particular tone will trigger senses to
tune into the next stage of awareness; focus.

Obtaining learner Focus is a concept that is not so
foreign to most of us. Imagine if you were going to go into
your computer files looking for a specific item, and noticed a
new file that read "REBENSHRACK". It probably would not take
very long to recognize a nonsense word which is not part of
your usual save file routine. That process is focus. In
security awareness, focus can be obtained by a variety of
techniques:

1. Having all personal computer screens come up with a
security remninder when first turned on.

2. Changing the lock combinations on safes.
3. Issuing periodic security flyers with pictures of the

CEO or agency head as a header to an article he wrote or
endorsed.

Attention: The problem with focus is that humans tend to
practice a tuning out process called acclimation. If a
stimulus, once a powerful attention getter, is used repeatedly
in the same environment the learner will selectively tune out
the stimulus. The classic example of this is when a menu
screen from an on-line search service changes patterns. What
the reader has become accustomed to and conditioned to respond

557D

by simply ignoring and hitting a return key has changed. That
change gets the user's attention. In iNFOSEC awareness, the
principle applied to this concept is to change bulletin boards,
posters, and personal computer security messages and routines
frequently.

Attention can also be obtained by using such GIMMICKS as
key chains, magnetic tags, and other visual clues that offer
daily reminders that security is a work habit.

Decisions: The first three steps, outlined above, usually
take place in the human brain in a nano second. Once the
learner's attention is attained, the leap to conscious decision
becomes a critical yet most important part in changing employee
behavior. The security world abounds in examples of primary
decision making behavior (often termed the exercise of short
term memory). Two key control operations, use of personal
passwords and inserting employee card with PIN numbers are
examples of primary decision making behavior. The purpose of
imposing this level of effort on an employee is to make him/her
think about what he or she is about to do.

On a higher plain, forcing the employee to exercise short
term memory is necessary to evoke higher level security
practices. These practices include:

1. Stopping to read a bulletin board or scrolling
electronic message.

2. Deciding to read a new security regulation
3. Deciding to read the security corner of the company

newsletter
4. Deciding to attend a security lecture.

Messages developed for employees at this level are often
the most difficult to construct, yet are the key to leading an
entire organization into a better security performance profile.

Assimilation: I have borrowed this term from the learning
theorist Jean Piaget. It is a transformational component of
learning through which all knowledge is acquired. It is a
cognitive process in which an individual incorporates new
experiences into already existing schema ofope:ation. At this
level of operation, the learner/employee consciously decides to
incorporate security practices into his or her behavior. This
experience is characterized by a growth in behavior pattern
often without significant qualitative change in cognitive
processing. Examples of how this behavior might be facilitated
include activities such asx

1. Supplying employees who use personal computers with key
rings that say, "lock me out when you go on break".

2. Offering security seminars that stimulate thoughts.
3. Offering security surveys, demonstrations or

presentations to employees in their work environments.
4. Providing security-oriented video tapes.

557E

Awareness vs. Training: The Gray Zone

There exists a gray zone between Awareness and training
(as depicted in Figure No. 2). A gross distinction between
awareness and training is that in awareness activities the
learner is a passive recipient of information, while in the
training environment the learner has a more active role in the
learning process. A primary role of awareness programs is to
motivate employees/learners to move into a training mode and
and actively seek more knowledge. A fundamental goal of
training programs is to motivate learners to move knowledge and
skills from short term memory into long term memory. Very
often these knowledges and skills become chained sequences of
behavior which require little higher level mental processing.

In agencies where these functions are divested,
collaboration between the corporate providers of training and
the corporate planners of INFOSEC awareness is essential to
developing and delivering quality learning experiences.
Activities in this domain include:

1. Advertising education programs available through such
agencies as DIS, DoD, OPM, Private consultants, and colleges
and universities.

2. Sponsoring training seminars
3. Planning and executing an annual security week-

Here, the awareness plan includes:

a. Table tents on cafeteria tables
b. Announcements on Electronic bulletin boards
c. Announcements on Corridor bulletin boards
d. Flyers,

And, the training plan includes:

a. Formal hands-on seminars
b. On-site short courses and briefings

Training vs. Education

The debate over differences between training and education
has raged since time immortal. I offer the following point of
departure. Where awareness relies on reaching a broad audience
and the use of attractive packaging techniques, training and
education programs are generally more focused in nature and
typically restrict themselves to the so called, "Sound
Educational Methodologies". The distinction between training
and education can be made by examining the intent and scope of
instruction. In a training environment the employee is taught
to use specific skills as part of exacting job performance. In
an educational context the employee would be encouraged to
examine and evaluate not only skills and methods of work but
fundamental operating principles and tenants upon which job

557F

skills are based. The emplcyee/learner is using internalized
concepts and skills to perform operations such as analysis,
evaluation and judgement to reach higher cognitive level
decisions which lead to the accommodation of newly integrated
knowledge and skill. In the context of this paper,
accommodation is an end process in which the learner makes a
conscious decision to modify existing ways of thinking and
responding in order to satisfy new experiences and knowledge..
Very often, accommodation results in significant qualitative
changes in performance. An example of operations at this level
would be desi.gners of networks which require interpretive
techniques to assure varying levels of security. Capability to
operate at this level is fostered through educational programs
and processes.

Figure 3 provides an example of computer security content which
is based on the learning continuum principle. Implicit in the
example is the dynamic interrelation and interdependence of
awareness, training and education activities.

Goal: Facilitate the increased use of password

protection among all employees.

Awareness Activity: Reminder Stickers for keyboardss

Training Activity: Computer Based Instruction on the
use of passwords for agency-specific machines.

Education Activity: Recognized COMPUSEC expert
provides employees opportunity to explore why
passwords ate used in general, and evaluate the
current agency protection techniques.

Figure 3: An Example

Summary

A true computer security learning program incorporates
concepts and elements from each level, and presents the

employee/learner with a totally integrated succession of
experiences. Figure No. 4 summarizes activities which may be

found on each level of operation. It is by no means inclusive.

557G

AWARENESS

Stimulation:
- Security-only colors
- Security-only music theme

FOCUS:
- Change Locks

- Reminders

ATTENTION:
- Bulletin Boards
- Flyers
- Posters

DECISIONS:

- Read Security Regulations
Read magazines

- Attend Lecture

ASSIMILATION:

- Key ring with messages
- Short seminars
- Short demonstrations

- Video tape programs

TRAINING

ACTIVE KNOWLEDGE SEEKER
- Self-Paced course
- OJT
- Conferences

LONG TERM MEMORY
- Computer-Based instruction
- Multi-session seminar

EDUCATION

INTERNALIZATION
- Point Papers

- Study groups

ACCOMMODATION
- Long term training
- Research and deliver briefing

Figure 4: Activities per Level

This paper offers some ideas and an approach to consider
in building information systems security practices into
COMPUSEC awareness, training, and education programs. Your
imaginations can expand the opportunities and experiences which

5571H

can reach your employees. However, do not let this analytical
view of the awareness/training/education continuum, cloud your
view for the need for a truly integrated program. A host of
activities should be carefully constructed so as to provide
employees at all levels a total program of systems security.
This integrated approach requires the melding of many talents
and coalescence amongst often separate groups.

Turning hypothetical construct into realty is hard work
But it can be an exciting challenge. A challenge, if unmet may
result in utter calamity at:

The personal level
The corporate level
The national Level

The challenge provided to government personnel is to take
up the task of developing and implementing a well orchestrated
government-wide information systems security awareness,
training and education model. A model which may begin to
unfold through the development of computer security awareness,
training and education programs. The challenge requires great
vision for the future, and cannot be dismayed by often harsh
realities of budget, lowered priorities or apathy.

55'1

ALTERNATE PAP E RS

A LEAST FIXED POINT APPROACH TO
INTER-PROCEDURAL INFORMATION FLOW CONTROL

Masaaki Mizuno
Department of Computing and Information Scienccs

Kansas State University
Manhattan, Kan)sas 66506

masaaki~ksuvax 1 .cis.ksu.edu

1. !ntsrdQ~igotion

Information flow control reg 'ates the flow of information between classified objects [7].
Given a set of "securit•y classes" corresponding to the sensitivities of information and a
specification of all the paths among objects by which informatiorn is allowed to flow (an
information flow policy), an information flow mechanism must guarantee that the flows
caused by program executions do not violate the specification. Denning introduced the use
of a cornplet~e lattice structure to define an information flow policy [5]

Based oil a policy defined by a complete lattice, Denning developed a compile-time
algorithm for certifying the secure execution ot a program in an environment in which
the security c!a•ss of each object (program va~riablc or file) rem-ajim, coi.stnt through~out
the lifetime of the program [6]. In this environment, a progranmier needs to specify the
security class of every one of the program variables. Since constant security classes of
parameters must also be specified, separate versions of functionally equivalent, procedures
are required to handle different secur-ity classes of parameters. This is a major drawback of
this approach.

Andrews and Reitman developed a compile-time certification technique based on Iloare 's
program verification [3]. This mechanism allows the security class of each variable either
to remain constant or to change during ex•ecution of the program. The verification of a
procedure invocation requires previous verification of the body of the called procedure and
previous establishment of the pre/post-conditions (of the called procedure). Thus, the
verification of procedure PROC requires previous verification of all the procedures which
are potentially invoked by PROC.

In earlier .',ork, we presented an information flow certification mechanism designed for
distributed object-oriented systems 181. The mechanism has the following features:

1. The security classes of object -,aiiabler must remain constant. The security classes of
other program variables can either re~main constant or change during execution of a
program.

2. Each procedure can be compiled and its "internal" security established independent
of other procedures.

The mechanism combines compile-time and run-time algorithms. The compile-time al-
gorithm establishes the internal information flow security of an individual procedure and
also creates a special data structure for efficient run-time certification. The run-time algo-
rithm completes the certification of the entire program at message passing time by verifying
information flows caused by procedure invocations.

558

Tlis paIhper eXpalids earlier work; it 1)lC5Cilts 11) iI1f40-111oI nit iu hO cert ilicat ioun mcclizai 1*sni

WhichL COmibinets C01lII)]C- ti 'm.hhtm adriitne algou'it~lkiis. III t 1 s, aippioadii, A user

'iI Oilyvc Y 010 "ecurity clas;s of each variab~le vithier to remnauin coistmaiii o1 to chiniige' (Ill lullng

Nxcoutuoli '11 uiiue Cmie tinic algor-ithunii is basically the sa inc as thic one, presciut ed III 1S811
'flit' link-tiiiic algoritlim uses thw dat-a structure generated by the compilcui-tinuic algori tlin i

a-'I'd Calculates poten tial Informiationi flows caused by parauincter passingI and global variable
3 Cess. Ii cultm oItln completes the certification byvrfying t~le flows causcd bx',N

('Nlenlial file access.
W\e ossinle that. as describedl in [1], a security ziabel is associatedI Nwit I each storage

Object. (i'.g. external files'), andiidmaintained by a TCB (Trust.?d Comp jut ing I 111) TIillS

iaS a reasona ble assumption, thle security classes of exte -tal files reillaini coulsi ant dii niuig

('Neniltioll of a (tuer) program. Ihie ;pv)eIihc security classes of file,, accessed by- a progratil,

hiowever, do not hiave to be specified untli run time1:' - 1hiis eliiiminates a need for separate

verfsionls of functionally equivalent programs for d ifferent external files. Immi iedijately prior
tothe ceuinof zprogrami, th se ,ecifies all the files accessed by tle prori

(biliding). The decision whlethaer the program is allowed 1.o execete is made at the bindingý

tinme b)y the run-tinie algorithm (performed L~y the TCB).

2. A Definition of Flow Control

Tins section presents basic. definitions of information flow control and an infornmation flow

poiicv. A,,, infornmationi flow from variablc 'x' to variable 'V. whichi is denoted by 'x =ý y'
Occurs if iniformiation in 'x' is transferred to bY. it indica es that Information in 'y' could

be iued to derive informnation in x' X.

Flowvs can be classified as explicit or limplicit.. An exp~licit flow fromn variab~le- ai, .

to variable -x' occurs when ani execution directly assigns information derived from ai,...17

to 'x'. An imiplicit flow from variables a,,. . . , P,, to variab~le 'x' oc~curs \w'lol an execut ion of

a statement w~hich assigns some information .,o 'x' is conditioned upon values derived from

o1 I a,. For example, the statement

if a >0 then x := else y:z

cauises ani explicit flow from 'y' to 'x' only when a > 0, and froin 'z' to 'y' only wlien a <_

0. The statement also causes an implicit flow fromn 'a' to botll 'x' and 'y' regardless of thie

value of 'a'.
Thle underlying theory of information flow control is based on the complete lattice (SC,

(1, (D) [9] introduced by Denniing [5], where

1. SC is a finite set of security classes;

2. < is a bin~ary relation which induces a partial ordering on tile secuirity classes in SC;

3. (1 is an associative and comnnutative binary operator on SC, denioting thle least upper

bound, e.g. A (1 B is tile least upper bounid of security classes A and B;

'In order to optimally adjust to the liink-timue algorithm, the data structure generated by the compile

tille-algorithml~ is slightly different. from the one described in 18]. However, the con~cept i.,- the samie.
2 We asisumie that the terin "external files" includes 1/0 devices.
3 For siimplicity, we assume that if the security classes of program variables other thani externial files are

sipecifiCel to bc constant, they miust be defined at compile tillie.

559

4. C is an associative and conninitative billary Operator oin SC, dcjoti ig the greatest
lower bound, e.g. A ý) B is the greatest lowei bound of security classcs A and 13;

5. SC has the greatest lower bound LOW and thCe least upper bound 1110I1 lsuc'l that
LOW\: < A and A < 111GH1 for ail A in SC.

Infurmation of clasýs A is aliOWcd to flow into an object iII class 13 if alid ounly it A <1 B is
nimplied bx the lattice. For sinloplici,, the -xamples ill this paper assunic a linear lattice

of security classes consisting of UNCLASSIFI'L1) (= OW), CONFIDENTIAL, SECRET,
TOPISECRIET (= II1GI1).

A progra i variable may be either statically or dynamically bound to a securilY class.
A "statically bound variable" is assigned a fixed security class at the time of its definition.
The security class of a "dynamically bound variable" changes with the class of its ass,:ociated
information. For notational convenience, if 'x' is a variable, then the security class of 'x'
will be denoted by 'x'.

If 'y' is a statically bound variable, then the flow 'x = 3" is secure if and only if tile
relation 'x < N' is implied by the lattice. Otherwise, a security violation occurs. Note that
if 'y' is a dynanmically bound variable, 'N' becomes 'x' and no security violation occurs.

3. Overview of q hfrformation Flow Control Mechanism

Our mechanism consists of tthree components: a comjpile-tinle algorithm, a link-tirne algo-
ada run-ti. a"goriti1. T he •ipi-m algormihin partially certifies the security

of each procedure independent, of e.ther procedures. It also generates symbolic equations
rel)resenting the security classes of global variables and parameters.

The link-time algorithm calculates the least fixed points of the equations generated
by the co'npile-time algorithin to determine inter-procedural information flows caused by
global variable access and parameter passing.4 The link-time algorithm also generates a set.
of equations rcJ)resent.ing information flows caused by external file access. We assume that
these equations are stored securely within the TCB.

At. run-time, when all the exter:ial files accessed by the program are specified (inle-
diately prior to the execution of the program), the TCB certifies the security of potential
information flows to all the statically bound variables. This certification is performed based
oil the sensitivity labels of the files and the equations generated by the link-time algorithm. -
If all the flows are certified to be secure, the execution is allowed to begin; otherwise the
execution is denied.

We assume the following syntax for a procedure declaration statement:

procedure PROC (IN a'l,... ,ax; OUT Y1 ... , ,•)

where the IN parameters are "call by value" and the OUT parameters are "call by result".
The mechanism does not handle other types of parameter passing mechanisms.

We first identify all possible input and output values to/from a procedure. We define
the terms "input variables" and "output variables" to stand for variables which carry input
values to the procedure and output values from the procedure, respectively.

Input variables of a procedure P1OC, are:

(1) actual IN parameters of PROC
4\Wre assume the scope of global variables (except for external files) to be within a program.

560

(2) the global variables (including external files) read by PROC

(3) formal OUT parameters returned froin procedures that arc called by PROC.

Output variables of PROC are:

(4) actual OUT parameters of PROC

(5) the global variables (including external files) written by PROC

(6) formal IN parameters to procedures that are called by PROC.

The comt)ile-tilme algorithm constructs equations that express the potential run-time
intcr-procedural information flows in symbolic form. In order to do this, a "symbolic class
expression" is generated for each variable in terms of the classes of the input variables
(1) -(3). A symbolic class expression represents the class of information in terms of the
classes of variables from which it is composed. For example, the class of information in the
expression "A + B * C - D / F" is symbolically denoted by "A (1G ID e £ () D1 ,

If input variables (1) (2) and (3) are dynamically bound, their security classes cannot
be determined at compile time. Even though external files are statically bound, their
security classes may not be determined until run time. During compilation, the classes of
these variables are established as "security variables". Security variables are symbolically
denoted by

1. parameter-nanme (for formal IN paraixters of the procedure being compiled),

2. procedcure-nanie.variable-name (for actual OUT parameters of procedures),

3. xijLibj-na_- (for dynamically bound global variables), or

4. fjlkiiu.c (for external files).

For example, if the procedure being compiled is F(IN a, b), then the classes of dynamically
bound parameters 'a' and 'b' are symbolically denoted by 'a' and ']', respectively. If this
procedure invokes a procedure C as G(IN x, OUT y, z), the classes of 'y' and 'z' are
symbolically denoted by G.y and Q..z, respectively. Furthermore, if F(IN a, b) reads from
both a terminal STDIN and a dynamically bound global variable CV, the security classes
of STDIN and GV are denoted by $IDJN and C-V, respectively.

Based on these symbolic class expressions, the compile-time algorithm generates a "sym-
bolic class equation" for each output variable (4) (5) and (6), and each statically bound
variable. The equation has the form

)a ialk = "symbolic class expression"

which states that the security class of information given by "symbolic class expression"
flows into "variable."

At link time when symbolic class equations for all procedures in a program are collected,
the link-time algorithm finds, for each security variable corresponding to a parameter and a
dynamically bound global variable, a symbolic class expression which denotes the potential
rui,-timne security class of information flowing to the variable.

Dynamically bound global variables require special consideration. Consider the follow-
ing program segment:

561

call PITOC () b
G (A' 1; - (c).

wh ere (2VI is at dyniamiica lly bound global variable. Eveni thlouighi both stat en iti is (;I) and
(c) refer ito tlhe salii vaiiabke GVI the security Class of GVI in (c) miay be' difi'cer(I fromi
that ini (a). This is because the procednre call to 14R)(lin (1)) nay cluiv geli value aid
lie seccuriy v(-labs of C \NI. Ini geiieral, a I rac of the secuiril classecs ol'such aI dyniami cally

boa ild glb1 al varia ble nlay dep end ont the(order of jpro,.edr ii enivocatlions an d canni ot be
determiniied at. compiile tjilic or livk tinle.

TIhe coli Ipi Ic-t i; lie algori thil simly p uses thl e wecurilyv variable wi enciver a global variiah1 d
is refý,re; Iced i II it proced I I re. At IliI I k t i I I I, e ach sIuchI secaInII-t v vI riable is S I bst it Ii It d bY Ii IeI
least. upper bound of all the synduiolkic class expressioiis Gom thlewgobal variable. lIn the ab ove
examl pe, t hierefore, Oilr Certification analysis assulue that. the same I secuirityv clas!s of values
flows Uo both Wx and ~'3 (and all ot hr variables iin the fpnograili which refer to \'I) . S ince
this approach considers the worst case. it is saffe but. may not be precise.

'I'fie security classes of externial tiles are 1101 determined tintil run- lii e. .Since t lie secuirit \
class of a x ariable muay heV depjendenlt on tie Classes of ext~ernial files, th liei k-lunle algorithim
coliu1pules the(securityv class of a variable to be a pair consistiuig of a Ii~xel secuiii vy class
(in thle security laWice) anid the set of lie security variables couresqoldiig to tiles whoe
iiformnat ion will flow i it-o the(varialble, Let. ilie power set of a set. of the security variab~les
for files be 1). Theni P is a lattice, aiIl ¾P and '0' oil P are defiiied as

i.- a <-ý b iff a _ý b,

3.a h- a n b

where a, 1, C- I.
Now; let, the security lattice of the systein be S. 'I'lie S * P) (15 lid(irect. prodnct of' S anid

P) is also a lattice, and '5% \'d and 'F'i on S * P are MAWne as

1. < a,,1), > <! < a2, b2 > ill a, a 2 am1l b, :• 1b

2. < "I,1.t 1 > 11 < (-2, k! > < "1 (J1'2, 1 G 1)2 >

3. < " , ~ > G) < a2 ý > < a) ®a 2 ,i 1) 12 >

where al, ii, C S, bi. b. 2 C 1'.
Th'le link- tinii alpwontlii (creates ii equations wi ti n unknown varai; t ds, where n is lie
inierOf Symbolic class equzat ionsb of a progrmn. Th'fe loniaiui of eachi variiable in t li

eqfuat ions is S *P1. By solving thle equat~ions, the algorit Iil cI(an det ermuine t lie secuiit v
classe.s (ill t he doiiiaiii S * P) of ii form~at ion which would p~otenit iailv flow inito t lie st at ica II v
bouii id(variables hin the ;)rogl am. 'Ilese seen liy classes are out put.l for ni iin- t- ince cert i iica I ion.

At ru n-t inii, wheii all the files accessed by, the programu are specifid, thle 'IC binds thle
'isuthivit labels of the files to the associated security variables to del em ihin army pot ental

flow to each stat~i(allv bounud variable. Iu prog ani is certified to be secure and catr be
execut~ed only if the eseca'rit v classes of all such flows are(les.s t han or eq(uial to i lie secuirityv
clazsses of the associated static-ally boun md variiables.

562

4. Th Coinpie-~Timie A!lgorithm

Onl cun iplie- ti ille alguritali ii is ba set1 onl Dciiniings's coiliip lc-t Mlne certiliclt iou i iCCliaii isi i

The. 'Il(Itaills of the algorith lu are sliowtu inl I,;] Since t lie foculs of at~tenitioni inl thi s

~Imper is the lin k-ti c/ runi-tunic algoritili ins, we only eXIpla41 int special flow cal lcd "i unpl ici I

jut er- 1)rocedur.-l informnationi flow" and(then show)% a suimple e'XaIipleI.
If at 1 ;wrcedtuie call is couiditiouited uponl 0oniC variable(s), then ilithee Is anl implicit jIntel-

pr3ocedlural iniforma~tioni flow. For cxaunipiQ In the followinig st~atieiint ill procd

if a > 0 then proc2(),

there I,- C, flow freiii 'a' uno proc2 (and those proccdluies called by proc-2, ctc.), that is, for

every glubal and ic cal variable 'z' inl proc2 and subsecquentiy calledl procedures, 'a =ý z'. Inl

Order to handle this implicit. flowv, the compile)l-t imie algorithiuii ccexstructs a special symbolic

class expressionl "proc2.i licit 6) -P~. ptoc2.iniplicit repre~selts the class of iinpjlicit.

intcer-prucedlural flow into proc2 and is derived by

1)roc2.im~phicit = S Ga ..0 SV>J) implicit

where SVi denotes the I ?th variable onl whiichi the invocation is locally coniditioned, andi

imp)licit denotes the class for the implicit inter-procedural flow into p~rocedutre proc 1 from it,,

(a Ter.i L hi and proc2.inii licit. arc treated inl the same nil imer as formal IN parameters

to ;)roclll -iac-(tua FOUTT parameter-. from l)10c1 to proc2, respectively. Note tha~t anl

execution starts with the 'miaini' proceduire; therefore, implicit for mnalin' is LOWV.

Ill order to Show how the comp~lile-ti~ me algrithmii woFkýwe now present anl cxaiiklle
which consists of three p~rocedulres: 'niaini', T' and 'g'. The programi is shown inl Figuure 1

P~rocedure 'iiaiiml calls TU, and Tf and 'g' call each other recursively. Time program accesses

external files FILEl and FILE2, aluil 1/0 devices STD1N and STDOU1'. Thei.- sec'urity

classes are determined at run time. Dynamically bound global variable *G'VJ' is accve_.sed

by all three procedures. We will simulate thme algorithmn on procedure Tf.

For local variable Vc dlefinedI inl line (a) inl Figure 1, there are c-pjlicit flows from GVI

(whose wecurity class is fIVl) and constant 2, and there is anl impliicit imiter-prokccd.iral flow

(whose security class is implicit). Thus, tihe algorithmn construcuz the equat ionl

c = LOW d)~ GV C) implicit.

lor (b), since there are implicit flows from 0 amnd 'a' to IN paraineteik 'c' of iiicocationi'

as w~ell its implicit inter-procedural flow, the following equation is constructed:

ý,c= c-ý aC LOW tT implicit = LOW (D aP (1 }3 6 ipll~icif

Since 'C' is anl output. v'aria~bie of Tf, the algoritlunii outputs this eqludt~icll. Tlb r algoritiuni

also generates the following equation for the implicit finter-procedural flow for invocation

g£pplplicit =LOW T~ A (D implicit.

'Variable Vb is assigned a value inl (c) and (d). Since the clioice of the then 'branch or

the else branch cannot. be determined at. compile time, the algo)rithm nii ust coiisidel: both)

paths. There are impflicit flows from 'a' amnd 0 as well as anl implicli intei-procedural flow
to 'b'. Also there is anl explicit flow eitlher from 'GVI' or TILEl' (whose secuvity class is

FILUI) to Vb, the following equat ion is generated:

'With the a.9surnption that execution of a programn is not cond~it~ioned onl any sensitive inmformnation.

563

=LOWV d. d,~ £LYI (3) LLI iilt

Sinlce 'b, i,, a' jmitpput varlablc of T', the aigorithlil out lutst lie (jupatioll. TIle svymbolic
cla•s Cqualtions for 'f' anld Ihiosc for lilah , and 'g' arc shLown ii Figurc 2.

5. The Link-Time Algorithm

The link-1iinic algorithin fiirst cxamnines the correspoiidlclicc bet\\eCll formal anid actual pa-
lnl iele'.s, aind t 1ic corllSpoll ('IC ice a lliolg global variables to lin d, for ('dch secu riy variabic,

the corresponding symbolic class expression. Silice the lilik-tille algorithli t reats security
variables rep resllt iug til'(i as constalnts, the teii Clliit va riable' ill the following para -
graphs deiotes a security variabe coriespoiding to either a parnaiietcr or a dyiialiically
bound global variable.

Consi(ler a procedure P. 111(e security variables appearing i;i lhe symbvolic class equat lol1s
of P correspond to eit her act ual IN parameters of procedures which call P', or formal OUT
parallleters of procedures invoked by P', or inconiiiig implicit. lit clr-procedural flows froii
procedures that call P. Suppose P is called by procedures hl... R,, and suppose)P calls
another procedure Q. The symbolic class expressions corre:,poinding to the formal OUT
parameters of Q are found in the set of equations for Q.

Ihe symbolic class expressions corresponding to the actual IN paraelilters or tile OlltgO-

iilg implicit inter-procedural flows from the callers to 1) are found ill t lbe set of equat ions for
1.R,,. For the samle formal IN na roum,'tr in P, thbe .:,.. .. 1gt .,1ate...... 0.. g: .)

symbolic class expressions for the corresponding act ual IN paramlleters found ill equation's
forI ... R,, to form a single symbolic class equation. A similar procedure is also applied
io foiim a single eq'iat.ion for the implicit inter-procedural flow.

As mentioned ill Section 3, tle algorithili then collcalelamtes (uising iD), for each dypialil
ically l)Olbo d global variablc, all the symbolic class expressions corresponding to t-he Samllie
va iable. Thlereafter, there is exactly one symbolic class equat.ion corrcspoildilg to each
s'curity vaciable.

The ai2 JorathlI assigns a distinctive nil iul)er to each syblliolic class equation and reniamies
the left'. side variable of each symbolic class equation with , ii where i is tle muiiiiber assigned
to tlh(equliomi. Bl.,e1 d oi1 the correspondence between forlmal and actual p)arameters, tlhe
link time algorithi replaces every security variable appearing ill flit right hand side of a
splnbolic class equation with the corresponding XA. In the following discussion, we assume
that , E',,, denote security variables corresponding to external files which appear in
the r`41t hiand sides of equations.

Assume that the algorithm has created the following ii equations withi n unknown vari-
a!lics:

X, =fi(.\', X.2,.. ,X)
XA = X,,)

X,, - f,,(X, X 2 ,..., X,).

Deline a n,il-place function

Ft -- (X ,., X,,) (fl (-VI, X2,.., X,,) 5...., J;(I, X2,...,i X64

564

V

Lct S be the scLurity lattice of the system and P be a lattice constructed from the power
sct of { F, ,.... , F,, }. The domain of each variable in the above equations is S * P. Thus,
the domain of F is defined by (S * P) * (S* P) ... * (S * P) (= (S* P)" - the direct product
of n (S * P)s). Since both S and P are complete lattices, (S * P)fl is a complete lattice, and

'< 'Qb' and '0' on (S *P' are defined as

1. < x, 1 ,x,, > < < :lI,..., 1X3 > iff Xil •)'i,,IxIXin X,

2. < x,11 1x,, > < xjli,...,ix:,n > = < xil E) xj I...,IX,, xj,, >

3 < X1,1 ... ,x,, > 0 < alt,.. ,I-xj > < Xil 0Xjl,..Xt, (x),Xj >

where X,k, ,k E (S * P),1 < k < n.
The following characteristics of F guarantee that F has a least fixed point [91:

* Since the domain of F is finite, it is a complete lattice, which is a pointed complete
partial ordering (cpo); and

* F uses only a G) operator which is continuous in finite domain, thus F is continuous.

The least fixed point of F, fixF = (Y], Y2,.. ., n), is a minimal solution for the above
set of equations.

6

In order to find the least fixed point of F, a standard iterative algorithm shown in Figure
3 is used.' For each X,, the algorithm finds a solution < A1, {fiF_..., Fil >, where A, E S
and I, E F. Security variables fill afe late"r replaced withl Security Classes
in domain S. The least upper bound of A, and these security classes is the security class of
information of Xi. For each X, which corresponds to the class of information flowing to a
statically bound variable SV,, the link-time algorithm outputs the following equation:

.security class of SVi' > A, E Fj a ... (D

Note that if SVS is an external file whose class is specified at run time, its security class is
represented by the corresponding security variable.

The TCB, at run-time, certifies each equation by replacing every security variable with
the sensitivity label of the corresponding file.

6. An Example

In this section, we apply the link-time and run-time algorithms to the set of symbolic class
equations tAhown in Figure 2. Treating security variables representing files as constants, the
symbolic flow equations for 'main' are rewritten as follows:

f.implicit = (LOW. { 4) -- (1)
fA = (LOW, {fI)_IN}) - (2)

S= (LO W , IS IM I) - (3)
W) OiLl = (LOW, {)) E Lh -- (4).

(If fixF is tile least ftxcd point of F, the equation "((X 1 ,...,X,)(f, f,•)).(Y , . Y,) -
(Y......)" is satisfied. Thus, fixF is a solution of the above n equaticns.

'The algorithm is a modification of the one presented in [2].

565

The equations for procedures 'f' and 'g' are similarly rewritten.
For each security variable for a parameter, the corresponding symbolic class expression is

found by examining the correspondence between formal and actual parameters. Since both
'main' and 'g' call 'f', the symbolic class equations corresponding to the security variable for
the formal IN parameter 'a' of procedure 'f' are combined. The actual IN parameters 'a' of
procedure 'main' and 'z' of procedure 'g' match the formal IN parameter 'a' of procedure
'f'. Since 2 and 9 are assigned to the symbolic class equations for 'a' of 'main' (fa) and 'z'
of 'g' (Lz), respectively, a in the equations for 'f' is replaced by X2 (Xg. This replacement
is denoted by

* a (f) = La (main) ED Lz (g) = X 2 (X9.

Similarly, the symbolic class equations corresponding to the security variable for the in-
coming implicit inter-procedural flow of 'f' are combined as follows:

* implicit (f) = f.implicit (main) E f.implicit (g) = X, E AX8.

Based on other formal and actual parameters, the following substitutions are also made:

e fb (main) = 12 (f) = X.5
* x (g) = EC (f) = X 7
* implicit (g) = g.implicit (f) = XrC
* L(g)=bh(f) =XX5 .

Since 3 and 11 represent the flows to GV!, the following substitution for aVI is made:

* a (f) = X x3 ED 11.

Based on the above observations, the following eleven equations with eleven unknown vari-
ables are constructed:

X, = (LOW, { })
X2 = (LOW, {SLLJ4NA)
X3 = (LOW, {•IDIN)_I})
X4 = (LOW, { }) X,5
Xs = (LOW, {fEIkfi) @X1 D X2 E X3 E X8 ED X9 (X1
X6 = (LOW, { }) eX 1 () X2 (X 8 (X9
X 7 = (LOW, { }))X 1 EX 2 (DX 3 (X 8 eX 9 EX 1 1

A 8 = (LOW, { }) ®X 6) X7

X 9 = (LOW, { }) eX 6 G) xX7

X 1o = (LOW, { }) (DX 5 T X6 ED X7

Xii = (LOW, {fELL }) EDX 6 E X7.

The iterative algorithm generates the following sequence:8

X1 X2 X3 X4 X5 XG X7 X8 X9 X1o X11
1 L{} L{} L{} L{} L{} L{} L{) L{} L{} L{} L{}
2 L{} L{S} L{S} L{} L{SI) L{S} L{S} L{S} L{S} L{SX} L{S2}
3 L{} L{S} L{S) L{S1} L{S12} L{S} L{S2} L{S2} L{S2} L{S12} L{S2}
4 L{} L{S) L{S} L{S12} L{S12) L{S21 L{S2} L{S2} LIS2} L{Sl2} L{S2}
5 L{} L{S} L{S} L{S12) L{S12} L{S2} L{S2) L{S2} L{S2} L{S121 L{S2}.

8L, S, 1 and 2 stand for LOW, 5TDIJ, FILE1 and FLL2, respectively.

566

I'Y using tile values for X 4 and X10, the link-time algorithm generates tile following two
(1equations:

STDOUT A > LOW ®D STIJ D FLUI ®D ULE•
FILE2 > LOW (s .TDIN i F1LEU e FILE2.

Assume that at run time a user with security clearance CONFII)ENTIAL logs onto
the system. The TCB authenticates the user's identity and determines his clearance. We
assumne that the security class of his terminal (STDIN and STDOUT) is bound to CON-
l:lI)ENTIAL at this point. First, consider that when he issues a command to execute tlhe
program, lie binds files with security label CONFIDENTIAL to FILE1 and FILE2. The
'FCtI replaces $TDIN. STDOUT, FILE1 and FILE2 in the above equations with CONFI-
DENTIAL. The resulting equations become

STDOUT = CONFIDENTIAL > CONFIDENTIAL
FILE,2 = CONFIDENTIAL > CONFIDENTIAL.

S;nce potential flows to both statically bound variables are secure, the TCB allows the
execution.

Next, assume that the user binds a SECRET file to FILE1 and an UNCLASSIFIED (=
LOW) file to FILE2. The TCB reduces the equations to the following:

STDOIIT = CONFIDENTIAL Ž SECRET

FILE2 = UNCLASSIFIED • SECRET.

Since both flows are potentiaily insecure, the TCB denies the execution.

7. Conclusion
This paper has described an information flow certification mechanism which combines
comipile-time, link-time and run-time algorithms. The compile-time algorithm is the same

as the one we earlier developed for distributed object-oriented systems [8]. The link-time
algorithm determines inter-procedural information flows caused by parameter passing and
global variable access. The algorithm does this by calculating the least fixed points of the
equations generated by the compile-time algorithm. The run-time algorithm is described
in the context of the TCB. It completes the certification by binding the security classes of
external files to the equations generated by the link-time algorithm.

The mechanism has the following features:

1. Progiain variables can be either statically bound or dynamically bound to security
classes. If external files are statically bound, their security classes do not have to be
determined until run time. This feature eliminates a need for separate versions of
functionally equivalent programs for different security classes of variables.

2. Each procedure can be compiled and its "internal" security established totally inde-
pendent of other procedures.

We are currently working on the mathemnatical foundations of our information flow analysis
within Cousot and Cousot's "abstract interpretation" method [4]. This will be a basis for
certification of a compiler, linker, and TCB system.

567

References

[1] Dcpartment of Definse Trusted Computer Systcm Evaluation Criteria. DoD, dod
5200.28-std edition, December 1985.

[21 A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison Wesley, 1979.

[3] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in
programs. ACM Transactions on Programming Languages and Systems, 2(l):56-76,
1980.

[4] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th A CM Symposium on Principle of Programming Languages, pages 238-252, 1977.

[5] D. E. Denning. A lattice model of secure information flow. Communications of the
AOCM, 19(5):236-243, 1976.

[6] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Commrunications of the ACM, 20(7):504-512, 1977.

[7] C. E. Landwehr. Formal models for computer secuiity. Computing Surveys, 13(3):247-
278, 1981.

181 M. Mizuno and A. E. Oldehoeft. Information flow control in a distributed object-
oriented system with statically bound object variabhits. In Proceedings of the 10th Na-
tional Computer Security Conference, pages 56-67, 1987.

[9] D. A. Schmidt. Denotational Semantics - A Methodology for Language Development.
W. C. Brown Publisher, 1986.

568

external files
STDIN : keyboard of integer;
STDOUT : display of integer;
FILE1 file of integer;
FILE2 file of integer;

global var
GV1 : integer;

procedure main
var a, b : integer;
begin

read from STDIN to a;
GV1 := a + 2;
call f(IN a, OUT b);
write from b to STDOUT;

end

procedure f(IN a: integer; OUT b integer); "!
var c : integer;
begin

c := GVI - 4; - (a)
if a> 0

then
begin

call g(IN c); - (b)
b := GV1 * 8; (C)

end
else read from FILEI to b; - (d)

end

procedure g(IN x : integer);
var z : integer;
begin

z := x + 2;
if x < 100

then
begin

call f(IN z, OUT y);
write from y to FILE2;

end
else read from FILE2 to GV1;

end

Figure 1. An Example Program

569

The Symbolic Class Equations for main
f.implicit = LOW (1)
f.a = LOW (D SII)1N - (2)
GV1 = LOW ® STDIN - (3)
5TDOUT = LOW (_fj .-- (4)

The Symbolic Class Equations for f(IN a, OUT b)
D = LOW Da (9) G__ q IL (D inplicit - (5)
g.implicit = LOW Vt) a D iimiplicit - (6)

S= LOW _a L e _) i a im plicit -- (7)

The Symbolic Class Equations for g(IN x)
f.iplicit = LOW a0) 2j ()j implicit - (8)
fLz = LOW (B x 0 implicit - (9)

FILE2 = LOW e x (0) f.y D implicit - (10)
Q -- LOW e x 0) FILE2 6) implicit - (11)

Figure 2. The Symbolic Class Equations for the Example Program

procedure find-leastfixed-points
begin

for i1= I to n do IS := (LOW, { });
repeat

CHANGE := false:
fori:= 1 to n do

begin
nCwi = f1(Y1,..., 7,);
if neu, # 1I then

begin
CHANGE := true;
I i := new3 ;

end
end

until not CHANGE;
end

Figure 3. Iterative Algorithin to Calculate the Least Fixed Points

570

An INFOSEC Platform

Joe Marino and Paul Lambert
Tactical Secure Communications Office

Motorola, Inc. Government Electronics Group

ABIST CI

This paper describes the architecture and design approach taken by Motorola's Government
Electronics Group in the development of a state-of-the-art information security (INFOSEC)
products designed to bring computer and network security services to the new generation of
automated information processing systems. The architectare is based upon a hardware and
software platform that utilizes an open systems approach to the integration of cryptography into
computer and communication systems. In this approach the cryptographic comnmunication
security (COMSEC) is supported by "open" specifications for both the hardware and logical
software interfaces. The security protocols, key management techniques, ard cryptography of
the INFOSEC platform are based on NSA's Secure- Data Network System (SDNS) standards.
The firmt product, based on the INFOSEC Platform, is the Network Encryption System (NES)
and is presently under evaluation through the Commercial COMSEC Endorsement Program.
The NES products provide link and network layer security services for IEEE 802 local area
networks.

INTRODUCTION

Strong assurances are required for the integration of Type I cryptographic security into
computer and communication systems. INFOSEC systems must meet a variety of requirements
that include those for COMSEC, COMPUSEC, TEMPEST, QUADRANT, and SFA. The
difficulty of attaining the assurances and certifications inherent in these systems make it
desirable to isolate the sensitive functionality. The Motorola INFOSEC platform has been
developed for this environment. The services have been built into a single flexible architecture
that provides uniform interfaces to access the security related functionality.

The design approach for tl'e platform is based on an "open systems" philosophy. In this design
approach, openly distributed standards are used for as much of the system as possible. For the
platform, the hardware interfaces conform to VMEbus standards. The software interfaces for
task-to-task and processor-to-processo- are based on a widely distributed "common
environment". The cryptography and key management services that the INFOSEC platform
provides are in conformance with the recently developed Secure Data Network System (SDNS)
specifications.

571

The goal of this open system approach has been to leverage existing technology in the
development of secure computer and communication systems. The following are bencfits of
this design approach:

0 Reduced government resources required for endorsement;

0 Reduced development effort required to bring the security services to a broad
populanon of computer and communications equipments;

0 Reduced life cycle cost by adhering to standards initiatives, thereby lowering
training, maintenance, and support costs;

6 Increased interoperability by conforming to computer and communication
standards.

INFOSEC PLATFORM HARDWARE ARCHITECTURE

The platform has been developed to support commercially available processor and
communication products. The platform is based on the VMEbus specifications to allow any of
a myriad of commercial board level products to be integrated into the system. A block diagram
of the hardware is shown in Figure 1. A floppy disk is provided for configuration, software
download, and audit purposes. The display is used for interactions with a local operator. The
ignition key (IK) is used to enable and disable the system. In addition, this data key is used to
provide the "seed key" for the system's cryptographic initiaiiatiol.

COMPMICAIONC.O4M9JCATION

S• IINT •T ILACE

6ECUPJ'Y BASE
KERNEL

RED UN.CL00 = U e.AKENCR;YPTED BLAC E1r

PSCURITYPANEL

IPONETIO KEYF I-Y9 IPOLAY

T r u o te d C o m p u t e r B ae-

PHYSICAL PROTECTIONS

Figure 1. Motorola's INFOSEC Platform

572

The cryptographic security processes reside between the RED and BLACK computer busses in
a centralized area of the device called the security kernel. This mechanism provides a strong
separation of the RED and BLACK subsystems. The security kernel interfaces with the
VMEbus using a commercially available intertask communication interface called the Common
Environment. The Common Environment allows all software developed for the subsy-,tems to
be independent of the physical hardware. The security kernel contains many of the security
relevant functions for the platfoim except for the RED Trusted Computer Base (TCB) and
miechanical requirements needed for electromagnetic and physical protection. The security
kernel architecture is based on custom VLSI, proven COMSEC design techniques, and
provides the necessary security tools and assurances required to support the trusted elements
on the RED unencrypted bus in a distributed computing environment.

The criteria normally defined for a reference monitor are that it must always be invoked,
verified correct, and tamperproof. By this definition the platform's security kernel can be
considered a hardware reference monitor which extends the system TCB by allowing it to
directly access the cryptographic functions. The INFOSEC platform has been initially
developed from a cryptographic and communication security (COMSEC) perspective. The
kernel controls communications with peer systems and access to protected resources. The
security kernel functionality also includes label checking associated with interface events and
can be used to pass authenticated information to the RED side TCB.

UTILIZING SECURITY SERVICES WITHIN THE PLATFORM

The INFOSEC platform is designed for the protection of computer systems. The
communication of peer entities is supported by security mechanisms modeled within the
International Organization for Standardization (ISO) Open Systems Interconnect (OSI)
reference model. Figure 2 shows the relationship of the platform services within the reference
model and depicts alternatives for communication trarsfers. A secure computer or secure
communication system will normally use several of the communication paths illustrated below -

in Figure 2.

RE L C

Fiue2 Seuit eri.si the :0-5 : Re::rn. Model -

57AP3

S SECURITY I Aý)

Figure 2. Security Services in the OSI Reference Model

573

The paths numbered 1, 2, and 3 illustrate examples of network and transport security
mechanisms. Path 1 is an instance of the platform serving as a "router like" device using a
network layer security protocol. Path 2 is also an example of applying network layer security to
protect communications between peer applications running within the RED computer base.
Transport layer security is normally colocated with the protected system and is shown by
Path 3.

Security in the application layer of the OSI reference model is represented in Figure 2 by the
paths numbered 4 and 5. The principle example for this mechanism is secure messaging based
on extensions to CCrI"T X.400 electronic messaging. The secure messaging could be for a
workstation built into the RED subsystem or the security could be provided to an enclave of
users attached to the RED subsystem through a local media. File security for an operating
system, or for file transfer protocols, are also possible.

Requests to the security kernel for key management or authentication services from the RED
side protocols are conveyed via path 6. This path may prove useful to TCBs that can exploit
cryptosealing, access control or authentication servikes, and also serves as the control interface
for the kernel.

The BLACK computing base in path 7 does not utilize any local security services. This
corresponds to a variety oi real applications that require distribution of previously protected
electronic mail messages, directory service capabilities, staging of encrypted files, or
"BIACK" communication management. The "BLACK" communication management is
required for interaction with systems that are not cryptographically protected.

ACCESSING PLATFORM SERVICES

The architectural design of the INFOSEC platform is based on a strong separation of the RED
and BLACK computing subsystems. Communication between subsystems is mediated by the
security kernel. Figure 3 illustrates that access to the security services are performed through
four classes of interface commands. The interfaces support the basic fun:tional operations of
key management, system management, application control, and cryptographic (i.e.,
encryption, cryptoseal and etc.) functions.

KEY MANAGEMENT .4..--=.-,,..- KEY MANAGEMENT

SYSTEM MANAGMENT SYSTEM MANA1EMENI
SECUJRITY -

KERNEL -.

APPLICATION CONTR1OL-,- APPLICATION CONTROL

CRYPTOGRAPHIC .HYPI -, ," .

Figure 3. Kernel Command Interface

574

The cryptographic key n3nagenicnt in the security kernel is based on SI)NS specifications.
"file platforns key management interface allows cryptographic keys to be created, installed,
transferred, archived, and destroyed. Cryptographic keys are isolated within the security kernel
and controlled by the interface commands to provide a secure tamper-free environment for the
TEK cache. The required key tianagenient protocois are contained within the security kernel.

The security kernels system management interface provides for operations that arc loosely
modeled after the OSI common management framework-. These commands provide for system
configuration, security audit, initiation of S1)NS events (Rckcy, get CKL), selftest, RED to
BLACK flow control, and identity based access control fuuf'tions.

The Application Control Service commands provide services for the establishment and
termination of application associations which amr i6dntified by application titles. These
associations are used by all kernel services that require external communications. The
Application Control Services can be accessed through either the encrypted or unencryptcd
subsystems.

The cryptographic commands support the utilzation of the kernels encryption and decryption
hardware. These are the only commands that may be invoked on arbitrary user data and thus
force the cryptographic protection on all data flowing through the kernel. The key management,
systems management and application control of the security kernel do not ,allow user data to
flow between the subsystems.

,.TWORK ENCRYPTION SYSTE1 (NES)j

The Motorola NES is a Type I, COMSEC Controlied Item (CCI), data security device which
provides security services based on standards developed by the Secure Data Network System.
The initial IEEE 802.3 NES supports security services in both layers two and three of the OSI
reference model. The link layer (layer two) security provides protection over IEEE 802 local
area networks. This link layer protection does not extend over non802 media, but is useful in
protecting systems based on proprietary network protocols.

The product also supports transparent operation over internets. This mode of protection offers
true "end-to-end" security based on the SDNS - SP3 network layer security protocol. This
protection is effective for both the DOD TCP/IP and the OSI Connectionless Network Layer
Protocol (CLNP) internet environments.

"The communication architecture of the NES allows it to be installed in a wide variety of
network environments and topologies. An example of the NES communication environment is
illustrated in Figure 4. This diagram shows the nature of the peer-to-peer protection provided
by the NES. The BLACK networks can be either wide area point-to-pxint networks (WANS,
i.e., X.25) or local area networks (LANS, i.e., 802.3). In this figure, the NES is shown as a
front end and as an intermediate system. The BLACK internet refers to the portion of the
network over which the NES provides protection. The RED networks are typically small
groups of physically protected colocated computers.

575

S' •IL• Layer 3 •

Security

Layer2
Security ,

802 IAN802 LAN

Figure 4. NES Network Envirojment

The connectivity of the initial NES is limited only by the requirement that the physical and link
layer interfaces must conform to IEEE 802 standards. The NES provides link and network
layer security services for 802 LANs. It is important to note that the network layer security
mechanisms allow the protected BLACK internet to be composed of other network media
besides IEEE 802. There is no maximum limit to the number of NES devices that can be
installed in a communication system. The only limitations are the practical networking
limitations imposed by a particular local medium. The security services that an NES provides
are limited by the number of simultaneous cryptographic associations. Up to 250 simultaneous
cryptographic associations are supported. In practice, this will typically mean that aser traffic
can be protected through an NES to 250 other NESs at any tine. This limitation does not affect
the number of instances of communication through a pair of NESs. A pair of NESs can
support many pairs of communicating computer systems on a single cryptographic association.

The NES maintains a key cache for 256 cryptographic keys, with 250 for cryptographic
associations. The remaining key cache (6 key entries) are used for key management functions,
security functions, and selftests. One of die principal atchitecturdl considerations in the
installation and maintenance of Motorola NES is the natare of the connectivity to the Key
Management Center (KMC). SDNS security devices require infrequent communication with
the KMC. The NES provides for connectivity through the public telephone network for all
keying requirements except the initial seed key which is delivered by an approved KSD-64A
key fill device.

576

PLATFORM KEYING SERVICES

The flow of keying information from the KMC to the NES is shown in Figure 5.
Communication with the KMC is provided through the NES Portahle Service Computer (PSC)
and dial-up asynchronous links through the public telephone system. The transfer of the keying
material is protected by the mechanisms defined by the Key Management Protocol (KMP). Tile
NES PSC provides for a wide variety of maintenance services beyond keying services,
including software maintenance, configuration, audit, access control, communication diagnos-
tics, and security health diagnostics. The NES service computer allows for initial seed key
conversion to operational key, allows for occasional rekey or operational material renewal, and
allows for the replacement of operational material due to NES failure or maintenance. In
summary, all TEKs are established using SDNS protocols and authentication mechanisms. All
operational TEKs are stored and protected in the security kernel during use.

KEYINGKE
MAOIERIAL MANAGFMSNTOI1Dt=RS CENTER

3LACK OPERATIONAL
KEYING MATERIAL

PORTA NETWORK
ýMSERVIC

S-e

KSD64A USO FOR
* SECDCIK
* OPERATIONAL CIK

i 94 M a

Figure 5. NES Keying

!LOMMUNICATION SERVERS

The NES is the first of a product line based on the INFOSEC platform. Future network layer
security products are. readily developed by the simple integration of new VME communication
cards. Software integration of these systems is facilitated by the common environment logical
interfaces. Communication products are envisioned that cover a broad range of networking
applications. The SDNS specificaf, ns are rapidly gaining acceptance and so the SDNS defined
SP4 transport layer security and eiectronic messaging protocol implementation are planned for
future products. File security based on protocols like t7TAM, or the network file sharing (NFS)
protocol, will be valuable tools for securing networks of computers.

577

SECURE COMIPUTERS

The INFOSEC platforns RED computer bus can readily support gc'icral purpose processing
cards. By installing such a processor, the platform becomes a ,ccure workstation. The
cryptographic functionality of the security kernel is easily integrated using the same software
interfaces used for the conununication products. The iiistallation of a hard disk on the BLACK
side of the platform allows the system to support the encryption of files. Since the BLACK
computer bus is outside the security boundary, a general purpose interface may be used and
attached to any commercially available storage system. The instailation of a communication
capabilities in the BLACK subsystem allows the secure compuier to utilize the SDNS security
protocols. This approach for embedding computers inside a protected chassis should provide a
valuable capability for the near-tern development of secure systems. The cryptographic
capabilities of a secure workstation based on the Motorola 1NFOS-C platform could be
designed for a variety of missions including: key management applications, directory servers,
file security, data base security, and electronic mail servers.

SLMMA.X

The INFOSEC platforn is unique in that it brings together conununication and security
standards, computers and INFOSEC design principles in a powerful secure communications
platform. The initial product based on this architecture will provide a powerful tool for the pro-
tection of local area networks. Future applications will evolve the platform into secure
computing environments with integrated cryptography.

ISO 7498 Information Processing Systems - Open Systems Interconnection - Basic
Reference Model.

Saydjari, O.S., Beckman, J.M. and Leaman, J.R., "Locking Computers Securely,"
Proceedings of the 10th National Computer Security Conference, Baltimore, MD,
October 1987.

SDN.301 Security Protocol 3, 1988-01-26.

SDN.401 Security Protocol 4, 1988-01-26.

Lambert, P., "Architectural Model of the SDNS Key Management Protocol,"
Proceedings of the NItth National Computer Sccurity Conference, Baltimore, MD,
October 1988.

578

A MULTILEVEL SECURE OBJECT-ORIENTED DATA MODEL

M.B.Thuraisingham
The MITRE Corporation, Bedford, MA

Abstract

A multilevel secure object-onented data model, S02, is described here. We first developed a multilevel type system and then defined a

multtlevel objnct-orientrd database. LI is this approach that could establish a theoretical framework for secure object-oriented systems.
AlAo d:scusscd here are the issues involved in (1) developing a security policy (2) handiing polyinstantiation (3) using security constraints

and (4) handling the inference problem for our model.

1. Introduction

Since its inception in 1970, thT relational model [I] has enabled database designers to develop highly functional database management
systems which have matured into successful products in the markeplace. Although it is the preferred choice of many database designers and

,vswarchers, the rel'Nional model has its linitalions. The most notable one being that it views the world as a set of relations. In contrast.
humans view the world not as a set of relatins but principally as a set of objects 121.

Among the other models that have evolved over the years, objcet-oriented data models appear to have the features which address this

problem. That is, an object model would enable conceptual entities to be represented as objects similar to ouw perception of the world. This
power of representation has led to the development of new gn.eration applications such as CAD/CAM, Image Processing. Artificial
Intelligence and Process Control (see for example 13, 4, 5, 6. 7]). llowever the increasing popularity of Object-Oriented DBIAS should not
obscure the need to maintain security of operation. That is, it is important that such systems operate securely in order to overCcoc any
malicious corruption of data as well as prohibit unauthorized access to and use of classified data especially with riilitary applications.

it is only during the :ast two years that multdevel security has been incorporated lito object-oriented data models. These include, among
others, the following:

1) SODA . (Secure Object-Oriented DAtabase System) this is the first multilevel accuse objcci-oiienie1 databdsc systetil foi which a
prototype has been developed. The data model for SODA is based on Smalltalk (Smalltalk was developed at XE'ROX Corporation [8]) with

extensions to accommodate security concepts [9]. The prototype of this system is discussed in 110].
2) HYPE* - (Secure Object-Oriented Data Model for HYPErmedia Systems) this is a secure object-oriented data model developed for
hypermedia systems [11]. This model incorporates security into the ORION [12] data model. A further discussion of this model is given in
[13. 14].
3) SOS* - (A Simple Object-Oriented Secure Data Model) this is a simple secure object-oriented data rmod,-l which is a restricted v. ion of
IIYPE. This model uses security constraints to determine the levels at which the class constructs (or types) have to be created [15]. . design
of thb. database system for query and update processing is given in [161.

In this paper we propose a multilevel secure object-oriented data nmoel, S02, which evolved from the data model 02 (02** was developed
by the AltAir group in France [17]). Unlike many of tie other object-oriented data models that have been developed. 02 involved a type

system defined in the framnework of a set-and-tuple data model. That is, 02 accommodates tuple as well as set-based data structures allowing
complex database objects to be represented. It is this approach that provides the foundations for establishing a theoretical framework for
object-oriented systems [17]. With the help of this framework, we have incorporated multilevel security into 02.

The organization of this paper is as follows: In Section 2 we will describe concepts in multilevel secure database management systems
(MILSIDBMS). In Section 3 we will give an informal overview of 02. In Section 4 we will describe S02, a multilevel secure object-oriented
data model. This model extends 02 by incorporating security properties. In Section 5 we will discuss the mandatory security issues in an
object-oriented database system based on S02. The paper is concluded in Section 6.

2. A Brief Account of Multilevel Secure Database Systems

In a multilevel secure database management system (MLS/I)BMS) users cleared to diffcrcnt security levels access and share a database
consisting of data at different sensitiv~ty levels. The sensitivity level&• (which we will also refer to as secsrity -evels) may be assigned to

the data depending on content, context, aggregation and time. An effective security policy for MI.S/DBMS should ensure that users only
acqtLire the information to which they are authorized. The earliest of security policies, the Bell and l..Padula security model 118]. is not
sufficient to ensure multilevel security in a DBMS as users calu pose multiple queries and infer unauthorized information front the legitimate
responses that they receive. Despite its shortcomings, extensions to the Bell and LaPadula security model have since been proposed for
sonic MLS,'DBMSs [see for example 191.

- - - - - - - - - - - - - - - -- - - -- - ----

H lYPE and SOS ore names given only in this liarerfor convenience to differentiate between the above models
** In (17], 02 is denoted by 02 579

The relational data model has dominated much of the work on N,.LS/DIBMSs [for example 20, 21. 22, 23, 24]. As a result of such work,
multilevel secure relational database systems have been developed not only as prototypes but also as products [25]. In recent times security
issues have also been investigated in other systems such as entity relationship systems [26], object-oriented systems [9 1 and knowledge-
based systems [27] among others. A detsiied description of Uh ecent development in database security is given in [28].

3. Overview of 02

Following (17]. in 02 an object could beý either a basic object, a tuple-object or a set object. An object consists of an identifier and a
value. Examples of objects ame given below:

(obl, "Smith") ; basic object
(ob2, 15) ; basic object
(ob3. <name: "Smith", age: 32>) ; tuple object
(ob4, <name: "John", age: 28, salary: 20K>) ; tuple object
(ob5, (ob3,ob4)) ; set object

In 02, a type is repr.sented by a name, a structure and a se. of methods. Methods are applied to the objects of a type. A structure is either
a basic structure, a tuple structure or a set structute. Basic structures include String, Integer, Real and Boolean. Examples of tupe and set
str-uctures are given below:

Person = <name: String, age: Integer, sex: Stnng> ; tuple structure
Persons = (Person) ; set structure
Employee = <name: String, age: Integer, sex: String, salary: Integer> ; tuple structure
Employees = (Employee) ; set structure

Structures have interpretations. The interpretation of, say, the structure Person includes any entity which has a name, age and sex.
Similarly the interpretation of Employee includes any entity which has a name, age, sex and salary. The interpretation of Employee is
included in the interpretation of person. Therefore Employee is a substructure of Person. That is, every employee is a person. This is the
IS-A relationship where an employee inherits all of the properties of a person. Inheritance also applies to methods. As employee is a
person, any method which can be applied to a person can also be applied to an employee.

4. S02 - A Secure Object-Oriented Data Model

S02 has evolved from 02 by ncorporating security levels for all entities and enforcing security properties that must be satisfied. The
issues are discussed in this section. Thus in Section 4.1 are described multilevel universe of objects. Multilevel uni.erse of types will be
discussed in Section 4.2. Note that there are two components to a type: a structure and a set of methods. The structure defines the data
structures of a type and the methods define the operations on a type. The notion of a multilevel type system will be introduced in Section
4.3. Then in Section 4.4 we will define a multilevel object-oriented database.

4.1 Multilevel Universe of Objects

The universe consists of a set of objects An object consists of an identifier and a value and is defined by:

o = (tv) where o is the object defined, i is the identifier of the object and v is the value of the object.

The security properties that must be satisfied are given below:

PI: If o is an object, then there is a level L such that Level(o) = L
P2: If object o= (i,v) where i is the identifier and v is the value, then Level(o) >= l.u.b.(Level(i), Leve!(v))
where Level(x) is the security level of x.

In general we denote an object by a triple (i,v,L) where i and v are as before and L is the security level of o. In order to complete the
definition of an object. we need to define what we mean by an identifier and a value of dte object. These definitions are given below:

Domains, Attributes and Identifiers

DI. D2 Dn (n >= 1) are a set of finite domains. D is the union of all domains. The following security properties should be
satisfied:

P3: If Di is a domain, then there is a level L such that Level(Di) = L
P4: If x belongs to a domain Di, then Level(x) >= Level(Di)

A is a countably infinite set of attributes. The following security property is associated with an attribute:
PS: If a belongs to A, then there is a level L such that Level(a) = L

580

Let ID be a countably infinite set of symbols called identifiers. The following security property is associated with identifiers.

P6: If id belongs to 1D, ihen there is a level L such that Level(id) = L

Values

There are three types of values: basic values, tuple values and set values. Let V be the set of all values. The following security property is
associated with V:

P7: If v belongs to V", then there is a security level L such that Level(v) = L

Each type of value will be described below.

Basic values:

(i) Special symbol nil is a basic value.
(ii) Each element x of D is a basic value.

The security properties of basic values are:

P8: Level(nil) = systemr-low (In military environments the system-lew ievel is usually the Unclassified level)
P9: If value v is the element x of D, then Level(v) = Levelkx)

Set values:

Every finite subset of ID is a set value. The following security property holds:

P10: If V is the set value (idl id2 idn). then Level(V) > = l.u.b.(Level(idl), Level(id2) Level(idn))

Tuple values-

A tuple value is a partial function f from A into ID. It is denoted by <al :ii, 2:i2 ap:ip> where f(,-i) ip for all i.
The following security property holds:

P11: Level(J) >-- l.u.b(Level(al), Level(iJ), Lovel(a2) Level(ip))

Objects Revisited

Depending on the kird of value that is used to define an object, an object can be either a basic object, a set object or a tuple object. The
set of all objects 0 is ID x V where V is the set of all values.

Note that in our definition of an object, we have assumed that the security level of the object could dominate the security level of its
identifier. This means that two different objects at different security levels can have the same identifier. This is a form of polyinstantiation
in object-oriented systems. We will address this problem in a later section.

We use the following notations. If o = (iv), then i = ident(o) a&Ml v = value(o). The function from 0 (the set of all objects) to 2 1D (the set

of all subsets of ID) will be denoted by ref. That is, ref(o) is the set of identifiers referenced by the object o.

We define two objects o be identical only if the following condition is satisfied:

two objects ol = (il.vl) and o2 = (i2,v2) are identical, if il = i2, vl = v2 and Levei(ul) = Level(e2).

Graphical Representation

Objects can be represented graphically using an object graph. Let TH be a multilevel set of objects. The representation of TII at a
security level L is graph(TH, L) which consists of nodes and links at the security level L. The complete graph of TH is union of all graphs at
the various security levels. GraphkT .L.) can be obtained as follows:

(i) If o is a basic object of Tit whose security level is dominated by L, then the graph contains a vertex represented by (@) and is labelled
with the identifier of o and the security level of o. The valut of o is also attached to this vertex.

(ii) If o is a tuple strucured object (i, <al :i, a2:i2 ap:ip>) of TII whose security level is dominated by L, then the graph of o contains
a vertex, say, v represented by a dot (,) and labelled with i and the security level of o. Furthermore, for each ak. there is an edge from this
vertex. T he edge is labelled with ak and the security level ofo. The tail of the edge is the vertex labelled by ik and the security level of the
object whose identifier is ik.

581

(iii) If o is a set object (i, (ili2 ip)) of TH whose security level is dontinated by L, the graph of o contains a vertex rcpresented by (*)

and labelled by i and the security level of o. For each ik, them is an edge frnm this vertex to a vertex labelled ik. This edge is labelled with

the security level of o.

Example of Objects

Let TH be a set of objects with the following members:

ol = (il, <.ixouse:i2, name:i4, children:i3>, Secret)
o2 = (i2, <spouse:il, nam.ei5, children:i3>, Secret)

o3 = (i3, (i6,i7). Unclassified)
o4 ý (i4, "Fred", Unclassified)
05 = (i, "Mary", Unclassified)
o6 = (i6, "John", Unclassified)
o7 = 07, "Paul*, Unclassified)

Tht graphical representation of TH is showvn in Figure 1. In this figure, the Secret nodes are circled and the Secret links are represented by
darkened lines.

(i 1, Secret)

(spoue, Secret) e ifieSecet

@ (A, Unclassified)
(i2, Secret * spouse, Secret)Frd

(children, Secret)

(6, Unassisiied)

".UMary" t @ . (i7, Unclassified)

"Mr"Paul"
(i6, Unclassified) @

"John .

Figure 1 - Graphical Representation of Objects

Consistent Objects

We enforce consistency within a security level. The objects could be inconsistent across security levels as -t is possible for two objects
at different security levels to have the same identifier. We also ensure that all of the objects that are referenced at a security level are visible

at that level.. In other words, there are no dangling references in the graphical representation of objects.

We define a set of objects TH to be consistent at a security level L if the following three conditions are satisfied:

(i) The set of all objects in TE at levels dominated by L is finite.

(ii) The idemt function is injective within L. That is, no two objects which aie classified at the security level L have the same identifier.

(iii) For all o in T1 at a level dominated by L, ref(o) C ident(TH, L) where ident(Tli,L) is the set of all identifiers of objects in Ti I whose

security levels am dominated by L.

4.2 Multilevel Universe of Types

Types enable data and operations to be encapsulated in the same structure, Like objects, identifiers, domains, values and attributes, types

are also entities of classification. That is, each type is assigned a security level. A type consists of a type structure and a set of methods.
The type structure specifies the structure associated with the type. The r-ethods specify the operations that are defined on the type. In this

section we will define the concepts of type names, types, type structures, schema, methods and interpretations of type stuuctures and
methods.

582

Type Names

Thcre are two kinds of type names: BItamcs (hisic names) and Cnamrcs (constructed names). The union of Bnamcs and Cnames aie denoted

by Thames. Each type name is assigned a security level. Cnames is the set of names for constructed types which is countably infinite and

disjoint with Bnarnis. Bnanics is the set of names for basic typts and contains the following:

(i) The special symbols Any and Nil.
(ii) A symbol di for each domain Di.
(ii) A symbol 'x for each value x of D.

The following security piopcrties are associated with Type Names.

P12: Level(Any) = system-low and Level(Mil) = system-low

P13: Level(di) = Level(Di)
P14: Level('x) = Level(y)
P15: If c belongs to Cnamn,, then there is u level L such that Level(c) = L

Types

A type consists of a type structure and a set of methods. The security level of the type is that of the type smicture associated with it. The

set of methods associated with a type could have a different security level. We will discuss the notion of a method later. For now we assume

that MT is the finite set of all methods and each type will have a subset of MT associated with it.

There are two kinds of types: basic and constructed. Each of chese kinds will be described below. A basic type (Btype) is a pair (nm)

where n is an element of Bnames and m a subset of MT. A constructed type is one of the following:

(i) (s=t,m) where s is an element o! Cnames, t is an elkment of Tnames and m a subet of NIT (s=t is the type structure associated with this

type. The structure of a type s is denoted by struct(s)).
(ii) (s=t, m) where s is an element of Cnamcs, t is a partial function form A (the set of attributes) into ID and is represented by

<al:sl, a2:s2 ap:sp> where t(ak) = sk for all k and m is a subset of MT. The type defined this way is a tuplc structured type (s=t is

the type structure).
(iii) (s = {s'}, m) where s is an element of Cnames, s' is an element of Tnames and m is a subset of MT. The type defined this way is called a

set structured type (s = (s') is the type structure).

A type is either a basic type or a constructed type. The set of all types is denoted by T. The following is the security property associated

with a type.

P16: If s is a type, then Level(s) = Level(struct(s))

Type Structures

There are two type structures: basic and constocted. If t = (nm) is a basic type, then n is the basic type structure associated with this

type. The security property associaied with this type structure is:

P17: Level(n) is the level assigned to the lBnwne n

Let t = (s=x, m) be a constructed type. Then s=x is the constructed type structure associated with t. The following security properties hold:

P18: If t is neither a tuple structured type nor a sei structured type, then Leve!(strcu(t)) >= Level(x)

Pi9: If t is a tuple structured type, andx is of the form <al:.;2,a2:s2 ap:sp>, then

Level(struct(t)) >= l.u.b(Level(al), Level(sl)Level(ap),.Level(sp))

P20: If I is a set structured type and x is of the form is'). then Levcl(strucf(t)) > = Le vel(s)

In general we will denote a type structure s by s = (structure definition, security level).

Schemas

We first need the following notations: If t is a type, then name(t) is the name of the type. If st is a the type structure associated with a

type t, then the name of the type structure st is denoted by name(st). This name is the same as name(t). if st is the type structure associated

with t. refer(st) is the set of types referenced by st either directly or indirectly.

A set DFLT of constructed type structures is a schema at level L if and only if the following conditions ame satisfied:

() 'ITe set of type structures in DiLl.'" whose sccunty levels are dominated by L is finite.

(ii) The name function is injective within I.U that is there are no two type structures with the same identifier assigned at the security level L.

(iii) For all structures st which belong v) DI.T where the security level of st is dominated by L,

refer(st) () Cinames C name(1)l.IT,l) , where name(DiT,l.) is the set of names of type structures in DEILT whose security levels are

doistinatcd by the security level L. 5 8 3

The set DUiT is a multilevel schemia, if it is a schicna at every security ievel. For example-, let DEI-Tconsists of the following type
structures:

age = (Integer, Secret)
person = (<name:Stiing, agc: age>, rojsccrct)

JDliT is a schema at every security level. I luwever. if we had classified age at the lopScrert level and person at thc Secret level, then DE.LI
will not satisfy the propertics of being a niultilevel schema.

Interpretation

Let a type structure s havc security level L.I. Intuitively, an interpretAtion of s at a security level 1. (>= LI) is any set of objects where
each object in this set is classified at any security level between LI and L (both LI1 and L inclusive) such that the structure of the object is
included in the structure of s. By a structure SlI being included in another structure s2. we mean either sI and s2 arc identical or si has all the
components of s2 plus some additional compnrentus. That is, any object of structure s I is also of structure s2 (the converse is not
necessarily true). A forsnal definition of intcrprezation is given below.

Let D11-T be a multilevel schema and IllI be a consistent subset of the multilevel universe of objects. An interpretation I of DFLT at
security level L in TIl is a function from Triames to 2ident(Tli), satisfying the following pr-operties:

Basic Type Names:

(i) l(Nil, L) Q (i C (ident(TiI),L) I (i,Nl[.)(+TIl] where (idcnt(TH),L) is the set of all identifiers of objects in ill which arc dominated by L.
(ii) If Level(di) <= I., then I(dij.) Q (idE((idcnt(Tll),L) I TIl(id) E (Di,L)l U l(NIL,.L) where (Di,L) is the set of all values in a domain Di

whose security levels are, domninated by L, and Tli(id) is th'e value of the object whose identifier is id.
(iii) If LevelCx) <=l-, then I(diL) Q (idC- (idcnt(TII),L) IT1I(id) =xcnd Level(x) <= L) U l(NIL,L.)

Constructed Type names:

(iv) If s =<al:sl I.-2:s2.ap:sp> is in DFiI.T and its security level is dominated by I., then
* ~~Ilke.L)~ i C~do~liJ) TIis) a wp" t-w yaluu dufinWe uri (ui leabi) al.a2.a..p such that

TII(id)(&k)(& l(sk.L) for all k) U l(NilL)
(v)If s (s') is in DELT and its security level is dom-inated by L. then I(s,l.)C (id E (identClllD.L) I TII(id)Cl (s.,L)l U l(Nil.L)
(vi) If s =t is in DD.T and its security level is dominated by L. then l(s,L.) C l(t.lj.

Undefined Type Names:

(vii) If s is neither a name of a basic type nor a name of the schema DELI, then I(sjl.) L: I(Nil,L).

Model of a Schema

A model of a!;chemna at a security level L is defined by defining models at security level L. of all type structures belonging to the schema
Intuitively, a model of a type structure s (whose security level is LI) at securrity level L is the largest interpretatiotn of s at L witni respect to a
set of objects. Formal definition of model of a schensa is given below.

One can define a partial order on inierpretatioas as follows:

An interpretation I is sm-aller than an interpretation F'if and only if'. for all s which belongs to Tnames and security level L, I(sl.L)C F (sL).

If DEL'r is a multilevel schemna and TI'l is a consistent set of objects (where consis'ency is only within a security level), the model M of
DELI in '(11 at security level L is the greatest itnterpretation of DELI in TIl at level L.

If s is a constructed type structure, thten M(s.L) is the model of s at security level L. Note that this model is defined only if the security
level of s ;.; dominated by L. Furthermote, this model consists of all objects in Til between the security level of s and the security level L
which have the structure of s. Informaolly, the model of a type structure will consist of all instances of that type.

T1he following security properties will hold:

P21 :If s is a type structuare whose security level is L*¶ and o belon~gs to M(s.L), then L* < = Level(o) <= L
This property shows that the security level of an instance of a type dominates the security level of the type.

Partial Order Among Type Structures

Let s and s' be two type structures. A partial order !5st among the type structure. can be defined as follows:

s •ýst s' if for every security level L. M(s.I.) C M(s',L).
584

The following security property holds:

P22: Ifs s •51 r'for aniy two type structures, then Level(s) >= Level(s')

An Example on Models of Type Structures

Let TIl Ihe the following set of objects:

((10. NIL. Unclassified), (11, (i2,03), Secret), (i2, l,Unclassified),
(63, 4, Unclassified). (R4, <a:i2>, Unclassified), (05, <a:i2, b:i3>, Secret))

Let S be the following set of type structures:

(si (<a:lnteger>, Unclassified), s2 = (.ca:Integer, b:lnteger>, Secret),
s3 = ((Integer), Unclassified))

Then the following are the models of the type structures in S with respect to TI at various security levels:

M(sl.Unclassif led) = (10. i4)

M(s2,Unclassified) = (sO)
M(s2,Seuriet) = (iO, i5)
M(lnteger, Unclassified) = (10, i2, i3)
MWs3Unclassified) = [iO)
M(s3, Secret) = (10,11l)

It can be seen that s2 :ýt si.

Methods

A method m is defirted to be the pair (n, sig) where n is the name of the rixthod and sig is a siguature. The following security property

holds:

P23: It met hod ir. = (n,sig), then Level(m) > = i.u~b. (L~esel(n), Level(sig)).

Next we. nred to define. what is mecant by a signature. Let DELT be a schemia, then a signature over DELT is an expression of the form:

si x s2 x....sn -> s where s 1,s2....sn,s are all type struct~ures in DEbT. The following security property holds:

P24: If a signature .rig is of the form si x s2 %....s. sa -> s, then Leyel(sig) >= lub(els),Level(s2),Leve!(s3).....Level(s))

It m = (n,sig), then sig is a method defined on the first type in its definition. In the above exampqle, it is sl. The following security

property holds:

P25: Iff.ig is a signature defined on type structure s, then LeveA'sig)' >= Level(s)

Interpretation of Signatures

The model of a signature sig is defined as follows:

Let DELT be a multilevel schema and sig bea signature over DELT. Define sig to be sl x s2 x.a..n ~> s. Let TiI be a consistent set of

objects (within a security level). If the security levol of sig is dominated by L, then the model of sig in Tit at level L. denoted by M(sig,L) is

the set of all partial functions from M(sl,L) x M(s2.L) x M(sn,L) -> M(s,L).

A partial ordei can be defined among signatures as follows: Let DELT be a multilevel schemna and sigI and sig2 be two signatures. Then

sigI is smaller than sig2 denoted sigi !5m sig2. if for all security kzvels L- M(sigI.L) C M(sig2,L).

An Example on Interpretation ortsignatsr-es

Let DELTr be a sehemia consisting of the following type structures:

Person = (<narme:String, aige~lnteger, sex: String>. Unclassified)
Persons = ((Person), Unclassified)
Emnploycee (<nam-.: Siring, agc~lnteger, sex:Strl.ig, salary:t1ntege1^>, Secret)
Employees = ([Ensp!oyec), Secret)

585

Let SIG consist of the following twvo signatures:
sigl: Persons x Person -> Boolean
sig2: Employees x Employce -> Bloolean

I.Et TII be a set consisting of the following objects:

(iO, Nil., Unclassified), (i], <namne: i6, age: i7, sex: i8>, Unclassified),
(i2, <name: i9, age:- HOl, sex: illI>, Unclassified),
(03, <namec: i12. age: 013, sex; i8, salary: il5>, Secret),
(A4, <name: H16, age: 117, sex: ill1, salary: il8>, Secret),
(i6, (il,i2Jl, Unclassified), (i19, (i3,i4), Secret),

(i6. John, Unclassified), (i7, 28, Unclassified), (i8, Male, Unclassificd),
(0,. Mary. Unclassified), (0lO, 25, Unclassified), (ill1, Female, Unclassified),
(i12, James, Unelessified), (i13, 40, Unclassified), (015, 20K, Unclassified),
(116, Jane, Unclassified). (i17, 35, Unclassified), (118, 30K. Unclassified),
(i20. Truz, Unclassified), (i2l, False, Unclassified)

Models of the signatures sigl1, sig2 at various security levels are as follows:

M(sigl, Unclassified)
=set of all partial functions from : M(Pcrsons. Unclassified) x M(Person, Unclassified) into M(Boolean, Unclassified)

=set of ell partial functions from (iO,i5) x (10. ili .2) into (AiO120, 121)

M(sigl, Secret)
=set of all partial functions from M(Persons, Seciet) x M(Person. Secret) into M(Boolcani, Secret)

= setof ail partial fu~~fromn (i0,6,09) x (iO,iI,i2,i3,i4) into (i0, i20, 12l

M(sig2, a:jed
= set -if all partial functions from M(FEmployes, Unclassified) x M(Em~ployec, Unclassified) into M(Boolean, Unclassified)

=set of all partial functions from I iO) x (iO) into I O. 10 i2OQ 1)

M(sig2, Secret)
= set of all partial functions from M(Employes, Secret) x Mk(Employee, Secret) into M(Boolean. Secret)
= set of all paitial functions from (AD 09)} x (if), 63, i4) into (it), i20, i2l)

It can be scmn that !s-.2 5m sigL.

4.3 Multilevel Type System

A subset !e.-ultilevel universe of types if and only if:.

(i) the set of st'- i ssociated with FlI is a multilevel schema
(ii) for all types A.. and for all methods m in Methods(t) (which is the set of all miethods associated with t), m is defined on struet(t).

We can now define the notion of a subtype as follows: If t and i are types in PI, then t is a subtype oftf (denoted t S t') if end only if:

(i) struct(t) 2•st struc:(t',

(ii) for every meth ' of t', there is a method m of t such that name(m) = namc(m') and sig(m) 5 m sig(m'). (sigim) is the signature portio

of a method mr.)

The following security properties hold amiong types and sub~ypes:

P-26: IffI is a subtype of C', then Level(i) <~ Level(t)
P27: IffI is a subtype oft1', mn EMehods(t) , n' U-MIhods(t') and narne(m) =namie(m). then
Levelin) = 1.u.bi'Level(m~). Level(t))

Propcrty 26 states that the security lcvcl of the subtype should dominate the security level of the supertypc. Property 27 deals with
inher-itance of methods. That is. the secunl-y level of an inherited method is the least upper bound of the security level of the original
method and the security level of the subtype, on which the inherited rrethod is defined. It does not make sense to classify the inherited
method at a h lier le-vel than the original me~thodi. In an object- ori n ted model, the inherited nmethod is the same as the original method,
Ibowcver, in a ~eurr object model the inherited method may not have the same security level as the original methodi. This is because the
security level of the subtype on which the inherited method is defined could be higher than that of the original method and security property
P25 ensures that the security level of a methodl should dominate the security level of the type on which it is defined.

When multiple inheritance is permitted, some additional security properties have to be introduced in order to resolve conflicts. Multiple
inheritance is still a research issue in our work on mnultilevel ob Vgrl .erted databases. Although the model dcf ined here does not prohibit

multiple inheritance, initially we assume that the multilevel database does not pennit multiple inheritance. This multilevel database is
defined in the next section.

4.4 Multilevel Database

A multilevel database is a toplc (Pl, TI!, <db, (ext-L}, (impl-L)> where

(i) P1 is a multilevel type system with the associated multilevel schema DEiLT.
(ii) TI"I is a consistent set of objects (convistency within a security level).
(iii) <db is a strick partial order among the types in P1.
(iv) (ext-U.), for each security level L. an interpretation ext-L of D-ELT in TII at L.
(v) (iimpl-I.). for each security level L, a function impl-L, which assigns a function to every method rn of a type t at level L.

The additional restrictions imposed in 02 in the definition of a database can be extended for a multilevel database as follows:

(vi) t <db t' implies t V t.

(vii) If t <db C and t <db t, then t and tC arc comparable.

(viii) Tit = Uall 1, Ut in Pl ext-L(t)

(xi) ext-L(t) n ext-L(t') = 4; for all L, if t and Care not comparable. That is, an instance cannot belong to two types if one is not a subtype of
the other. Note that it is assumed here that multiple inheritance is not permitted.

(x) If t is a type of PI and ri a method of t having signature c x s2 x s3 sn -> s, then impl-L(m) is a function defined at least from
ext(t,L) x ext(s2,t.) x ext(sn,L) -> ext(s,I.).

Note that the rule (vi) stated above means that the ordering <db implies the ordering S. The converse is not necessarily true. This is
because the ordering c.db is user definid. The user can define this ordering only if it is permitted in the morxei which is the ordering 5.
Ilowever, if the converse is also true, then some meaningless orderings will be defined. As stated in [17] an example is:

Age = (Integer, (+,-})
Weight = (Integer, (+.-))

According to the model Age < Weight and Weight < Age. But this ordering is meaningless. Therefore the -user will not permit tne following
orderings:
Age Cdb Weight and Weight <db ,,ge

5. Mandatory Security Issues in an S02-Based Object-Oriented Database System

In this section we will describe the mandatory security issues in an object-oriented database system which is based oil S02. In Section
5.1 we will describe our mandatory security policy. Polyinstantiation issues will be describe in Section 5.2. Finally in Section 5.3 we will
describe how security constraints which ossign security levels to the data may be handled.

5.1 Security Policy

The security policy for an object-oriented database system based on S02 consists of the following pioperties:

(i) Subjects and entities (we use the term entity instead of an object as it is usually stated in security policies in order to not confuse between
the object in security policies and the object in an object-oriented system) are assigned security levels.

(ii) A subject has read access to any entity if the subject's security level dominates the security level of the entity.
(iii) A subject has write access to an entity, if the subject's security level equals the security level of the entity.
(iv) A subject can execute a method if the subject's security level dominates both the security level of the methold and the type on which the

method is defined.
(v) A method executes at the security level of the subject who initiated the execution.
(vi)During the execution of a method mnl, if another method m2, has to be executed, then m2 can execute only if the execution level of ml

dominates both the security level of m2 and the security level of the type on which m2 is defined.
(vii) If a new object has to be created as a result of executing a method, the object is created at the security level of the subject who initiated

the execution of the method.

Property (ii) is the simple property specified in the Bell and Ia;Padula security policy. Property (iii) is different from the *-property
because writeup is not permitted (this is because it does not seem nattrral for a subject to write some data and not be able to read it later). The
remaining properties are enforced due to method execution.

5.2 Polyinstantiation

Polyinstantiation generally occurs when two subjects at different security levels give different values or structures to represent in the
database a single entity in the real world. I however, in the case of object-oriented models, there is another form of polyinstantiation where
two subjects at different security levels could also use the same identifier to represent two different entities in the real world. The entities

587

that could be polyinstantiated arm the object;. types and the methods. l[ere, we only discuss polyinstantiation among the objects. It should
be noted that polyinstantiation is still a major research issue for us. Therefore much remains to be done betone satisfactory solutions to
handle polyinstantiation can be given.

Polyinstantiation occurs when:

(i)) az Unclassified s.bject has created an object, say ol, and a Secret subject creates a second ubject, say, o2 to reprcscnt the same entity
and the Secret subject gives a different value or structure to the object created.

(ii) a Secret subject has created an object ol. The Unclassified subject is unaware of the existence of ol and it creates another object to
represent the same entity in the real world.The structure or value of the object created by the Unclassified subject may be different front
those of ol.

(iii) an Unclas- ified subject has created an object, say, ol with identifier il and a Secret subject uses the same identifier iI to represent a
different entity in the real world.

(iv) a Secret subjtct has created an object, say, ol with an identifiei il and an Unclassified subject uses il (which we assume is an
Unclassified identifier) to represent a dif' ,eit entity in the real world.

A possible solution to handle the various types of polyinstantiations could be the following:

(1) A Secret subject requests to use the same identifier that is already used for an Unclassified object only when it wants to po!yinstantiate
thc Unclassified object. Otherwise a different identifier is used.

(2) When a Secret subject creates an object (which ts not a polyinstantiated object) then the Secret subject should use a Secret identifier for
that object.

(3) If an Unclassified subject wants to create an object, say, ol to represent the same entity which is already represented by a Secret object
say o2, then the Unclassified subject will use an Unclassified ideitifier for ol. By 2). this will be different from the Secret identifier used by
o2. However, with this approach there is no way to determine that o2 is a polyinstantiated version of ol (unless we introduce the notion of
primary key of an object which is not part of an object model).

We can justify (3) by taking Reiter's Closed Wcrld Assumption (CWA) [291 into consideration. CWA states that information is
represented in the database if and only if it is true in the real world. Therefore for an entity to be represented by some Secret object and not
by an Unclassified object means that die entity which exists in the Secret world does not exist in the Unclassified world. I'or the entity to be
brought into the Unclassified world it has to be downgraded (by some trusted subject). Then the Secret object which represents the entity
must be deleted as the entity is now in the Unclassified world. An Unclassified object is created to represent this entity. Ilowever, this same
entity can have different values or structures in the Secret world. Then a Secret object can be created later to represent the same entity with
the same identifier as that of the Unclassified object. With the solution that we have proposed we do not have to handle the case where two
subjects at different security levels request the same identifier for two different objects which represent two different entities.

5.3 Security Constraints

Security constraints have been used in the past to assign security ievels to the data [20]. The entities in our model are assigned security
levels by using security constraints. ilowever, the secturity levels assigned to the entities must satisfy the sectuwty properties. For example,
if there is a type structure EIMP = <namc:String, age:age>, where the Integer type is Unclassified and age type is Secret, then one cannot
have a security constraint which classifies FMP at confidential. This is because, the security property P will ensure that F.MP is classified at
least at the Secret level. Hlowever, the security constraint could classify EMP at the TopSecret level.

In the model SOS [15], the security constraints are used to create the various types. This technique can also be used to create types in a
system based on the model S02. For example, conside, the type EMP = <naRme:String, salary: Integer, SS#: Integer>. This type will have
as its instances, a!1 employees. Suppose an Unclassified user should not see the names of the employees. This is a secutity constraint
which is used by the schema manager to create certain types. One possibility will be to create two types lIMPI and EMP2 as follows:
EMPI = (<salary"lnteger, SS#:Integer>,. Unclassified)

EMP2 (<name:String, salary: Integer, SS#: Integer>, Confidential).
Note that ETP 1 is unclassified and EMP2 is confidential. Furthermore, EMP2 can be made a subtype of EMPI.

Another example is the following constraint: all salaries more than 50K are Secret while salaries less than or equal to 50K are
Unclassified. In this ease, three types EMPI, EMP2 and EMP3 are created.
EMPI = (<name:String. SS#:Integer>. Unclassified).

EMP2 (<name:String, saltry:51K..200K, SS#:Integer>, Secret)
EMP3 = (<name:String, salary:0..50K, SS#:Integer>, Unclassified).
EMPI and EMP3 are Unclassified while I-MP2 is Secret. Furthermore. EMP2 and EMP3 can be made subtypes of EMP1.

5.5 Inference Problem

Security violations via inference occurs when users pose multiple queries and acquire unauthorized information [30, 31]. A solution to
handling the inference problem in relational systems is to augment a relational DBMS with a logic-based inference engine and a knowledge
base. The inference engine will detect security violations via inference when processing queries (32, 33, 34, 35]. A sintilai inference

588

controller can be. built for object-oriented systems also [36). Tlwo approaches to impllecrieting such an inferenice controller arm as follows.
in thc first approach, the database as well as Ulc security constraints arc expressed in a logic prograni~ning language with support for
objects. An example of such a language is object-prolog [37]. In~ the second approach, an object-oriented database systcm is augmented
with an inference enginec and a rule bwse. The inference engine is based on an extension to first order logic. 'rhe queries are modified first by
the inferencc engine before tile object-oriented DBMS processes them. The techniques proposed in this second approach can b.- uscJ' to
augment an S02-based object-oricntcd datnbasc system with a logic-based inferene engine which will detect security violations. Another
direction in thc investigation of the inference problem is to consider it as a decision problem for a deductive system and analyze its
complexity [38].

6. Conclusion

We have developed a multilevel sccure object-orienlted data model, S02, which has evolved from an object model 02 and we have also
described its essential features with exampfles. Like 02, S02 involved a type systemn that accommodates both tuplc and set-based data
Sti-uctures. This has epnabled us to develop S02 based on a multilevel type system. It is tins approach that provides the foundations for
establishing a theoretical framework for secure object-oriented systems.

We have Plso discussed mandator-y security in an object-oriented system based on S02. We first described a multilevel security policy and
then discussed issues such as handling polyinstrintiation, using security constraints and handling the inference problem.

RUERENCES

I I Codd E.ý, 'A Relational Model for Large Shared Data Banks', Communications of the ACM. Vol. 13, #6. 1970, pp. 377-387.

[2] Shriver B. and Wegner P., 'Research Directions in Object-Oriented Programming". MIT Press, 1987.

[3] Kollar AU.F. Turaisingham M.B. and Fe'lix P., "XIMKON - An Expert Simul lion and Control Program". Proceedings of the American
Control Conf'rýreiltee Pittsburgh. PA, June 19899 also to appear in Artificial fintellig_ ice in Process Engineering.- Academic press.

[4] Lu II., Mikki~ineni I. and Thuraisingham M.B.. "Design of a Distributed Data Dictionary System", Proceedings of the National
Computer Conference Aic Chicago. iL, ju;i on W7~o.

[5) Thuraisingham M.B.. "An E~xpert Network Simulation and Design System". Proceedings of the 7th Artificial Intelligence Conference

(SP113), Orlando, M.1, March 1989.

16] Thuraisinghamn M.B., "Interconnecting Ileterogenous Knowledge Bases", To appear in ALT-EXPF..

171 Thuraisirigharn M.B. and Larson J. ,"Artificial Intelligence Applica~tions in Distributed System Design Issoes", Vol. 2,
#6, 1988, pp. 52-60.

[8] Goldberg A. arnd Robson D., Smalltalk-80,1'Uh Language and Its Implementation", Addison-Wesley, Reading, MA, 1983.

[9] Keefe T.I'., Tsai W.T. and rhuraisinghans M.B., "A Multilevel Security Policy fur Object-Oriented Systeilas", Proceedings of the , th
National Computer Security Conference. Baltimore, MD. October 1988.

[10] Keefe T.F., Tlsai W.T. and Thui'aisinghian MAL. "SODA - A Secure Object-Orierted Databast; System"', Accepted f ~r publication in

[1I1I] Loin tT.. and I'llut aisi nghanm M. B.. "Sec uri ty for I lypen'ncdia Systems ", Unpubl ished Man uscript. November 21, 1988; al so submitted

[12] Rmetiee J. et al., "Data Model Issues for Object-Oriented Applications", ACM Transactionts on Office Infrat)~ion System, 'Vol. 5, #1,
Aprl 1987, pp. 3-26.

1131 'lhut aisingham MB8, 'Mandatory Security in Object-Oriented Database Systems", Proceedings of the OOPSLA (Object-Oriented
Programnming: Systerns Languages and Applications) Conference (ACM), New Orleans, LA, October 1989.

[141 I.Unt .FE., "Secure D~istributed Data Views Identification of Deficiencies and Directions for Future Research", A0071 Finial Report,
Volume 4, SRI International. January 1989.

115] Thiuraisingliam M.B., "Security in Object Oirinted Database Systems", Accepted for publication in the Joural of Obiect-Oriented
EDU~dtanhig.

(1616 'huralsingham M.B., "Design of a Multilevel Secure Object-Oriented Database System". 'To appear in Infonnaion Systems~ Journal

(subject to revision).

5989

[17] Ue~cluse C, Richard P. and Velez I-,0 '2. an Object-Oriented Data Model", Proceedings of the ACM SIGMOD Conferenec.
Chicago, IL, Junc 1988.

[11] Bell D.E and LaPadula L..J. "Secture Cwiiputcr Systemas: Unifies Exposition and Multica lntcrpretaton",Technical Report M*TIS
AD-A023588, The MITREI1 Corportation, july 1975.

119] Honeywell Inc. (Dwyer, Ilaigh, Onucghe, Stachour and Thuraisingham), "Secure Distributed Data Views, Imp~cictietation
Specification for s Database Managcmcnt System", Interim Report. RADC Contract 1;30602-86-C-00013. May 1988.

[201 Dwyc-r P., G.Jclatis and M.ll.Thusaisingharn, "Multilevel Security in Database Management Systemss", Colmpulcrs aind Secutity.
Vol. 6, #3, June 1987, pp. 252-260.

[211 Dernning D.E, ct al., "A Multilevel Relational Data Model", Proceedings of the 1987 IFEE Symposium on Security and Privacy,
Oakland, CA, April 1987.

[22] Dwy' er P., Onuegbc 11, Stachour P). and Thuniisingharn' M.B.. "Query Proc~essing fin LDV - A Multilevel Secure Relational Database
Management System", Proceedings of the 4th Aerospace Computer Seewity Conference, Orlando, ILt, December 1988.

[23] Stachour P., Thuraisingham~ M.B. anid Dwyer P.. "Update Processing in LDV - A Multilevel Secure Relational Database
Management System". Presented at the I1Ith National Computer Security Conference, Baltimore, MD. October 1988.

[24] Stachour P. and ThuraisinghaniMil., SQL Extensions for Security Assertions", Accepted for publication in Comp~uter Standiards

IAld11119LfA= Journal,

[25] Rougeau P. and Stearns, 'The Sybase Secure Database Server". A Solution to the Multilevel Secure DBMS Problem', Proceedings
of the I10th national Computer Security Conference, Baltimore, MD. October 1987.

[26] Gajnak Gi., "Sonic Results fronm the [intity,'Relationship Multilevel Secure DBMS Project", proceedings of the 4th Aerospace
Computer Security Conference, Orlando, F"L, December 1989.

271 Thuraisingharn M.B., "T wards tht l'i~'o Scr- aaKnowl. , I. azz5 Mnnlgsc 41 SysLerin". Accepted jot purtlleation in
D2ata and Knowledge lingiaegrjne Journal.

[28] Thuraisinghani M.B., "Recent Developments in Database Security", Tutorial Proceedings of the (1114.) COMPSAC Conference,
Orlando, 1L, September 1989.

[29] Reiter R., "On Closed World Databascs', in Logic and Databases, Ed: Gallaire 11. and Minker J., plenum Prcss, 1978.

(30] Thuraisingham M.B.. 'Security Checking in Relational Database Management Systems Augmented with Infe-enee Engines",
Comuters ani Security. Vol. 6, #6, Deccember 1987, pp. 479 -492.

[31] Morgenstern M,, "Controlling Logical Inference in Multilevel Database Management System', Proceedings of the 1988 Iii
Symposium on Security and Privacy, Oakland, CA, April 1988.

(32] Thuraisinghamn M.B, Tsai W.T. and Keefe T.F., "Secure Query Processing using Al Techniques", Proceedings of the 21st Hlawaii
International Conference on Systems Sciences, January 1988.

[33] Thuraisingharn M.B., "Foundations of Multilevel Databases", Presented at the 1 st RADC Database Security Invitational
Workshop. Menlo Park. CA, May 1988.

(34] Keefe Tl'F., Thuraisinghamn M.B. and 'ssa W.T., "Secure Query Pi essing Strategies", i 1Co~nputcr Vol. 22, #3, Marc~i 1989,
pp. 63-70.

[3.5] Thormsen D., T'sai W.T. and Tlsuraisingham M.B., "Prototyping as a Research Tool for MILS/DBMS", Proceedings of the 2nd [P'IP
Database Security Workshop, Kingston, Ontario, October 1988.

[36] Thuraisingham M.B., "Security Checking with Prolog Fixtensions", Present.'.d at the 2nd RADC Database Socurity Invitational
Workshop. Fra'iconia. NIl, May 1989.

[37] Zaniolo C., "Obju-t-Oriented Programming in Psolog", Proceedings of the IEEEli Logic Programiming Symnposium, 1984.

[38] Thuraisingham M.B., Reducibility Relationships between Decision Problems", Zcitschrit fur Mathcemati'che I oQgik unld
Grundlaggri dizr hatheantik, Vol. 33, 1987. pp. 305-312.

590

MN odular' Pr'esent~at~ion of H ardware: Bouiidingýthle

Recference Monitor concept.

D)onald N. 1)aslici

30 June 1~

Abstract.

TIrad itionially, N ational Computer Security Center (N CSC) ovallmi-

tions have conisisted of soft ware/hardware des~ign and implement atio01

an alkvsis. '1'1iiý analysis has focuised primarily onl software and paidl only

tuinlinial attentionl t~o tile hlardwarc base. RecentlY, prelimbinary iiitcr-

iial discussions have beguni, exploring a more rigorous examination of

tile hardware.
Th'lese discuissions begani inl response to evaluators' queries into) sys-

temn architecture requiremients withi respect t~o hardware. The discus-

sions thuen continued inl a more general vein), centering onl how to eval-

uiate hardware de-sign inl a systenm, if at all.
The current focus of these dliscussions is onl gaining assurance inl

hardware comparable t.o thai. currently gaiiied inl ,soft.wlare and onl hiow

evaluiat-ors w~ill gainl that assurance. It. is underst~ood t-hat. tire assurance

gatined inl lardwari. may be different from the assuranice gained inl soft.-

ware. Ini exaliiuning soft~warv, it Miodular precsent-ation facilit ates both

the evaluator's acqtlisition of assurance, and the analysis of the refer-

ence validation inechanisni. A modular presentation not only providcle-

the vendor and the evaluator with ai excellent. menics of understand-

ing the iimplemientation, and also serves as a useful tool for bounding

the refcrence validation nechlanism. This paper will discuss why thle

Trusted Computer System Evaluiation Criteria (TCSEC) should be inl-

terpreted t~o incldle. a modular presentation of hardware withitn thme

requiririenit~s of 112 and higher levels of trust'.

"1The opinlions. expressed ill this paper arc those of the author arid not neccessarily those

of his employer.

591

1 Introduction

Onle of tI~ l mia~jor q~c~sof Ithe oval nationl tcaiit athierlvlof1rt
to htave 11h0 venldor. providle adlc(ua i assu ra nce for- thle Ssticlii. 'I'lic rufcrcii cc

Valfi(Iltioii iiieccalia'Iiii is thev elviiieiit of the s vstelti inl whichi evaluiators iteed(
t0 place thle greatest aiuiou iii of assuraiice. It is those parts of t he s *v-st ci
t llit jiuijilucivielt isolat ion and access itiediat jolt thlit require thle iiitjst dec-

tailed ania lysis. Isolat ion and access mtediat ion occurs part ially inl ha rl d~va;lv
therefore, sonic victlitent s of thle hardware are eiiconipiassed bthvIle ri-Ocremic

Valid a tioji inec htalisiti . Thiese pieces mutst lie evatinat ('(to aI level of detail
ait which th leovidal tIor liias assurance that thle referenice -miolititor is iiiiple
muen ted p rojperly' . Thie best. way of de terinin iug whiiichi pieces ill hima d wari(
miantdate thtis det~ailed investigation is to requi re a modular present a i on of
tlie hard ware desigit

2 flequiremnents

Fh.e 'F C-SEC (lefmnes the reference i- to cneta

Ani access controil conicept t hat refers to an abstract xiiaclu itie I liat
iiiediatecs all accesses to objccts by subjects.

The referenice validation miechiaiisiii is the physical imnplement~ation of the
reference mion itor inl thle systemn as a whole. The Systemi Archtit ecture re-
(liiiretuent. inl thle TCSIC refers tlirectly to several types of assurnitces that
lin iit exist- ill tile syst emt UniifortunI iately, commiionly applited assiira nce techt-

niiques appIly to only the softwvare portion of tilie TCP. It. is clear Ill -t iard -
ware needs t~o have tile samne assurance placed oil it as does soft ware. What.
is not clear is what kiiids of assurance anply to liardwaie.

Testing is tie geiieraflh accept~ed type of hiardware assurance. Yet testintg
alonte is not. enough. Without. sonie in-depth kiiowledge of the hardware
coiipjonenit under test, it. is impossible to determiiiie whether tile tevsts provide
ample coverage. Ilii other xvoris, ili order for testing to prov'ide assurance,
thle test suite has to exercise tile initerfaces adequately. To detei miiute this, it.
is necessary to require viore informiation oil tItle hardware coninpoient s tinder
test thani is conmmtonly available. Teproblem is]how to identify which
comiponeuiits of flth, hardwvare baýse nteed a greater depthl of inforitiat ioin about.
their design to determnine tha~t the test suite will provide tile nleces~sarY level
of assurance.

592

3 Why A Modular Presentation is the Solution

A modular presentation of hardware will allow evaluators to determine which
components in the hardware base require a closer look. The primary reason

for requiring a modular presentation of the hardware base is to provide
a tool fog vendors and evaluators to bound the resident reference monitor.
Modularized hardware is not the goal. Hardware is modular by design - thus
requiring modularity does not bring about any more assurance. However,
a modular presentation of hardware does add assurance. The assurance
that stems from a modular presentation of hardware is a confirmation of
the validity of the reference validation mechanism. A modular presentation
will bound the reference monitor within the hardware. With this boundary,
evaluators can determine which components need an in-depth analysis, and,
based on ilihs analysis, make a determination regarding the test suite of
those components - thus bringing the necessary assurance.

Another benefit of a modularized presentation of hardware is that it
will help vendors in designing and implementing their systems. Current
operating systems are designed using minimal interface information. A truly
trusted machine cannot be designed unless the system designer knows the
haroware as well as the software. A modular presentation of the hardware
will assist the vendor in better understanding the hardware base on which
lie is designing and thereby produce a more trusted and efficient system.
In addition, the bugs associated with implementation will become easier
to repair due to the programmers increased knowledge of the hardware.
Finally, a modular presentation will enable the vendor to give the NCSC
a significantly more assurance by providing greater insight to more of the
system under evaluation.

With this. shie evaluators gain assurance in not only the system, but
also the vendor. The additional information allows better understanding of
the system for the evaluators conducting the analysis. To summarize, the
requirement of for modular presentation of hardware will provide a tool to
bound the reference monitor, help vendors design and implement their sys-
temn, and help evaluators gain assurance of the system's hardware - thereby
contributing to the satisfaction of the TCSEC System Architecture require-
men t..

593

4 Alternatives to Modularity

Alternatives to a modular representation of hardware to bound the refer-
ence monitor concept are virtually non-existent. Evaluators could muddle
through a myriad of hardware documentation trying to piece together the
workings of the hardware base in order to find the elements which constitute
the reference validation mechanism. This is an inefficient method of analy-
sis requiring a standard hardware background for all evaluators. Surely, the
assurance in the system design is inherently reduced when a determination
of correctness is not available for the hardware base.

Another possibility is to assume that a limited set of hardware pieces will
always compose the reference validation mechanism. The belief is that all
you need to look at for each implementation is the address translationi u'nit.
With this philosophy, the immediate problem of what to do with unique de-
signs and out-of-the-ordinary implementations. It is easy to imagine a hard-
ware base that implements part of the process isolation mechanism outside
of the address translation unit (i.e.. the interrupt mechanism). Clearly, lim-
iting the examination to a consistenf set of components is a specific solution
to a problem that demands a general approach.

5 Bounding the Reference Monitor Concept

Tne real problem lies in determining where in the hardware the reference
validation mechanism resides. It is the responsibility of the vendor to indi-
cate those portions of hardware which are included in the reference monitor.
A modular representation of the hardware base by the vendor is the logical
solution, and eases the job of both the vendor and the evaluator.

5.1 How To Modularize

Accepting this form of presentation as a requirement of the evaluationi, the
next issue to address is how to accomplish this modular presentation. One
approach to this problein is to take a popular definition of modularity as it
applies to software and modify or interpret it to fit. modular presentations
of hardware.

594

5.1.1 Software Definition

The following software definition of modularity, used in some evaluations as a

guideihite for buftware analysis, is drawn from the "Unix and B2: Are They

Compatible", a paper presented at the 10th National Computer Security

Conference:

The basic assumption of the analysis was that if all modules in

an operating system met the following criteria, the system could
be considered fully modular. A module:

"* performs exactly one well-defined function

"* has well-defined parameters, interface and environment

"* interacts with other modules only in well-defined ways; and

"* is called upon to perform its function wthenever that func-
tion is required.

I litCU' II",t CiiI,• LCiUl i t. a , ,, a.l .Z iu DOC Le OU iG not combine mul-
tiple functions, particularly if they are unrelated or are also per-

formed in other modules, and also that the results of a module
should be predictable, based solely on the values of its input
parameters. The second criteria means that the interface to a

module should clearly reflect its implementation. The third cri-
terion is related to the second in that parameters passed to and
returned from a module should be clearly identified and have
well-defined consistent meanings.

5.1.2 Definition Applied To Hardware

The above definition was created to meet the demands of software. It is not
appropriate to apply it blindly to hardware, since hardware generally does
not act like software (although hardware can be implemented to execute any

software function and software can emulate any hardware function). The
definition n•eds to be massaged to fit the needs of hardware (or hardware-
like functions) and the intent of the proposed requirement.

* performs exactly one well-defined function;

The key word in this rule is function. In order to apply this to hardware, a
clearer definition of what constitutes a function is desired. For example, it

595

could be argued that processing is a function and that a CPU should there-

fore be an allowable module. Conversely, one might easily state that each
gate array in transistor logic denotes a function because at that granularity

only one function is being performed. A CPU most likely replicates multiple
functions and gate arrays in other modules. Clearly, a middle ground must
be defined. In software, functions are of equal magnitude logically. It is not

certain that this is true of hardware. A more likely scenario couples this
principle with a discretionary merge, allowing some functions to combine
into one module based on their relative contribution toward the reference
validation mechanism (i.e., a memory board could be one module). At any
rate, the description of these modules must provide sufficient information
to allow the evaluation team to determine which modules are part of the
reference validation mechanism. Therefore, the definition of function has
to incorporate this intent. A module in hardware must perform one well-
defined collection of logic that implements a low level hardware task.

* has well-defined parameters, interface, and environment;

For software, this rule embodies the interface. In hardware, it is the inter-

face to non-hardware-hke entities which is important because this interface
is exercised in an unpTedictable fashion. Interaction with other hardware

components is specified and predictable. Therefore, to make any judgment
about the testing, the interface to software for a particular component must
be analyzed.

* interacts with other modules only in well-defined ways;

This is important in determining the modules that constitute the reference
validation mechanism. The interface of a module is what ultimately will

be tested to derive the necessary assurance. The interaction of any given
module with external components is fundamental in the bounding of the
reference monitor concept. A modular presentation is essential to analyze
the interaction between a module and the rest of the system.

* is called upon to perform its function whenever that function is re-
quired;

When a hardware base implements a multi-processing environment such that
multiple processing modules are designed to increase speed by executing the
same type of operations, this definition can become quite complicated. It is
equally complicated for a system that is designed redundantly for reliability.

596

This rule is not appropriate for any hardware trying to achieve redundant
or parallel processing. It is not yet clear how to apply this rule is a generic
wray,

5.2 Example

The following example presents a few generic modules that may reside in any
hardware base. These components are not complete; nor are they intended
to bear any resemblance to a specific hardware base. They are presented
in a format similar to that a vendor might offer. For each component, the
example contains a paragraph of description and a. paragraph describing ele-
ments which would require a more in-depth review. It is expected that actual
presentations by vendors will be more detailed for their specific hardware
implementations.

5.2.1 Arithmetic Unit

The Arithmetic Logic Upnit is the uinit responsible for all math-
matical and logical operatioxs that are needed by the hardware
base. The unit receives an opcode and operand values from the
bus. The opcode is decoded to determine what operation is to
be executed. The operation is performed using a series of adders
and shift registers. The resulting output is placed back onto the
bus. The communications this unit uses are restricted to simple
polling of the bus until the system control unit (to be described
later) signals it is needed. It relies on system control to read or
write memory. It executes as an isolated process independent of
all other units minus the system control.

From this description the evaluation team is able to determine that this
particular unit seems to have no function directly related to security or
to the reference validation mechanism. There are apparently no process
isolation or address translation functions performed in this module other
than supporting basic arithmetic instructions. Therefore, it is expected that
quality testing of the interface should provide the assurance needed due to
the minimal complexity of that interface.

597

5.2.2 System Control Unit

The system control unit is the unit that controls the entire sys-
tem. Allocation of the bus based on process priority occurs

through logic in this unit. Logic in this unit will determine which
process is runninig and will handle process switching. The sys-
tern control will handle instruction fetch and primary decode
followed by distribution of the instruction to the appropriate
unit for completion. The system clock is maintained here and
broadcasted throughout the entire system. Other minor control

functions are also the responsibility of this unit. The inputs and
outputs this unit uses are primaxiiy control signals and instruc-
tion passing. These parameters are all passed on the bus. This
module controls all other components via these functions.

More information will be required on the subcomponents before a statement
can be made on the adequacy of test coverage for this module because they
can directly affect the enforcemoent of the access control policy and the T'CB
protection and the interface to this module is very complex and may be
exercised by untrusted software. Subcomponents like the bus and its con-

trol, the process isolation logic, and instruction fetch and decode should be
examined in greater detail.

5.2.3 Memory Management Unit

The memory management unit controls access to memory. The
logic within this unit accepts an instruction from the bus via
the system control unit. This instruction is decoded and the
memory location translated. Access is determined on a page
basis. If access is allowed, the contents of the memory location

are returned on the bus. If not, an error is issued. The MMU
communicates with whatever unit needs data from the memory
via the bus.

More information on the exact details of the memory access and the access
permission check will be needed in order to analyze the adequacy of test
coverage for this module because the access control policy and the TCB
protection can be directly affected and of the high complexity of the inter-
face.

598

5.2.4 Diagnostic and Boot Unit

The diagnostic and boot unit is the unit that will insure the.

lhardware base and the system are functioning correctly and in
a proper state. The unit is responsible for bringing the system
from a cold start into a known an(d predictable environment. The
unit will then continuously run periodic diagnostics to check the
continued correct functioning of the system. There is a bank of
microcode located here that can be used to determine the cause
of a failure, should one occur. The communication of this unit is
with the system control unit and the interrupts and exceptions
unit (to be discussed later) via control signals on the bus.

This unit will be explored further for two reasons: the System Architecture
requirement and the System Integrity requirement. These two requirements
combined will produce a sufficient level of detail to examine the test suite
for adequacy.

5.2.5 Interrupts and Exceptions Unit

This unit handles all of the interrupts and exceptions issued by
the hardware bass. The system interrupts and exceptions are
prioritized to allow a uniform method in allocating the system
for a given interrupt or exception. This unit primaiily comrnmu-
nicates with the system control unit, and with all other units as
they issue interrupts and exceptions.

More information for this unit is needed in order to evaluate the adequacy

of test coverage. It is certainly important to discover the types of interrupts
and exceptions as well as how they are prioritized. It is also important to

know the result of an interrupt or exception and how the system handles

the switching of processes and the return of previous process context.

To reiterate, this example is a simplistic, generic sample of a modular

presentation of a hardware base. It is meant only to illustrate the idea of

hardware in a modular format.

599

6 Conclusion

As the TCSEC stands vis a vis the System Architecture requirement, it
is apparent that there exists sufficient reasoning to dictate scrutiny of the
reference monitor concept design in Il.e entire system. The system is a
combination of hardware and software. Therefore, evaluators must analyze
those sections of the hardware that are within the bounds of the reference
validation mechanism, In order to coriectly bound the scope of reference
monitor concept iin hardware, the System Architecture requirement must
be interpreted such that vendors arc required to present their hardware

base in a modular format. This format should incorporate the definition of
modularity as it applies to hardware.

References

[1] Department of Defense Trusted Computer System Evaluation Criteria,
DOD 5200.28 - STD, Department of Defense, Washington, D.C., De-
cember 1985.

[2] Sibert, W.O, Traxler, 1{.M, Wagner, G.M., Downs, D.D., and Glass,
J.J. ("nix and B2: Are They Compatible, 10th Natiom. Computer Secu-
rity Confeence Proceedings, September 1987, pp 142-149.

600

Site Preparedness for the Next Network Emergency

Donald L. Alvarez
boomerC@space.mit.edu

MIT Center For Space Research
© 1989 Donald L1. Alvarez

Abstract: A series of informal conversations were held to
investigate local network management actions which helped or
hindered recovery from the Internet Virus of November 3rd,
1988. A set of observations and recommendations are presented.

Key Words: Network, Security, Management, Computer Virus,
Internet Virus, Action Plan.

In the aftermath of the Internet virus of November 3rd, 1988, the author held
informal conversations with programmers and systems managers at a number of
affected sitesý. The purpose of these conversations was to look at how different sites
managed their response efforts and to try to identify any common threads which the
various sites found helpful in recovering from the emergency.

The following suggestions, which resulted from those conversations, are meant
to provide some guidance for administrators and system managers at other sites. The
suggestions are not meant to be comprehensive or even applicable to every site.
Rather, they are intended to serve as a starting point for local discussions among
system managers and administrators, illustrating points which some sites found to
be useful or true during the course of one actual emergency. Many of the points, such

obvious, yet they went unnoticed or unheeded by a large number of sites prior to ,he
November virus.

(1) Resources can not be us-'d effectively without some form of
coordination. Each site should select a location with good
telephone access to serve as a communications hub during an
emergency.

All sites found that some form of coordination was necessary to insure that
efforts v. 3re not duplicated and to insure that separate groups did not try to recover
from the virus in ways which prevented each other's success. Every site polled had
instituted some form of coordination or communications hub during the emergency,
but some sites did so significantly faster than others Many sites reported that either
the coordinator or the coordination site moved or evolved during the course of the
emergency to reflect changes in the nature of the effort under way and only rarely did
the response bare any resemblance to the traditional organizational chart at the site.
At many sites, instead of a formal coordinator there was only an informal message
passing system. In the author's opinion, those sites which were most successful at
recovering promptly and efficiently were sites where the leadership seemed to be
selected based on technical expertise in a particular area rather than based on
management skills or formal job title, with the leadership evolving as different
technical skills were needed. Other factors may play equally significant roles in site
success, however, as those sites which were most successful understandably also
seemed to be blessed with an extremely high concentration of very technically
competent personnel. Sites with fewer wizards and gurus may be better advised to
institute a ornial and static leadership hierarchy.

t including Harvard Universit, Iniversity of California at Berkeley, MIT, the Army Ballistics
Research Laboratory, thc Ltaw:'nce Berkeley Laborratorv, and others.

601

A communications center for a small site should include at the very least one
multi-line phone with off-site dialing capabilities and comfortable seating for a small
group, possibly with a black-board or nearby conference room. A number of sites
reported finding that speaker phones, conference calls, and hold buttons were the
most useful technological tools during the emergency. An isolated PC with a dial-out
modem is also recommended for use as a logbook and as way to download software
patches from off-site.

Larger sites may also want to designate some contact point for user queries or
provide a recorded message with information on the state of the system. Extremely
large sites such as major universities and military bases will want to contact their
public relations offices in advance to plan how to handle press inquiries in the event
of another emergency. Almost every site polled reported considerable press interest
in the Internet Virus, and most found this to be a significant obstacle to their
recovery efforts.

(2) Information stored on-line is unlikely to be available during a
network emergency. Off-line or paper documentation should be
maintained for use in emergencies.

The easiest and most natural place for any system manager to store system
documentation is on one of the hosts he or she manages. Documentation is most
readily accessible and updateable in electronic form, and it has always been possible
to load backup tapes onto another machine. When failures typically hit one or two
hosts at a time, few sites found it necessary to institute a regular program of printing
and storing updated copies of system documentation. With the dawn of the network
virus, however, sites have become vulnerable to a new type of single-point failure.
Suddenlv everv host at a site can he invapnaitated almost sim."ult-neously, I. aving -no
undamaged hosts on which to read system documentation.

Network managers should institute programs to insure that accurate, up to
date copies of any information needed to recover from a network emergency are
maintained and stored in printed form. Regular updating of an offline set of manual
pages represents one possible starting point, but ignores other relevant material,
such as host tables and configuration files. Each site must decide on a case by case
basis what documentation to maintain.

(3) Reconstructing tie state of a network and inventing responses
is extremely difficult in the face of an emergency. When possible,
responses should be identified and practiced in advance.

Most large networks are in a constant state of flux. Rarely does any one system
manager understand the full picture of how each host connects to every other.
During an emergency, there may not be time for personnel to reconstruct the state of
the network and invent appropriate responses. When likely responses can be
identified, sites should work through and understand them well in advance of any
real emergency.

Sample responses for which sites may wish to maintain formal written
procedures include:

"* isolating one or more machines from the network
"* disconnecting and reconnecting local- from wide-area networks
"* rebooting machines from distribution tapes or other trusted software
"* halting and restarting any critical and/or real-time processes
"• locating, monitoring, severing and rest•rting any and all network

connections

602

In general, the larger the network, the more rapidly it changes. With a large
network procedures such as these are particularly important and particularly
difficult to keep up to date. To combat both of these problems, sites should institute
regular "fire drills" to practice and update their network management procedures.

When compiling these lists, system managers should realize that however
useful they may be during the course of an emergency, they are also exactly the
information which an attacker would need to bring about the start of a local network
collapse. This information should be compiled and tested regularly for accuracy, but
under no circumstances should it be allowed to reside on any host which accepts
either modem or off-site network connections.

(4) Phone numbers' and contact iists are one of the simplest and
most valuable types of system documentation. For many sites,
they are also one of the least available resources.

Names and phone numbers represent one of the most vital and easily
overlooked types of system documentation. Users and administrators alike need to
know not only who to contact in an emergency but how to contact them. Almost every
site expressed frustration that the people they most wanted to contact were known to
them only by their net addresses. Network addresses were often committed to
memory, but telephone numbers rarely were. Those telephone numbers which were
available were generally only recorded on the disks of infected machines.

Reverse ccntact lists proved to be even more valuable than forward contact lists
in many cases, as sites needed to know who would be likely to contact them and
whether to trust them. MIT and Berkeley were pal-ricuia-iy ha1upeicu in their effotsL U
to work together on analyzing the virus as neither site knew whether to trust the
identity of the party at the other end of the line. Several institutions reported seeing
anti-viral system patches on bulletin boards but lacked the internal technical
expertise to validate them, and hence did not install them because they did not know
or trust the identity of the party posting the patch.

A sample scarting point for contact lists to maintain and store off line includes:

"* local administrators and system managers
"* relevant management personnel
"* network fateway managers
"* vendor personnel

All of these li.ts should include both names and phone numbers, and should also
include either home phone numbers or some type of 24 hour contact number for users
if possible (the first sightings of the Internet virus occurred in the wee hours of the
morning, when it was most difficult for users to find system managers). The more
information, the better, but most sites indicated that lists which were incomplete but
accurate and up to date were far more useful that encyclopaedic lists which were out
of date or inaccurate.

Contact lists should be treated with the same care as system response plans.
Many network hackers pride themselves on their "social engineering" skills.
Experience has shown that attackers can and do gain system access and passwords by
impersonating management or repair personnel over the telephone.

603

(5) Networks make up a very powerful communications medium.
The decision to isolate a site from the network may in some cases
be more damaging than the decision to remain connected.

Even in the face of the most serious network emergency ever, the networks
themselves continued to be one of the most effective ways for distant sites to
coordinate efforts. Those sites which immediately disconnected fr'om the Internet
and remained disconnected for the duration of the emergency were cut off from many
sources of information which could have helped them recover from or contain the
virus within their site. Sites which had access to multiple networks could make use
of alternate routings and were less likely to become isolated. Bulletin boards such as
provided by the USENET were of tremendous value to ninny sites, although in many
cases the bulletin-board managers were unable to keep postings current due to
related problems of their own.

Almost all parties involved praised the Internet management community for

their decision to keep the mailbridges open during the emergency and allowing the
flow of information to continue.

Sites with only one network connection to the outside may wish to invest in
some other alternative information source, such as an account with a local bulletin
board or dial-up network to insure continued access to external information.

(6) Nothing can provide absolute protection, but regular backups
do protect a site against a wide variety of natural and man-made
system disasters.

Sites which performed daily system backups found that they had far more
latitude in choosing responses to the emergency than did sites which only performed
sporadic backups. The only safe action for poorly backed-up machines was to shut
down and hope, while sites with well backed-up machines could experiment, reboot,
repartition disks, and even risk the possibility of reinfection, all safe under the
knowledge that only a few hours or days wc.rk could be lost at most (this was one way
in which the time of the virus' release may have been an advantage. Most sites
presumably backed their systems up in the evening, so that little user work would
have been done between the last backup and the time of virus infection in the early
morning).

With one exception, every observation or recommendation presented here
centers on information -- the storage, availability, accuracy, and/or communication of
information. We have fine-tuned our society for efficiency in the face of an
information age. The Internet virus of November 3rd, 1988 represented the first time
we had experienced even small scale information paralysis. Aside from the direct
security concerns, the most important lesson that the experience has taught us is the
need to prepare some level of information system to operate in the event of a
catastrophic network failure, and to maintain alternate communications paths for
use when our primary paths fail. These lessons will be familiar to ham radio
operators, many of whom have participated in communications relays when our
telephone lines were destroyed due to natural disasters. We are perhaps fortunate
that we have had so little experience with large scale network emergencies. We can
not expect to remain that way forever.

604

INT R0D UCT0N

INTRODUCTION

The Ethics and Education track has been added for the first time this year to
eccommodate the increasing demand for information on these subjects. The
education, training and awareness portion of the track focuses on improving the
security and privacy of sensitive information in Federal computer systems. Passage
of the Computer Security Act of 1987 (Public Law 100-235) has significantly
stimulated requirements in the area. The sessions cover computer security
awareness training for both the employee and the executive. The ethics portion of
the track addresses criminalization of computer misuse and abuse, ethics in the
workplace, and the question of management responsbility versus individual rights.

The track includes refereed papers submitted in response to the Conference
Call for Papers. Also included for the first time in these proceedings are Executive
Ounifiiriake~. IL~t £JX)OCLILive ~i-lru 1r-npL LlaU~k Plesentalis r1S a were

invited. Since the invited presentations are not based upon refereed papers, the
Executive Summaries are intended to provide a record of their content for future
reference.

It is hoped that in future years, as interest in this track broadens, more formal
papers will be submitted on the topics of ethics and education. This will not only
reduce the number of invited presentations, but will increase the involvement of tile
ethics and education communities through the formal peer review process.

LARRY MARTIN
Chairman

Ethics and Education Track

605

XTSA

EXEC TIVE SUMM RIE

Executive Summary

MAKING ELIGIBILITY FOR FEDERAL BENEFITS
DETERMINATIONS UNDER THE COMPUTER MATCHING

AND PRIVACY PROTECTION ACT OF 1988
(P.L. 100-503)

Robert N. Veeder
Executive Office of the President

Office of Management and Budget
Office of Information and Regulatory Affairs

Washington, DC 20503
(202) 395-4814

In a very real sense the process of governing is the process of balancing
competing interests --- interests that are vying for resources, for access, for position,
and the like. In designing governmental programs, especially those that deliver
benefits, the planner must seek to balance two goals that are often perceived to be
mutually exclusive: opcrational efficiency and fairness to the individuals involved.
Operational efficiency is important because many programs are competing for the
same resources. Inefficiencies in carrying out a program inevitably take away from
what is available for other equally worthy programs. Fairness is just as irr.ortant.
Programs that are inherently unfair or that are operated unfairly will lose the

uppnnnrt nf nthons thfby nro int.hnm fn qprvp A onvernrmpnf, f.ha, pe.rc nPrepivpdt lip

unfair may lose the support of its citizens.

In designing sy3tems to deliver benefits efficiently, one primary goal is to
maximize the number of decisions made within the system and reduce the number
made off-line. It is more efficient to treat recipients in the same way under the same
processes than to attempt to adapt the system to their individual circumstances. Yet,
there are times when it is important and necessary to treat individuals as individuals
and not as part of a group. The efficiency goal is to make the need for such unique
treatment the rare anomaly; the fairness goal is to build procedures that can
accommodate such individualized determinations.

The government's use of computers to opeirate benefits programs helps achieve
the efficient delivery of those benefits. Indeed, it would be difficult to imagine
operating complex programs involving millions of people and billions of dollars
without automation. Yet, surveys show that people are ambivalent about comp,--Jt.s.
While recognizing both their pervasiveness in society and their value in managing
complex processes, people are concerned about many aspects of their use, espaciaily
by the government, e.g.:

* Is the information they contain accurate?

9 Is it being kept safely?

* Are there ways for citizens to know what information is be•ng ke-.t a.ký
how it is being used?

606

0 Are comp:,uters malting determinatiens without any human intervention

or oversight?

* Are there ways for citizens to challenge such determinations?

The Privacy Act of 1974 was one response to these concerns. The legislative
history shows that Congress meant t3 add, ess automated recordkeeping issues in
crafting this law. Indeed, the preamble to the Act notes that Congress was concerned
that the use of computers by the government could "greatly magnify the harm to
individuals...." that iPaccurate recordkeeping couda cause. The Act attempted to
involve individuals in the government's use of information about them. It gave
record subjects the right to know what information the government was keeping and
provided certain rights of access and amendment to those records. It also imposed
responsibilities on the agencies. To help ensure compliance with its provisions, it
provided civil remedies and crim!inal penalties.

As the Act was implemented in the 1970's, .more and more of the government's
information was being maintained and processed on computers. Whereas paper
record data bases, because of their size and organization were difficult to use
together, it became easier and easier to compare information from automated data
bases. The incentives to do so rose as well. When making a determination about
eligibility for a benefit that is, for example, dependent upon the amount of income
and assets the applicant possesses, it i,.; useful to have an accurate and timely way to
check assets and income. By comparing automated data bases containing such
information, these determinations canl be made quickly.

It is at, this point that the government can achieve its goal of balancing
efficiency and fairness. Matching is efficient because matches can be done quickly
and cheaply. It in fair because the results of such checks ensure that the scarce
resources these benefits represent go only to those truly entitled to receive them. But
the above is true only to the extent that the information being compared is itself
complete, accurate and timely.

Congressional concern about the use of computers to make such eligibility for
benefits determinations led to the first major amendment of the Privacy Act of 1974.
P.L. 100-503 became law on October 18, 1988. It amended the Privacy Act to add
certain protections for the subjects of Privacy Act records whose records are used in
automated matching programs. These protections are essentially threefold:

a Procedural uniformity. In cariying out matching programs, Federal
(and for the first time) State and local agencies are required to comply with the
specific procedures set out in the Act. These include the creation o agreements
defining all of the conditions under which agencies will cngage in a match. The
ag ,eements are reported to Congress to permit oversight and are to be made
avaiiable to the Public upon request.

* Due Process for subjects. The Act gives individuals certain due
rrocess rights including advance notic that their records may be matched, notice of
any adverse data found, and a chance to rebut this evidence. Before agencies can use
data developed in a match to deny or suspend a benefit, they must independently
verify that matching data.

* Oversitht of matcHiq.g. The Act establishes oversight mechanisms to
e..sure agency compliance. These include reports to OMB and the Congress,
publication of notices in the Federal Regi,`..er, and the establishment of Data

607

Integrity Boards at each agency engaging in matching to monitor the agency's
matching activity. Data Integrity Boards play a significant role in influencing
theiragency's matching activity: they must approve all matching a reements.
Moreover, they serve as a repository for information about matching to help program
officials make determinations about its utility.

One other significant requirement of the Act is that Data Integrity Boards
evaluate matching programs in terms of their costs and benefits. This will include
even programs that are mandated by statute in order tu give Congress information on
which to reconsider such requirements for matches that can be shown to be
inefficient.

It should be noted that this Act covers a fairly narrow range of matching
activities: those involving Federal benefits programs or involving substantial
amounts bf Federal employee personnel or financial records. It is a modest effort in
.hat it does riot cover, or specifically excludes, matching activity that has drawn
criticism or concern in the past: e.g., matches fcr law enforcement or for tax
enforcement. Nevertheless, it does offer significant statutory protections for what it
does cover. As its provisions are implemented, it may serve as a model for future
legislative initiatives, should they prove needed.

608

Executive Summary

PUBLIC ACCESS TO GOVERNMENT DATABASES

Anna L. Patrick
U. S. Department of Agriculture

Room 425-W, Administration Building
Washington, DC 20250

The Department of Agriculture (USDA), founded by Abraham Lincoln in 1862
to provide agricultural information to the gen,'ral public, has a long history of
information processing and sharing. USDA, be, ;e of the number and diversity of
its programs, can serve as a good case study in aduiessing the issue or'public access to
Government databases.

It is beyond dispute that individuals and business concerns have a right to
access information that has a direct bearing on their reputations, health, or well-
being. It is, we believe, a responsibility of Government to provide this information at
a reasonable cost, which Federal agencies have tried to do in their implementation of
the Freedom of Information Act (FOIA) and in additional programs. Until now, we
have provided hard copy documents in response to FOIA requests. We are now being
aikeu to cuonsider means of allowing electo•n01-lic access to some of our databas... This
is not a trivial problem nor one easily solved.

A few examples of some typical USDA programs can be used to highlight some
of the problems we envision if electronic access were to be widely implemented:

Crop Reports, on which the commodity markets--as well as the farming and
agribusiness communities--depend, have, through eternal vigilance, been
kept inviolate for many years. Extreme measures have been taken to
assure that no individual nor business has unfair advantage from early
access to Crop Reports. Our concern here is the protection of time-critical,
market sensitive information.

The Farmers Home Administration, which maintains a portfolio of farm
loans totaling many billions of dollars, exercises great care to assure that
the financial and persoial details submitted with loan applications, as well
as the current status of loans, are protected. Our primary concerns here
are the protection of information on private citizens and the prevention of
fraud committed through manipulation of financial records.

We have administrative and accounting systems which process and
monitor Departmental expenditures, payroll and personnel, property
inventories, etc. Again, our concerns are related to personal privacy and
fraud.

In conducting agricultural research, some of our agencies require private
industry to provide critical information regarding their products. This
proprietary information is protected zealously, as it should be.

609

Some of the problems envisioned are not specifically security matters. For
instance, agencies would have to provide additional equipment or enter into
agreements with commercial time-sharing firms to provide the access required. This
could add significantly to agencies' budgets at a time when economy is the
watchword. If it were possible to recover costs from the public, it would still require
additional Government staff to administer and operate the programs.

It has been suggested that it would be helpful to those ca-led upon to submit
information to the Government if they could submit certain data one time for
multiple Government uses. It would be an ideal situation if this were possible.
Unfortunately, we do not yet have standard data elements. For example, the item
"name" sometimes requires last name, first name, middle initial. At other times it
requires the three items in different order. And sometimes the middle name must be
spelled out. We certainly support the electronic submission of information where it is
possible and where the person submitting the information can be positively
identified.

Our chief concern, however, is maintaining the security and privacy required by
law and by common sense. The basic element of our USDA security program is
establishing and maintaining individual accountability for all information
processing activities. We maintain C2 security in our large centers and encourage
our agencies to use the best security packages available for all their equipment,
including micro-computers. It is unclear to us how members of the public could be
entered into our systems as authorized users who are responsible for their actions.

The entire subject of public access to Government databases merits serious
discussion and consideration. We believe that advanced technology has a role to play
in our being able to achieve adequate information protection while providing this
access. We should be addressing the difficult issue of standard data elements. We
should be including the public in our security awareness training programs. And, in
anticipation of the resolution of problems associated with public access, we should be
identifying information which could be shared if controls are available.

The public has the right to access information collected and maintained on its
behalf. The public has the right to expect the Government to maintain data integrity,
privacy, and currency. Our task is to determine how these rights can best be
guaranteed.

610

Executive Summary

TRENDS IN COMPUTER ABUSE/MISUSE

By JJ Buck BloomBecker
Director

National Center for Computer Crime Data
2700 N. Cahuenga Blvd.
Los Angeles, CA 90068

(213) 874-8233
Copyright JJ Buck BloomBecker 1989

In getting the attention of those one addresses, it is often useful to ask them to
imagine that they have the power to change things they do not like based on the
information one is about to share with them. In addressing a group as large and
influential in the field of comrputer security as the attendees at the 12th National
Computer Security Conference, it is not necessary to stretch the imagination very far
to perceive the power you have.

Were there any doubt, we need only look at the program to see that amongst the
panelists this morning is Mr. Joe Pujals, architect of a proposed California computer
crime law, and two men whose stature has made them veritable institutions in the
field of computer security, prosecutor Don Ingraham and Ernst and Whinney fellow
Bill Murray.

So the focus of this briefing is a real question: what evidence would we consider
if we had the power to determine what sort of laws would be effective in combatting
computer crime. We do have much power in this determination, and could easily, and
properly have more. I suggest that there are three trends of great significance, none
of them receiving the attention it deserves.

The Sounds of Silence

As Sherlock Holmes sometimes solved mysteries by noticing things that had not
occurred, I suggest that the most important characteristic trend in the area of
computer abuse is what isn't happening.

Reporting Abuse

Last winter those of you who attended the llth conference, the IEEE Security
and Privacy conference, or were members of 1SSA (the information Systems Security
Association) received a questionaire from the National Center for Computer Crime
Data. In one of its questions, computer security practitioners (as of posed to
researchers) were asked to report the number of "serious computer security
incidents" of which they were aware in 1984-87, and in 1988. They were also asked to
indicate how many of them were referred for prosecution.

One interpretation of the results is to put it in terms of good news and bad news.
The good news was that the proportion of cases referred for prosecution tripled in
1988. The bad news is that this represented only a 6% reporting rate in 1988.[1] I
invite our panelists to address the accuracy of this interpretation. Is an optimal

611

reporting rate 100%? I'm pretty sure not. Is 6% too low? I believe so, but I can't tell
you what rate would be satisfactory to me. Probably more than 50% though.

Assuming the panelists agree with my assumption that 6% is too low, I would
ask their advice as to what role the computer crime laws can play in increasing the
volume of reporting.

Prosecuting Abuse Criminally

The disparity in volume of prosecutions under state and federal computer crime
laws is immense, and should give pause to those concerned with the use of the
criminal law as a deterrent.

A survey of four jurisdictions' computerized prosecution records indicated
enormous variation in the use of computer crime laws.[ll Contrast two large
northeastern urban states. New York had ten prosecutions, Pennsylvania 485.
California and the federal government indicated 108 prosecutions each. The federal
statistic is misleading however, since it includes one case with 73 defendants.

As with the question of reporting, interpreting these statistics is much more
difficult than recounting them. If we assume that more than five cases per year
should be prosecuted in a major state like New York, again the question suggested is
what role computer crime laws can play to increase the volume of prosecutih Is.

Though not e...ustive, our research shows few if..ny .rosecutions in.v.lvig
computer viruses. Even if the Texas Burleson case is included, we are aware of only
three alleged virus prosecutions. In view of the widespread publicity for viruses, this
prosecutorial silence is troubling. I have spoken with a victim who was unable to
interest law enforcement at the local, state, or federal level in prosecuting a case in
which a virus was left on his machine. I have also spoken with a prosecutor who has
considered prosecuting the "World Peace Virus" for some time, and so far has not
done so. Both suggest that much of the activity in drafting new "anti-virus" laws
ignores the problems faced in the real world of prosecution.

The fact that all but one state (Vermont) now have computer crime laws
increases the need to ascertain the effectiveness of these laws.[4]

Two Cheers for Democratization

The rapid increase of access to computers continues throughout our society. In
1981, 18% of all school districts in the U.S. had at least one computer for their
students. By 1987 the figure was 99%.[1 Statistics about the growth of computer use
in businesses, in government, and in the home show similar, if not so dramatic
increases. As a consequence, computer crime has become an "equal opportunity
employer."

The Future Looks a Lot Like the Past

Our analysis of computer crime arrest figures for California suggests that much
more quickly than anticipated, the profile of computer criminals is approaching that
of criminals in generali]l 32% of the computer crime arrestees in this state between
1986 and 1988 were women (68% were men). 45% of the arrestees were non-white.
34% were black, 7% hispanic, 2% other origin, and 2% unknown origin.

612

In a sample of prosecutions from around the country, 74% of the arrestees were
not "hackers" as the term is usually understood (i.e., teenagers, usually with
unusually well-developed computer skiils.)[2]; Of the remainder, employees with
computer access were the largest group at 26%; unemployed or criminal arrestees
were next at 19%. Arrestees with computer occupations constituted 10% of the
s.ample, ex-employees of the victims, accomplices, and law enforcement and military
personnel each contributed 6% to the final total.

As a result of the "democratization" of computer crime, prosecuted cases seem
far less significant than those known to the respondents to our security survey.

National Center personnel have estimated that the annual cost of computer
crime in the U.S. is $555,000,000 plus 930 years of personnel time and 15.3 years of
computer time.[1] This figure is an extrapolation from average losses amounting to
$109,000, 365 person hours, and 26 computer hours per incident reported by our
survey respondents.[l]

Reported losses in the prosecuted cases in our national survey were far less.
27.5% of the cases were in the $1,000 to $10,000 range; 20% were between $100 and
$1,000; and 17.5% were between $10,000 and $100,000.[2]

The democratization of computer crime thus represents a challenge to the
computer security professional. Computer crime, as defined in our criminal laws, or
as defined by our prosecutorial practices, may bear ins: fficient resemblance to the
types of computer abuse wb Wch we professionals would like to see being prosecuted. If
so, I suggest that this panel may want to discuss how we can draft laws to increase
the match between our concerns and our laws' protections.

Alternatives to Prosecution

The three years since the publication of the National Center for Computer
Crime Data's Frst report, Computer Crime, Computer Security, Computer Ethics [3]
have seen a significant increase in the use of non-prosecutorial strategies against
computer abuse.

Civil prosecutions under the federal law have begun to occur, most notably
Sprint's prosecution of a number of computerized "toll thieves", and the anti-piracy
litigation of the Software Protection Association and the Business Software
Association.

Administrative and organizational solutions have been discussed in connection
with the "Internet virus" case. Cornell has suspended Robert Morris Jr., and
members of the Association for Computing Machinery has informally discussed the
question of expelling Mr. Morris.

Increasingly, computer crime laws are making provisions to increase or alter
the sanctions for computer crime. The most common sanctions are seizure of
arrestees computers and the court-ordered restitution to computer crime victims.[4]
Holding Kevin Mitnick without bail in the federal system represents a novel and
troubling sanct;on.

The California bill Mr. Pujals is credited with proposes two novel and
controversial sanctions. As originally drafted, it would have allowed evidence of
arrest for computer crime to lead to expulsion from any computer science program. A

613

first conviction would bar the defendant from "computer-related" work in California
for five years. A second conviction would extend the bar to life.

I would suggest that such sanctions should come, if at all, only after serious
consultation with representatives of the computer science programs and professional
organizations which they most directly would affect.

Conclusion

I used to give a speech entitled "Computer Crime, Career of the Future?" The
trends I have summarized suggest that an update is appropriate. Little computer
crime is reported, and what is prosecuted tends to be little computer crimes. We have
yet to devise a credible and reliable set of sanctions, be they criminal law, civil law, or
other organizational punishments. It is thus easy to conclude that computer crime is
now the crime of the present. I challenge our panelists, and those of you in this most
powerful audience who care, to address the question of what can be done to change
the odds, and the public perception of the odds, against the would-be computer
criminal.

References

[1] J. J. Buck BloomBecker, Commitment to Security. Los Angeles: National
Center for Computer Crime Data, 1989.

[21 J. j. Buck BloomBeck.r, Pr.liminary Rieport. Los Angeles: La--ional-
Center for Computer Crime Data, 1989.

[3] J. J. Buck BloomBecker, Computer Crime, Computer Security, Computer
Ethics. Los Angeles: National Center for Computer Crime Data, 1986

[4] J. J. Buck BloomBecker, Computer Crime Law Reporter. Los Angeles:
National Center for Computer Crime Data, 1988.

614

Executive Summary_

COMPUTER ABUSE: AN ACADEMIC PERSPECTIVE

James E. Miller
Computer Science and Statistics

The University of Southern Mississippi
Hattiesburg, MS 39406 - 5106

During the time when the public was inundated with news of the exploits of
teen age hackers, a commonly asked question was "Are the schools producing
computer criminals?" There were numerous examples. In Atlanta, apparently
motivated by computer science classes, a group of teenagers 7,tole $250,000 worth of
computer equipment, along with a significant amount of unique corporate data. A
number of schools such as Carnegie-Mellon and Cornell made national news wEen
their students were involved in a variety of computer abuses. Recent virus activity
has again put the spotlight on students and schools.

In twenty plus years of working with college students, I have been fortunate not
to have experienced any computer abuse incidents worthy of the evening news.
Neither have I experienced any changes in the level of abuse by students that could
not be explained by simply noting current enrollment levels. DUb COHIpuLel abuse i ,
not limited to students. The question of software piracy has clearly raised the.
question of faculty and administrative involvement in a much stronger way than the
occasionally reported security crashing assignments that we heard about being given
out in operating systems classes in the seventies and early eighties. Concerns about.
computer abuse in the schools have been expressed for many year6.

Abuses that I have observed include: an operator who used systems privileges to
seek out and then copy other studeiits' homework for a class he was taking; a
workstudy student whose job in the computer room gave him access to a transcript
form which he forged to gain admittance to another university: a student with access
to privileged accounts who was able to block out all other users, including the
computer operator; theft of components, software, documentation, and systems; a
Macintosh virus attack; numerous versions of a program for stealing passwords by
mimicking the log on procedure; students borrowing, copying, stealing, and buying
programs which they turned in as their own work; bogus computer generated grade
sheets mailed home by a student with academic problems; the destruction or
alteration of others' work; and unauthorized use of the school's -,-puter for what
apparently was a consulting venture. The only on campus compuex, abuse to reach
the court system involved a non-enrolled student who returned to school to remove
proprietary documentation which he had copied to his own file space. When his
efforts were thwarted, he crashed the system.

The most commonly reported abuse is that of software piracy. I have viewed the
primary offenders as faculty and administration while lab monitors have viewed it as
a student problem. Our lack of success in dealing with the piracy issue is a
reasonable measure of our lack of success in teaching the ethical use of computers.
Recent studies have helped to clarify the magnitude of this problem.

615

Cohen and Cornwell [1] have reported the results of a study which both
replicated and extended two earlier empirical studies (Christoph, Forcht and Bilbray
87/88 (2], and Schuster 87 [3]) that attempted to measure student attitudes toward
piracy. In the Cohen/Cornwell survey, 86% felt that "...most students copy
commercial software instead of buying it," as compared to 96% in the Schuster study.
Agreement results of 56% and 79% were reported to a question concerning the belief
that most faculty members made illegal copies of software. An additional Cohen
finding, that only 25% of the surveyed students felt that administrators copied
software, should probably be attributed to the students' perception of a lack of
computer skills and opportunity on the part of administrators instead of one of higher
ethical standards. A majority (56%) of the students who had the opportunity to pirate
reported doing so.

Lin [4] conducted a survey of 100 randomly selected individuals to see if the
attitudes of the general public were different from those of business faculty rnembers
surveyed in a study by Shim and Taylor [13]. Building on this study, he found
generally similar responses. He did not, however, address the impact of the
educational system on forming the attitudes held by the general public. Shim and
Taylor had randomly selected 500 business faculty members and sent them
questionnaires concerning "Unauthorized Software Copying." The results of the 218
usable questionnaires seemed to confirm student suspicions about the amount of
faculty piracy activities. While 2 out of 3 faculty members felt that copying software
for teaching was unethical, approximately 70% admitted doing it and 90% believed
that their colleagues had.

Kim's [6] study comparod and contrasted the views of computer professionals,
software salespersons and teachers. He found significant differences computer
professionais and sales-persons not accepting illegal software duplication while the
majority of the teachers agreed that it is right to make multiple copies ii" used for
teaching and twenty-two percent felt that "another teacher should be allowed to
make a copy of their purchased course ware."

WHAT CAN A SCHOOL DO?

Businesses will point out that their employees came to them ethically flawed as
products of the educational systcm. College3 and universities will argue that the
ethical foundation for ccmputer and information ethics should havy. been established
at the lower grades, ald the lower grades will want to talk abcut the failure of
families and churches. The bottom line, however, is that we now have a golden
opportunity to address the problem aL all levels.

It is obvious that schools need to address, the problem of teaching the ethical
considerations of the use of computers and the information they process. As has been
pointed out by many write's and speakers, computer ethics is an area that many
computer faculty are uncomfortable in lecturing on. Perhips the findings of the Shim
and Taylor quoted previously, documentinrg the degree of piracy by faculty. indicate
that there is good justification for faculty concerns. For most teachers, computer
ethics is an area where they have little or ni formal training. Fortunately there is a
reasonable body ofliterature in existence which will b2 of considerable value to any
teacher called upon to place added emphasis on ethical considerations. Thc books by
Donn Parker [7] and Deborah Johnson [8] are required reading, and the various
computer societics can pr'ovide both information and support.

616

It should be evidcnt that. teachers from plrcscheool onward must have, as an
integral part of their education, some content concerning computer ethis, Fach
course utilizing computers should address the ethical application of die technolulogy.

but simply teaching computer ethics will n,•t produce our desired result. If a
student is given pirated software (hotware) to usc by the i siructor, a pira:.y lecture
will have little impact. Professors r:eod to be reminded of their need to set a good
ethi-al example for their students. Just as UPpeCU leVel fr1mu1gers must set examples
for their employees, professors retUst do the amine for their student-. Implied here is
the need to clearly spell out tc.'c expectations of behavior. Administrators should
remnember there is a need to do this for faculty also.

Where the system of presenting computer, ethics appears to be weakest is in its
failure to make unethical behavior unattractive. For example, when we increase the
odds of det.ection and apply appropriate penalties for computer abuse we decrease the
problem. To do othem wise is to encourage and support unethical behavior. The
selection of appropriate penali',ies is critical to getting both faculty and student
suppoit. Shoplifting does not carry the death penalty and likewise, every computer
abuse does noi. need to result in Lhe permanent suspension of the students involved.
Wh:.t does need to happen is that the penality selected be of significant magnitude to
illicit, the desired behavior. The stLdent. that is caught turning in a program written
by someone else and then receives a grade of zero on that assignment when that is the
same grade he would have received if he had not copied has in fact been encouraged to
behave unethically. An "F" grade to a student that would have failed anyway is not
appropriate. The penalty needs to be something more significant such -:s an "F"
grade and a period ýf rest.icted eroihnent. And while too lenient penaulites uluM't
work, the same can be said for those that are viewed by the faculty as being too
severe. In this situation one finds that abuses are ignored. When students
understand that certain actions really do result in disciplinary actions they are more
likely to understand that they are responsible for their own actions.

The piracy question is another one where ethical behavior can be supported and
encouraged. A policy of no pirated software on school owned equipment can be
enforced by not allowing pirated software to reside or be run on school owned
machines. Site licenses are very attactive, because ,,hey present an inexpensive
alternative to users. They also can become the best alternative if supported by g.)od
documentation, technical support when problems arise, and solid accessability.

Any successful attempt at creating an ethical environment will require faculty
support. A :ommon complaint, of students is that lass assignments are given that
call for software that is not availabie. When this situation arises, the facu!ly member
should be asked if the assignment can be modified to eliminate the problcm. If there
is hesitancy, the policy needs t0 be to place an order for the desired software. Monies
for purchases wider duress should come from other -ireas of faculty support ,u;th as
travel, phones, supplies etc. Thi-s has the effect of moderating a "cookie-jar" approach
to software acquisitions. The same procedure needs to be used when a faculty
memnber (or administrator) persists in using h-lAware. Buy the software, with the
realization that there will not be the funds for other needed activities. Faculty
members also need all the support they can get in their efforts to encourage ethical
behavior When disciplinary action spifls out o" the teacherstudent relationship and
enters thc world of review committees, it needs to be doac in a manner that does not
encourage the fa.-ulty member tojijst ignore a similar situation.

6i"/

IA

When we look at the educational system, it is fairly easy to identify the degree
to which ethics are bein, twght. This is . tcoursc very important, in that it Is totally
unreasonable to assume that individuals will instinctively know appropriate ethical
decision making frameworks. But teaching ethics is only part of the solution. What
-x(e also need to look at is the degree to which we aggressively support ethical
behavior and discourage that which is not.

I'Veferences

[11] E. Cohen and L. Cornwell, "College Students Believe Piracy is Acceptable,"
CIS Education Forum, Vol. 1, Num. 3, March 1989, pp. 2-5.

[2J It. Christoph, K. Forcht and C. Bilbray, "The Development of Information
Systenis Ethics: An Analysis," The Journal of Computer Information
Systems, Winter, 1987/1988, pp. 20-23.

[3] W. V. Schuster, "Bootlegger, Smoking Guns and Whistle Blowing: A Sad
Saga of Opportunism," presentation to Western Educational Computing
Conference, San Francisco, October 1987.

[4] J. Lin., "Attitudes Toward Unauthorized Software Copylig: Genera! Public
vs. Business Faculty Member," SIGSMALL/PC Notes, Vol. 15, Nurn. 2,
May 1989, pp. 3-6.

[51 J. P. Shim and G. S. Tayloi "Business Faculty Members' Perceptions of
Unauthorized Software Copying" OR/MS Today, i.388, pp. 30-3l.

[6] D. Kim, "Moral Thinking on Computer-related Iss;ues Amol:g Educators
and Othe" Related Professicnals," Ph.D). 1issertation, University of
Michigan, 1986.

17] D. B. Parker, Ethical Conflicts in Computer Science and Teclhology,
Reston, Vi-gini, AFIPS Press, n.d.

[8] D. G. Johnson, Computer Ethics, 2nd edition, Eniglewood Cliffs, New
Jersey, Preiince-tiall, 1985.

618

Executive Summary

Access to the Access Codes '88-'89:
A Prosecutor's Prospective

William J. Cook, Assistant United States Attorney

United States Attorneys Office
219 South Dearborn, Room 1500

Chicago, IL 60604
(312) 353-7602

Timely cooperation between the private sector and federal agents is essential to
federal computer and telecommunication fraud prosecutions. Critical evidence can
be lost if evidence of fraud is not reported in a timely manner. The purpose of this
overview is to minimize the time loss by underscoring the threat and providing the
framework of federal agencies involved in the enforcement effort along with an
outline of federal statutes which may be used in computer and telecommunication
fraud cases.

Hi-Tech Street Gangs

Some individuals cling to the notion that computer and telephone hackers are
isolated Huck Finns that explore comouter networks for self-education and benefit
the computer industry by pushing the technology. This misguided notion is only
fueled by investigators and security officers that make "wonderkid" statements about
hackers to the media. These remarks only fuel hacker egos and galvanize other
hackers into action.

Several months ago I observed that computer hackers were operating like hi-
tech street gangs on the computer and telephone networks of this country. Nothing
since then has altered my view. Many hackers now work in groups to attack access
codes and computers. They are very protective about their equipment and
underground networks while they take sn "anything goes" approach in attacking
government and corporate computers and telecommunication networks. "What's
mine is mine, what's yours is debatable." When acting as a group they are capable of
making and carrying out extortion demands. Many examples come from recent
history.

"* In June 1988, an attack was reported on the computers at the Jet
Propulsion Laboratory in California.

"* In October 1988, a hacker successfully broke into the personal
computer of the Prime Minister of Belgium and obtained classified
information.

"* In October 1988, a hacker planted a virus in the New Zealand
National Bank system a1id temporarily disabled it.

" In October 1988, Scotland Yard arrested an English attacker who had
broken into over 200 military, corporate, and university computers in

619

the United States and Europe. The indication was that bh pllanned to
extort money from one of the victim corporations.

• In early November 1988, a Cornell undergraduate planted a
computer virus that temporarily disabled 6,000 cornputer.s .n tbe
U.S. Army research computer network (ARPANET).

* In November 1988, a British hacker broke into the U.S. military
computer network (MILNET) and stole non-classified government
files.

* In December 1988, a search warrant filed by U.S. Customs agents in
Chicago disclosed that a confederate of the Yugoslav Consul-General
in Chicago wits using a hacker that he set up in Dallas. Texas, to
attack Dallas area defense contractors by remote access and steal
computerized information. Information obtained by the Dallas
hacker was subsequently smuggled out of the United States in
diplomatic pouches from O'Hare Airport in Chicago with the help of
the Consul-General according to the affidavit.

* In February 1989, a Chicago youth, hacker handle Shadowhawk,
became the first individual tried, convicted and sentenced to prison
for violating the federal Computer Fraud and Abuse Act of 1986.
Shadowhawk had attacked AT&T computers at Bell Labs in Illinois,
at Bell Labs in New Jersey, at a NATO missile support site in North
Carolina, and at Robbins Air Force Base in Georgia. He stole copies
of' AT&T software worth $1.2 million and caused $174,000 wortt of
damage between July and Septemnber, 1987. During his trial the
evidence established that Shadowhawk and other hackers
methodically attacked telephone access codes enmasse on the theory
that the loss would be spread out between too many people for any one
person to be prosecuted.

"* In March 1989, West German authorities arrested hacker,, and
charged them with the series of computer attacks through the2
University of California at Berkley which were controlled and
documented by Cliff Stoll. Media coverage suggested that Eastern
Bloc intelligence agencies had sponsored their attacks.

"* In 1989, Computerworld reported that during 1988 more than 400
computer viruses infected nearly 90,000 computers. The types or"
virusesjumped from 7 in February 1988 to 30 in FebrL..ary).939.

"• On March 9, 1989, a mernbcr of the Soviet military navssicn in
Washington was arrested by the FBI and expelled horoý the United
States for attempting to obtain technical information about how U.S.
government computers secure classified information.

"* On May 10, 1989, Kevin Mitnick, 25, plead guilty in Lo,• Angeles to
charges that. he used a telephone and computer to steail a $160,000
computer security program from DEC and to possession of 16
telephone access codes. Mitnick had been held in jail as a danger to
the community on charges which included allegations that he had
illegally accessed NSA computers.

620

9

, On May 24, 1989, seven search warrants were executed in six states
as partof a nationwide investigation of voice mail computer abuse by
the U.S. Attorney's Office and the U.S. Secret Service in Chicago.
Afflidavits filed by the Secret Service agents described how hackers
had used voice mail computers as a location for exchanging access
codes and had extorted voice mail computer use from some systems
o.gerators. The affidavits noted that hackers had taken over one
comr-uter when their extortion demands were not met.

On June 13, 1989, newspapers in Florida reported that a hacke- had
entered and altered Southern Bell's switching equipment to reroute
calls to a probation office in Florida to a New York phone sex line.

6 On June 20, 1989, Leslie Lynn Doucette a/k.'a Kyrie was indicted in
Chicago by a federal grand jury on wire fraud, access device fraud and
computer fraud charges which alleged that she and 152 other hackers
had illegally obtained $1.6 million worth of property and
telecommunications services from U.S. companies through the use of
access codes trafficked on voice mail computers. Court hearings in
conr; ct.ion with the case disclosed that Doucette had been convicted
in 1987 in Canada for telecommunications fraud and that she had
bragged about staying 3 steps ahead of "the law." The indictment
alleged that Doucette and other hackers had used voice mail boxes on
voice mail computers to illegally traffic computer access codes, PbX
remote access code.s, telephone calling card codes and credit card
information.

* On iJu ne 21.; 191891 01it- 1"'ansas City Stuar rcportcd that -- PA-yezar old
hacker had used his computer to illegally access an Air Force satellite
and confidential files of 200 companies.

The pirice tags on these and other computer attacks are impressive. Computer
indtustrv sources indicate that computer and telecommuni'ýation-related crime
annually costs U,.S. compatnies around $555 million. (Some estimates are as high as
$5 billion.) .1'he "gaiig;' nature of some of these attacks by hackers are suggested in
tile estimate that each incident costs its victim around $450,000.00.

Tools

Congress has responded to the computer anO telecommunication threat by
providing federal investi•gatos an.d prosecutors with impres.sive tools.

18 U.S.C. § 1029. Prohibits fraud'ilent activity in c.nnection with using
access devices in interstate commerce, including
computter passwords, t.'Vlephone access codes and creditSenard s.

18 U S.C. §1030: Prohibits remote acc--ss With inlent to defraud in
conniction with 7edeial interest computers and/or
govcrnmeixt-owned computers aui prohibits unauth-
orized computer access by company employees.

1.3 U.S.C. §134:3: Proh~bits the use of incerstate communications
systems to furLhr a scheŽnme to defraud.

621

' ' ' ' ' '" I I I I I

18 U.S.C. §2512: Prohibits making, distributing, possessing, and
advertising communication interception devices and
equipment.

18 U.S.C. §2314: Prohibits interstate transportation of stolen property
valued at over $5,000.

17 U.S.C. §506: Prohibits ccpyrigt-t infringement violations - but. only
if tle copyright is actually on file.

22 U.S.C. §2778: Prohibits illegal export of DOD-cor.crolled software
and data.

50 USCA pp 2510: Prohibits illegal export of Department of Commerce-
controlled software and data.

18 U.S.C. §793: Pro'iibits espionage, including obtaining (and/or
copying) information concerning telegraph, wireless,
or signal station, building, office. research laboratory,
or station for foreign government, or to injure the
Unit(-:d States.

18 U.S.C. §2701: Prohibits unlav..fu! access to electronically stored
information.

18 U.S.C. §1362: Prohibits malicious mischl',ý involving the willful
niiiricrerce with mit~ltary communication systems.

18 U.S.C. §1962: Prohibits racketeering, which is in turn defined as two
or more violations of specific crimes, including 18
U.S.C. §1029, 1343 and 2314.

Who Uses The Tools

The capabilities of various federal agents and agencies will vary from place to
place. With that caveat, the following overview is presented:

Agency Comments

U.S. Attorney's Office - Kiiowledge of strengths of local fedei al
ask for: First Assistant agencies, grand jury, wire ;ap authority,
or Special Prosecutor search warrant approval, miost refer

espionage to DOJ.

FBI - Biggest federal law enforcement agency,
ask for: F,'aud Squad international coverage, white collar fraud
or FCI group copyright fraud goioap, FCI group,

developing expertise, warran t experiences;
refer to wire fraud when contacting.

Secret Service - Advantages of small agency, good local
ask for: Fraud police ccntacts, statutory mandate in access
Supervisor device aoid computer fraud cares, expert HQ

support, U.S. or,.ly, major cities only.

622

Ii

U.S. Customs - Experienced in export environment, inter-
ask for: Exodus Supervisor national coverage, large agent staff, good
or Exodus Coordinator HQ coordination with intelligence

community, good coverage in major port
cities and along borders, developing
expertise.

Commerce Department - Small agency advantages, export
ask for: Enforcement Section environment, HQ group controls licensing,

agents travel abroad to cover leads.

DCIS or DIS - Small agency advantages, moves easily in
ask for: Assistant SAIC Defense Contractor environment.

Final Observations

However, before prosecutions can be successfully brought under these sections,
several things should be developed in the computer industry and the law enforcement
community.

"* Federal prosecutors and federal agents need to overcome
"computerphobia," perhaps the leading cause of death of computer
fraud cases referred to the federal government.

"* Computer security specialists and systems administrators must be
alert for both internal unauthorized access and external hacker
attacks and the potential ramifications of such activities. They must
be aware that the modern plug-in on one of their computers could be
the international border in an export violation and that computerized
log records may be the only evidence of espionage or "tech-theft."
Unauthorized access by outside hackers and inside the company
employees must be reported to law enforcement.

"* Corporate and government hiring must be done carefully when the
employee will have access to the computer room, computer network
and/or trash from the computer room.

"* Dumpster-diving is not an Olympic event, so there is no need to make
your computer room trash availatble to the youth of America.

"* Federal agents and computer security professionals must recognize
the need for rapid mutual cooperation and communication, with
security professionals providing background information on the
attacked computer network and assisting with federal investigations
and search warrant efforts.

The taxpayers and consumers that write the checks for government and private
sector R&D deservc a coordinated federal law enforcement and computer industry
response which recognizes that software and computer-related engineering is one of
our country's greatest resources.

623

Executive Summ~ary

ETHICAL USE OF COMPUTERS

Dr. Karen A. Forcht
James Madison University

Hlarrisonburg, VA

The subjects of computer security anid computer-based crime have been the focus of
substantial debate during the past decade; however, the issues involved are far from
resolved. A variety of measures have been instituted, enforced, and monitored to ensure
that computer centers are not vulnerable to human intervention--whether accidental or
intentional. Unfortunately, this physical interpretation of security represents only one
facet of a complex problem. The misuse of computer software and stored data and
information may ultimately prove to be the more significant concern. In short, it is not
yet clear to all paities involved in computer use just what acts should be considered as
computer crime.

In the past few years, interest in the issue of ethics has been heightened as we now
focus on the "people side" of computer security. The copying of a software program for a
friend, while in direct violation of copyright laws, and the:efore, technically a crime,
may not be considered as serious to the user as stealing a physical systern component or
sabotaging a system for prof-it or revenge. The paramount question then becomes one of,
"What are the definitive responsibilities of computer center employees or persons having
access to software and information to the public they sqrve--the titlitimat~e u1ser or owner
of informa-tion--in creating an 'erivironment of security' and in practicing solid ethical
standards in regard to the valuable data they use when performing theirjobs?"

Every culture, no matter how civilized or primitive, ha-, an ethical code. Some
codes tend to be rather formal and are entered into, unknowin~gly, at birth as they are a
definite part of the social culture. Other ethical codes develop as we grow, becomning a
vital par-t of our personal and professional lives. Throughout. our lives, we are constantly
faced with the dichotomous dilemma of right. vers;us wror.g,,, good versas bad.

CODES OF' ETHICS

Many professional groups are attertmpting~ to formulate some definitive guidelines
in this computer "sea of uncertaint~y" by proposing formal Codes of Ethics. The current
concept today in evaluating a compute~k stocurity Vý ogram is "prevention on the front
end--not just punishment on the back end". Tihis 'preventative maintenance" concept
should be practiced by all memh.ers of thc organization-- users included--to be truly
effective. At the present time, there are various widely accepted Codes of Ethics in the
computer profession, including:

1. British Comput(w Socliety (IICS)
Code of Conduct

2. Data Processing M~anagement Association (PDl'%A)
Code of Ethics, Standards of Conduct and Enforcement Procedures

3. Association for Computing, Machinery (ACMI)
Professional Conduct and Procedures for thc EnforcementL of the
ACM Code of ProfessionalConduct

4. Institute of Electrical and Electronics Engineers (5 EEE)
Code of Ethics

624

5. Institute for Certification of Computer Professionals (ICC 11)
Code of Ethics and Good Practices

6. Information Systems Security Association (ISSA)
Code of Ethics

SURVEY RESULTS

In April, 1989, two surveys were conducted at James Madison University under the
auspices of the Dominion Fellowship Grant by Dr. Karen A. Forcht and Ms. Anne Myong
to ascertain the level of ethical awareness and practice by college students and
practitioners.

Student Survey

This survey targeted students mainly from James Madison University's College of
Business and spans sophomore students through MBA's. The information was solicited
from the participants by utilizing a questionnaire which included key factors such as
major field of study, demographics and other personal information such as career paths,
how the respondent viewed themselves and their peers morally and ethically and their
personal experience with computer misuse.

The participants in the study ranged in age from 19 to 45 with a heavy
concentration in the areas of Accounting, Finance, Computer Information Systems and
MBA's. Most of the students were from cities ranging in population from 50,000 to
750,000+ residents. Family income was high with the heavily weighted median
incomne bI-g -,0 a year or more.

Most of the students surveyed had previously had computer experience in the
workplace, ranging from data entry and word processing to operations and specialized
internships in the computer area. When asked if they had engaged in any form of illegal
computer use, whether it be software piracy or some form of hacking, almost half of the
participants admitted to using the computer for unethical means. Male hackers
definitely outnumber the females and the majority of these offenders seem to be in the
senior level of college and in a computer-related area of study. It is ironic and perhaps
hypocritical that this same age group is adamant about their own morals and ethics
which they judge to be very high.

Students who were majoring in Accounting and Computer Information Systems
are the most aware of formal ethical statements and honor codes of the University than
any other major. This could be attributed to the importance of accurate information
produced by these two areas and the means to ins-tre that the information is indeed
correct (i.e. IRS auditors, security officers).

Alarmingly, although CIS majors and MBA candidates are aware of the ethical
concerns, they are the foremost group of student hackers of all surveyed. This finding
should cause great. concern because these future consultants, bankers, and government
officials will be working with extremely sensitive information and yet their ethical
standards are lacking at, this very early stage in their careers.

A comment from one of the respondent's seems to sum up the dilemma quite
adequately:

"I think today more than ever, students are learning that it is more practical
and safe to use the business ethics that they are taught while still in school. However,

625

many times when the students get in a real-world situation, they may feel that they

have to do certain things just to stay competitive."

Practitioner Survey

A questionnaire was mailed to the Chief Executive Officers (CEO's) of the
Datamation 100 companies to ascertain their assessments concerning the ethical
standards that have been formally adopted by their organizations and to seek their
opinions about the ethical environment that may be present in their organization. The
data analysis indicates that, for the most part, the CEO's responding adhere to a very
high standard of personal ethical conduct and computer use. Furthermore, and most
importantly, they expect (and require) that their employees follow ethical standards.
This ethical attitude is reinforced by ethics codes, ethics awareness programs, and
sanctions/reprimands of offending employees.

Some of the major survey results are:

1. When asked whether it was possible to teach ethical behavior in a
classroom, rather than being learned "on the job", over 75% felt that ethics could be
acquired in a classroom setting.

2. When asked whether companies should require all employees to sign an
ethics oath before beginning work, over 50% agreed.

3. When asked whether companies/organizations should develop and
administer an ethics awareness program for ALL employees, over 75% agreed.

4. When asked whether colleges and universities should incorporate an
ethical use of computers course in their present curriculum, almost half (46.77%) agreed
and 20% strongly agreed.

5. Over 80% of the respondents reported that their organizations have a
formal ethics policy. Almost three-quarters (73.3%) were American companies, while
only 23.3% of the foreign companies have a formal ethics policy.

6. Most of the respondents, when asked how public figures can best promote
good ethics, said "by setting a good example".

CONCLUSION

These two surveys shed a great deal of light on the Ethics Awareness dilemma that
is facing education and industry. Even though both groups, stuients and practitioners,
seem to follow a very high personal standard of ethics and morals, and they obey laws,
many fee'. that too often compromise is evident (and necessary) in the workplace in order
to stay competitive.

Perhaps if educational institutions and the computer industry work together in
fostering an attitude of ethical use of computers, the outcome will be a favorable, and
acceptable, one. The unique and varie-d challenges we- face in this age of information are
truly unprecedented. Hlow we achieve a balance between intellectual/ professional
growth and ethical compruniise--and yet remain in the "ballpark"-.-.is i•deed -Lhe
paramount challenge.

626

Executive Summary

COMPUTER SECURITY TRAINING IN THE
FEDERAL GOVERNMENT

Harold Segal
U.S. Office of Personnel Management

Office of Employee and Executive Development

P.O. Box 7559
Washington, DC 20044

Computer Security Awareness training is a significant requirement of the
Computer Security Act of 1987 (Public Law 100-235). The act is augmented by
computer security training regulations published by the U.S. Office of Personnel
Management (OPM) and computer security training guidelines published by the
National Institute of Standards and Technology (NIST). The regulations and
guidelines provide Federal agencies with specific guidance on how to carry out their

In addition, the Office of Personnel Management has developed computer
security training materials and has distributed them to all Federal agencies. The
computer security awareness training materials provided to the Federal Government
by the Office of Personnel Management include a video tape, instructor's guide for a
one-day course, management briefing materials, desk guides, and independent study
materials. The training materials are designed in a flexible format so that they may
be used separately or in combination with each other. These materials have been
developed in the context of the NIST guidelines and are a cost effective approach to
assist agencies in fulfilling their training requirements.

The Office of Personnel Management has followed up with approximately three
hundred agencies to determine how training materials are being used. Agencies are
training a wide range of employees using various combinations of OPM training
materials. Delivery methods vary significantly from agency to agency depending on
identified training needs.

There is nro single best method to carry out the training intended under Public
Law 100-235. Much is left to the discretion of agency management. The presentation
and discussion in this session will provide examples of what techniques are being
used, what results are beginning to occur, and what does not work.

627

Executive Summary

SECURITY TRAINING AND AWARENESS
WITHIN THE FEDERAL GOVERNMENT

Anne Todd
National Computer Security Laboratory

National Institute of Standards & Technology

The Computer Security Act of 1987, P.L. 100-235, was enacted to improve '.he
security and privacy of sensitive information in Federal computer systems. As one
way of meeting that goal, the law requires that "each agency shall provide for the
mandatory periodic training in computer security awareness and accepted computer
practices of all employees who are involved with the management, use, or operation
of each federal computer systen within or under the supervision of that agency. "

The National Institute of Standards and Technology (NIST) is responsible for
developing standards, providing technical assistance, and conducting research for
computers and related systems. These activities provide technical support to
government and industry in the effective, safe, and economical use of computers.
With the passage of P.L. 100-235, NIST's activities also include the development of
standards and guiUeliaes needed to assure the cost-effective security and privacy of'
information in Federal computer systems.

In fulfilling this responsibility, NIST has developed a document which provides
a framework for identifying computer security training requirements for a diversity
of audiences who should receive some form of computer security training. The
Computer Security Training Guidelines focus on learning objectives based upon
the extent to which computer security knowledge is required by an individual as it
applies to his or her job function.

The Guidelines divide employees involved in the management, operation, and
use of computer systems into five audience categories:

Executives Senior managers responsible for setting
computer security policy

Program/Functional Managers who have a functional responsi-
Managers bility for the data being processed by the

computer.

IRM, Security, and As a group, these individuals are the compe-
Audit Personnel tence center for protection (1' information

resources and provide technical assistance
to users, functional managers, and data
processing organization in implementing
agency policy on information secu,'ity. They
monitor its effectiveness and efficiency.

628

ADP Management, Implement security controls for data in their
Operations, and custody and advise data owners/managers of
Programming Staff these cvntrols. They have primary

responsibility for all aspects of contingency
planning.

The Guidelines provide five training content areas, or subject matter areas.
The level of training required in each area will vary from general awareness training
to specific courses in such areas as contingency planning, depending upon the
training objectives established by the ag;,ncy. The five areas are:

1. Computer Security Basics
2. Security Planning and Management
3. Computer Security Policies and Procedures
4. Contingency Planning
5. Systems Life Cycle Management.

The actual selection of the computer security training will depend upon the
specific security responsibilities involving duties assigned to individual personnel.
The Computer Security Training Guidelines are intended to be used by agencies as
guidance in developing, acquiring, evaluating and/or selecting training courses in
computer security.

In addition to the Computer Security Training Guidelines, NIST is also
developing three booklets on computer security awareness. They are: Computer
User's Guide to the Protection of Information Resources, Management Guide to the
Protection of Information Resources, and the Executive Guide to the Protection of
Information Resources.

629

Executive Summary

INFORMATION ETHICS. A PRACTICAL APPROACH

Harry B. DeMaio
National Manager

ProTech/Information Protection Services

Delai-te Haskins & Sells
One World Trade Center

New York, NY i0048-0601

IT'S UNNATURAL

I'd like you to consider the following assertion: Ethical behavior toward
information and information resources does not come naturally to most people. An
effective ethics program must take people as they are and provide guidance on how
we want them to behave. The more "unnatural" that behavior seems to the
individual, the more extensive and pragmatic the program must be. In this
presentation, I'd like to illustrate why this lack of naturalness exists; what the
implications are for information ethics, and how on a practical basis, our information
ethics programs can cope with these implications.

I'm not suggesting that human beings are not fundamentally ethical. I believe
that, on the whole, we are. I do mean that the rules of ethical behavior are not
intuitively obvious when it comes to information. That represents a problem to
managers, users and protectors of information resources. Therefore, information
owners must state more explicitly and enforce more actively our ethical expectations
than we usually would when dealing with the protection of tangible assets.

In fact, in many cases, the first problem is getting people to look at information
as an asset at all. To most individuals, information is in an amorphous class of its
own. We know for instance that "knowledge means power". However, we seldom
take that statement to its logical conclusion and establish a direct asset value for that
knowledge. In the first place, it's not easy to do. Secondly, somehow, it doesn't feel
natural.

Therefore, I believe it's a mistake to assume that people will automatically
apply their norms of ethical behavior about tangible assets to information. Further,
it s unlikely that a few generic statements about behavior toward information will be
sufficient, leaving it to the individual to fill in the blanks. Finally, technology has
made it even more difficult for most individuals to develop, on their own, an
appropriate and sharply focused information ethics code.

Why? There are probably many reasons, but I think the following four are the
most basic:

630

1. Eahics focuses on our relations with others and their property. Information
Technology can alter existing relationships and create new and unfamiliar
relationships.

2. Intangible property is different and electronics has made that difference even
more difficult to deal with.

3. There is a collision of rights concerning Information. Freedom of expression,
freedom of information, privacy and protection of intellectual property often
conflict. Sorting out priorities is difficult, especially iii electronic environments.

4. There is a conflict between our natural urge to communicate and our urge to
protect property.

Let's look at each of these factors individually.

1. Information Technology and Relationships

Depersonalization is probably the most obvious example. Increasingly, in the
electronic environment, a system or electronic process takes the place of an
interpersonal transaction. Some subconscious sense of obligation that we would feel
to a human partner is reduced in the process. This is especially the case when human
in'trvpnttion ks required hut can't be supplied. Try calling for appliance service
sometime. If I can't identify another person in the transaction, my sense of personal
responsibility may shrink and my sense of indignation and frustration may rise.

Anonymity is another example. One of the pre-conditions that permits hackers
and virus spreaders to behave as they do is the ability to hide behind some false
identity. There is a corollary in the case of viruses. The victim is usually
unidentified to the culprit as well. The virus attacker can ease his or her conscience
by claiming they don't know what the outcome or victims will be. Therefore, they
may be irresponsible but not vicious in a directed sense. I didn't say it makes sense.
Selective ethics usually don't.

Therefore, electronics can weaken positive relationships and strengthen
negative ones. Unless we take that into account in an ethics program, we'll miss the
target.

2. Intangible Property is I)ifferent and Electronics Increases the D)ifference

Just look at a consolidated database and try to determine who the owner is, who
the authors are, and who has rights to look, change, copy or destroy. When I
distribute that same data over a large number of processors where other individuals
can make alterations, additions and deletions, what's happening to the property
rights of the authors and owners, whoever they may be? Unfortunately, a primary
component to any property related ethics program is knowing who the owners are and
what their rights are. Not easy with electronics. By the way, claiming that all
information used by an enterprise is its property won't fly. Most organizations use a
great deal of externally generated data which may have a specific owner or is in the
public domain. Claiming ownership of everything weakens your claim on anything.
For another good example of the dilemma, read some of the discussions on audio and
videotape copying or soft ware piracy.

631

3. Collision of liarlits

Some of our guiding principles, such as freedom of information and rights of
privacy, conflict in specific situations. Which is more important, my right to privacy
or the public's right to know? We usually answer that question one way if we are the
affected party and the other if we are the knowledge seekers. Human nature! Don't
force people into double bind ethical situations by making it impossible for them to
satisfy their own consciences about the behavior you expect.

4. Communicate or Keep Secret

Our natural urge is to protect private property but to share information. We
also regard information as part of a general transactional relationship. You trust me.
I trust you. You tell me important things. I reciprocate. That relationship is not
always based on "need to know". It's more frequently based on a "want to know" and
mutual accommodation. As a matter of fact, most of us feel a bit offended about the
"need to know" process. Curiosity (intellectual or otherwise) is a very powerful drive.
Since electronics makes it so much easier to pass information on, this mutual
accommodation is made that much easier and "need to know" that much more
restrictive. Further, we all have a natural suspicion of individuals or organizations
who are secretive.

SO, WIAT TO 1)O?

1. Make the Scope Realistic

Any successful program of information ethics must take the human realities
into account. We can't expect people to be perfect models of restraint without
guidance, direction and management. This takes time, effort and expense. You won't
get perfection under any circumstances. So, set some realistic goals and objectives
and direct the program to those areas that really count. Overly ambitious ethics
programs and security programs usually collapse of their own weight.

2. Make It Specific to Your Organization

Unless the individuals whose behavior you want to influence see themselves
and tlheir environment clearly in the direction you're giving, they won't respond.
Philosophical statements are fine for preambles but the more localized, specific and
applicable the rules are, the more likely they are to be carried out.

3. Role Play

After you create a program and before you implement it, try it out on the
managers and employees who will have to live with it. Here's where the ctnflicts,
ambiguities and hostilities will rise to the surface. They can sink a program that
looks great on paper.

4. What Are You Really Saying?_

Search out the implication,; of what you are proposing. As examples, try these
two phrases:

632

"Need to Know". How will you determine it? How will you arbitrate?
How will you enforce it? If the answers aren't clear and practical, don't
use it as a principle.

"Information Owner". How determined? How arbitrated? How enx:rced?
Again, if it can't be supported, find a different platform.

Some organizations can or must support these and cther principles-,. 0t0 ro"
have great difficulty. Don't pick up someone else's ethics and security program
indiscriminately. Make sure it fits or it won't work. Worse yet, it may wor! -,t a cost
you don't want to pay.

5. Fthical Codes Should Guide, Not TPrap

You are trying to direct and guide behavior, not create snares to c3 "ch pe:)Pw.
Yes, enforce with punitive measures but a body count is not the sign of a succossfu.l
ethics program. As a matter of fact, a large number of offenders says that your e&,hics
program is a faiure.

You also have no right to demand behavior which society would regard as
unreasonable unless a correspondingly strong rationale (national defense, protection
of life) exists.

6. Involve Local Management I)irectly and Extensive!y

Senior management's suppoit is important as a background. LooCn5
management will make it work. This is especially important with awareness
programs. Unless an indi,.idual oe.ieves that his direct manageiaent an-i pecr an e
buying in, he won't respond. A road show made up of strangers for hcadqurirters
doesn't do the trick. A Local program with joint participation by the expcts and, local
management will carry it off.

7. Peer Pressure

TI, gct is to make everyone their own security officer with per-monial
com " n* and peer pressure being the most powerful motivators. The "iuy.i" 's
trar . -'-ctions and examples, not. directives and foimal comnvinic,,tions.
Cr,. sphere where peer pressure supports personal commitment.

8. Corn,. t By Exam__le

Finally, actions do speak louder than words. The organization, its ,naiosg nc.t
and its employees all demonstrate their commitment to information ethics .enot by the
number of posters, size of the policy section or frequency of classes, but uy thcir d'aiiy
activities. That's how you should measure success and thus how you hould
demonstrate to your processing partners and the rest of the outside world that
information ethics, natural or not, is part of your operating procedure.

633

E'xec ut 1ueS um.m a ry

EXECUTIVE AWARENESS

B3y
J oa n Fo rn a n

BuLreau of Engraving and Printinrg
14th & C Strcets, S.W.

Washington, DC 202'28

By nov', it is obvious that a law exists requ,'ring mandatory training for all
ernployees i rM)INved with the manacir~erent, use, or operations of Federal computers.
This session offei-s somne 'friendiy" uzchniques, advice, pit. falls, and rnet.hods that
were,. usec. in~ planning tra--ining for execut~ives,

s 1eAT)P Security Manager for the Bureau clf Eng-.raving and Printing kBEF),
I was able w~ corra~l all, t~he B3ureau executIves into a hotelI ronm for f&lur h~ours. Y
convilneed, thern that.,- was in their be~st intcrest. 1,% liste-n to a stranger (contractor)
sneak oin the fujreign su~bjec~ called computer security. I shall. entilghtinI youý on how
thiis "trivial" task w~ias accomplished.

Pruior 1;' schtduling the exccutive ,ierninar, i acquire-,d nippioval from the
Bureaus SIR S (nic rinfnrma tion Reoucs cIiv) Soirp ynIR isTT, ;hC 4 cpk.. tc$--; o

the Trea:5ury's niame for the executive inl Charge of the AIS security program- for each
Bureau. Fortunately for me, the BEP SIRE is a dedicated supporter of' computer
security. Tenx t.- ivle ,wng the Director, the head of the Bu0reaul not
only to agrec- to the bernriar, buLý to send a special written invitationr to ali Bureaul
execu~tives and top inanagers. (Refereiice Figure 1, the organization Chart). T1he
special invitation stated thai according to the lawv it is mandatory for rnanagers, to
attend this stimulating se-n~nar. The Bureau calls this itivitation a Special
Announcement (Refci-ence figure 2). Please take note of the next to the last, sentence.
That's called managern,-nt' incentive.

So far, .o good. Now, wihere should this great event take place? Executives
nius leave the working premnises. Their undlivideýd attention is req~uired. You need a
cordial, charminj, eý.qkiisitQ, captivc, pleasant facility, all the comforts thlat
executives are a(,uitomed to. 'h;s was accumipiished by having the Bureau's
training office roenr'i'iate this ctndeavor. YOU can't lose by using their expertise.
They are wiell trained in provid'ing such important, logistics as ensuring there qVC
pastries, coffee. tea, juiec,, big soft napkitis arid selecting arn urxobjectio- La c i It, Y.
Plus if anything goes ast.ray, you're not to biarnp. On the other hand, .yt I-ing
turns out rnagnificcnL., what s gre nd job you pm- formecd.

Next itemi of coiwer u: who has tfle capability of con.-veying this abst~ract Coreign
subject as a ric.eaningful and interesting top>? Ilow do you find such an individwual?
Again, this is wneirei you use your training offi(ce's expertise. After n-umerou's
telephone conv.-ersationii arnid meetings, you and youi traininig office StaIrt
interviewing the contric'tors. 'TIliete artt severai irnprlaut iteins that. cannot be over-
looked during this -Lrucial tiriie:- 1) Tbs chill andi dry slubject hp,,, to be -In:dle
interesting tr, the audlen,-e, 2.) Ih. h.As, to rX)ý ajP24c vvr. cleaqr t~ha'i executive: soklporl is
imperative iki making a comrpu*ter s;ecurityv prograrn sucressful, 3) Top man~ageirnent.

6334S

must be informed of their legal responsibilities, 4) You personally must intrerview the
instructor, 5) The subject matter must be presented without putting anyone to sleep,
and 6) Above all, it's a matter of life and death as the ADP Security Manager that you
have a job after the seminar has been completed. The final touch in the planning
stage is to invite computer security officials from your Department. After all, th•
Department is actually responsible for ensuring NIST (National Institute)f
Standards and Technology) that they and you are abiding by the law. In addition,
they may give you recognition.

Be prepared for your first joy, an adverse reaction. In my case, the Director and
the SIRE were out when I received a phone call from the acting SIRE. The Deputy
Director, a new kid on the block, wanted to know who said "HE" and the other top
managers had to take this half-day seminar on the foreign subject of computer
security. Would I please come immediately to the Deputy's office and explain this
matter. After 30 minutes of explaining, the Deputy agreed to endorse the seminar,
even though he did not cherish the idea. At that time, I assured him that he would
truly enjoy the seminar and that he would be impressed with the knowledge he would
gain. Then I left the office and had a coronary!

At this point, I had convinced the Director, Deputy Director, and the SIRE that
this was the greatest thing since Morn and apple pie. What can you do to ensure that
a contractor will perform the way you perceive that they should, and that you will
have a job when the seminar is completed? Proceed to put the old thinking cap on and
don't forget to plug it in: What was and still is the most interesting thing that has
been hap pcing in the computer security field and has been receiving national
attention? BINGO! HACKING!

Now to connect hacking with computer security without losing the thrust of the
topic. What else? Develop a contest! It helps a great deal if you insert a little (large
amount) of humor in your seminar. After all, I am keeping your attention by using
Miis tactic. The contest contained two awards, one for the best potential hacker and
one for the individual that could best defend the Bureau from the hacker. During the
sm-inar, making or receiving telephone calls and leaving early were announced as
causes for deducting qualification points. The announcement of the contest and rules
wxre made at the beginning of the seminar. The executives themselves selected the
two wircaers by vote during the seminar. This is called "participation." Also, during
',:ie senminar the executives were not allowed to use their real names. They were
asssignI "code names" that were professionally printed (using a plotter) on cards for
each exmcttive. The prize for the best hacker was presented after a break, a copy of a
hackr.-ý magazine. The prize for the defender was presented after the second break, a
copy ot Jie sam- hackers magazine. After all, the defender has to know what the
ha,,.k•r ;: up to. The moral is, it helps to be an inventive person to develop a gimmick
thLaJt c,-r.,r hý used to accomplish your objective.

The -seminar went quite well, lots of participation from everyone including the
Dir.-tor)c Vweputy Director, and the SIRE. The Deputy Director did enjoy the seminar
and rn.v-.tione-i it several times at other committee meetings. One Assistant Director
-.nd (bour :;cp manýgers did not attend; however, they did attend a full-day seminar. I
sil) have my job as the ADP Security Manager, however, after this presentation, it
Mr,, b. .ieopnrdy again. The SIRE is on the panel which is about to entertain you.
T han•k ycu for y..uj r kind attention.

635

DIRECTOR
DEPUTY DIRECTOR

J

E RO and office Of" Programn AnalysisEmployee Counseling Chief Advanced and

Services Counsel Counterfeit L te rnal
Staff Detrrence Affairs

I IFT S Asstiant Director Assistant Director 11 zist~tDrco

S, Operationm) (Admninistration) (Research and
Engineering)

F--_'7T -I'r o•~

ju_ lice of Currency lffice ct Managemett Oft.ce of-[Productions I Services - Engineering

Offkc f)esign and 0 Office of Finaucial ofRe;Pearch and]
Eg.. p r i+trv i ng Management Technical Services

ThVo _ 1no logy

-Office of lIndus-t. i I Office of Quality
0 1•'11cp of Produc•t ion• R e lati on's ks A~u r a n c e

'Management

-Officeo1'Security Office of Tech-inoogy
SO(ffice ofStampf I)evelopment

"-Production I-
.... - Wa iy - Office ofProcurementt ,Office of Environmenta' i

jWestern Facility I Systems~

Office of Currency
Standards j

Office of Information
Systems

FIGURE 1

636

CO0N FE RE N CE R E FER EE S

I._

Conference Referees

Dr. Marshall D. Abrams The MITRE Corporation
James P. Anderson James P. Anderson Company
Alfred Arsenault National Computer Security Center
Victora Ashby The MITRE Corporation
David M. Balenson Trusted In formation Systems, Inc.
Curt Barket Trusted In formation Systems, inc.
Elaine Barker National Institute of Standards and Technology
L. Kirk Barker Datotek
James Barrow IBM
Joseph Beckman National Computer Security Center
Dr. D. Elliot Bell Trusted Information Systems, Inc.
Greg Bergren National Computer Security (.enter
Dr. Thomas A. Berson Anagram Laboratories
Earl Boebert Secure Computing Technology Corporationi
Dr. Dennis Branstad National Institute of Standards and Technology
Dr. R. Leonard Brown The Aerospace Corporation
Dr. John Campbell National Computer Security Center
R. 0. Chester Martin Marietta Energy Systems
Dr. Deborah Cooper Unisys Corporation
Mark R. Cornwell The MITRE Corporation -'
Dr. Steve Crocker Trusted Information Systems, Inc.
Donald Crossrnan National Computer Security Center
Paul F. Cudney Unisys Corporation
Dr. Dorothy Denning Digital Equipment Corporation
Donna Fogle Dodson National Institute of Standarcs and Technology
Dr. Deborah Downs The Aerospace Corporation
Devolyn Duggar National Computer Security Center
Kenneth W. Eggers The MITRE Corporation
Greg Elkmann National Security Agency
Dennis Gilbert National Institute of Standards and Technology
Irene Gilbert National Institute of Standards and Technology
Dr. Virgil Gligor University of Maryland
Harriet Goldman The MITRE Corporation
S•d Gre.n The MITRE Corporation
Dr. Joshua Cuttman The MITRE Corporation
Dr. Grace Hammonds AGCS, Inc.
Major Douglas Hardie (USAF) National Computer Security Center
Jim Healy COMCON
Ronda Henning Harris Corp.
Jack Holleran National Computer Security Center
Jim Houser National Computer Security Center
Brian Hubbard Trusted Information Systems, Inc.
Howard Israel AT&T
Dr. Albert Jeng The MITRE Corporationil
Dr. Dale M. Johnson The MITRE Corporation

637

Thomas Keef e Unvrit of Minnesota
Lisa Carnahan Kurmar National institute of Standards and Technology
Leslee LaFountain National Computer Security Center
Steven LaFountain National Computer Security Center
Paul A. Lambert Motorola GE6
Carl Landwehr Naval Research Laboratory
Dr. Theodore Lee Trusted Information Systems, Inc.
Nina Lewis University of California, Santa Barbara
Teresa Lu n SRI Interrational
Barbara A. Mayer Trusted In fnorma tion Systems, Inc.
Frank Mayer Trusted Information Systems, Inc.
Lynn McNulty National Institute of Standards and Technology
Catherine A. Meadows Naval Research Laboratory
Dr. Jonathan Millen The MITRE Corporation
Andrew Moore Naval Research Laboratory
Jack Moskowitz National Computer Security Center
William H. Murray Ernst & Young
Eugene Miyers Na tional Computer Security Cer, ter
Ruth Nelson GTE
Peter G. Neumann SRI international
Janet Beekman Oweais HIRB.SystemS, hIc
Tom Parenty Sybase
Dronn Parker S;~Intern a)tinnrai
Dr. Charle5 Pf lee!Jer Trusted Information Systems, Inc.
Dr. Syivan Pinsky National Computer Security Center
Phil Quade National Computer Security Center
Profes-or Ravi Sandhu Ohio State University
Marvin Schaefer Trusted Information Systemr, Inc.
Sam Schaen The MITRE Corporation
Dr. Roger R. Schell Gemini Computers, Inc.
Daniel 0. Schniackenbet-g Boeing Aerospace
Steve Schuster National Computer- Security Cen -Ler
Wil~lam R. Skicckley D~igital Equipment Corporation
Emnilie Jones Siarkiewicz Rome Air Developmen' Center
Miles Smid National institute of Standards and Technology
Brian Snow Nation al Security Agency
Dennis D. Steinauer National institute of Standards and Technology
Frank Stewart Anser
Mario Tinto National Computer Security Center
V. C Ray Vaughn (USA) National Computer Security Center
Gran~t WagnerC National Computer Security Center
Steve Walker Trusted Information Systems, Inc.
Jill Walsh INCO, Inc.
Wayne Weingaertner National Computer Security Center
Howard Weiss National Computer Security Center
Mike White US House of Representatives
Kimi Wilson Booz-Aller, & Hamilton
Roy Wood National Computer Security Center

638 - Us. S OVRpmNK IPR IAN TING orrIL18-2

